1
|
Luo Y, Xiang J, Tang S, Huang S, Zhou Y, Shen H. Ursolic acid induces apoptosis and pyroptosis in Reh cells by upregulating of the JNK signalling pathway based on network pharmacology and experimental validation. Heliyon 2023; 9:e23079. [PMID: 38144346 PMCID: PMC10746475 DOI: 10.1016/j.heliyon.2023.e23079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Objective To explore the mechanism of ursolic acid (UA) against acute B lymphoblastic leukaemia (B-ALL) based on network pharmacological analysis, molecular docking and experimental verification. Methods The core targets, functional processes, and biological pathways of UA in B-ALL were predicted by network pharmacology and molecular docking. The efficacy and mechanism of UA against B-ALL were verified through in vitro experiments such as cell viability assays, CCK-8 assays, LDH assays, AO/EB staining, flow cytometry, and Western blot assays. Results Network pharmacology analysis of the core targets indicated that the effects of UA on B-ALL were related to programmed cell death (apoptosis and pyroptosis). Molecular docking results showed that FOS, CASP8, MAPK8, IL-1β and JUN were the key targets of UA against B-ALL. The MTS assay showed that UA decreased the viability of Reh cells in a concentration- and time-dependent manner. Cellular and Western blot experiments found that UA induced Reh cell apoptosis and pyroptosis by upregulating the JNK signalling pathway. Conclusions Our findings demonstrated that UA could induce Reh cell apoptosis and pyroptosis by activating the JNK signalling pathway to exert anti-B-ALL effects. This indicates that UA may become a potential drug for the effective treatment of B-ALL.
Collapse
Affiliation(s)
- Ying Luo
- Institute of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Critical Human Diseases Prevention of the Education Department of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jing Xiang
- Institute of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Critical Human Diseases Prevention of the Education Department of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Shuangyang Tang
- Institute of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Critical Human Diseases Prevention of the Education Department of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Shiting Huang
- Institute of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Critical Human Diseases Prevention of the Education Department of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yishan Zhou
- Institute of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Critical Human Diseases Prevention of the Education Department of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Haiyan Shen
- Institute of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Critical Human Diseases Prevention of the Education Department of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
3
|
Cao X, He Q. Ursolic acid inhibits proliferation, migration and invasion of human papillary thyroid carcinoma cells via CXCL12/CXCR4/CXCR7 axis through cancer-associated fibroblasts. Hum Exp Toxicol 2022; 41:9603271221111333. [PMID: 35786050 DOI: 10.1177/09603271221111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As a pentacyclic triterpenoid compound, Ursolic acid (UA) broads range of biological effects. CXCL12 is a ligand for CXCR4 and CXCR7 proteins on thyroid cancer cells. Here we examined the effects of UA on the proliferation, migration and invasion of papillary thyroid carcinoma (PTCs) in a dose-manner. In addition, UA can reduce the expression levels of CXCR4 and CXCR7 in PTCs. In addition to this direct anticancer pathway, studies have shown that UA can play an anticancer role by affecting the secretion of CXCL12 in cancer-associated fibroblasts (CAFs). After treated with UA, normal fibroblasts and CAFs culture medium (CM) showed differential CXCL12 expression levels. We prepared fibroblast conditioned medium according to the intervention of UA, then cultured TPC-1 and B-CPAP cells with differential CM, and detected significant differences in the proliferation, migration and invasion of cancer cells. Our findings uncovered an indirect anticancer mechanism of UA. This cancer chemopreventive properties is expected to make UA a clinically useful chemopreventive agent.
Collapse
Affiliation(s)
- Xianjiao Cao
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| |
Collapse
|
4
|
Shen LW, Jiang XX, Li ZQ, Li J, Wang M, Jia GF, Ding X, Lei L, Gong QH, Gao N. Cepharanthine sensitizes human triple negative breast cancer cells to chemotherapeutic agent epirubicin via inducing cofilin oxidation-mediated mitochondrial fission and apoptosis. Acta Pharmacol Sin 2022; 43:177-193. [PMID: 34294886 PMCID: PMC8724299 DOI: 10.1038/s41401-021-00715-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of autophagy has been accepted as a promising therapeutic strategy in cancer, but its clinical application is hindered by lack of effective and specific autophagy inhibitors. We previously identified cepharanthine (CEP) as a novel autophagy inhibitor, which inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. In this study we investigated whether and how inhibition of autophagy/mitophagy by cepharanthine affected the efficacy of chemotherapeutic agent epirubicin in triple negative breast cancer (TNBC) cells in vitro and in vivo. In human breast cancer MDA-MB-231 and BT549 cells, application of CEP (2 μM) greatly enhanced cepharanthine-induced inhibition on cell viability and colony formation. CEP interacted with epirubicin synergistically to induce apoptosis in TNBC cells via the mitochondrial pathway. We demonstrated that co-administration of CEP and epirubicin induced mitochondrial fission in MDA-MB-231 cells, and the production of mitochondrial superoxide was correlated with mitochondrial fission and apoptosis induced by the combination. Moreover, we revealed that co-administration of CEP and epirubicin markedly increased the generation of mitochondrial superoxide, resulting in oxidation of the actin-remodeling protein cofilin, which promoted formation of an intramolecular disulfide bridge between Cys39 and Cys80 as well as Ser3 dephosphorylation, leading to mitochondria translocation of cofilin, thus causing mitochondrial fission and apoptosis. Finally, in mice bearing MDA-MB-231 cell xenografts, co-administration of CEP (12 mg/kg, ip, once every other day for 36 days) greatly enhanced the therapeutic efficacy of epirubicin (2 mg/kg) as compared with administration of either drug alone. Taken together, our results implicate that a combination of cepharanthine with chemotherapeutic agents could represent a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Li-wen Shen
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Xiu-xing Jiang
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Zhi-qiang Li
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Jie Li
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Mei Wang
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Guan-fei Jia
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Xin Ding
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Ling Lei
- grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| | - Qi-hai Gong
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Ning Gao
- grid.417409.f0000 0001 0240 6969Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China ,grid.410570.70000 0004 1760 6682College of Pharmacy, Army Medical University, Chongqing, 400038 China
| |
Collapse
|
5
|
Hu J, Zhang H, Li J, Jiang X, Zhang Y, Wu Q, Shen L, Shi J, Gao N. ROCK1 activation-mediated mitochondrial translocation of Drp1 and cofilin are required for arnidiol-induced mitochondrial fission and apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:37. [PMID: 32075676 PMCID: PMC7031977 DOI: 10.1186/s13046-020-01545-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Arnidiol is a pentacyclic triterpene diol that has multiple pharmacological activities. However, the apoptotic activities of arnidiol in human cancer cells have not yet been explored, nor has the mechanism by which arnidiol induces apoptosis been examined in depth. METHODS MDA-MB-231 cells and xenografted mice were treated with arnidiol. Mitochondrial fission and apoptosis were determined by immunofluorescence, flow cytometry and related molecular biological techniques. The interaction and colocalization of cofilin and Drp1 was determined by immunoprecipitation and immunofluorescence assays. RESULTS Arnidiol induces mitochondrial fission and apoptosis through mitochondrial translocation of Drp1 and cofilin. Importantly, the interaction of Drp1 and cofilin in mitochondria is involved in arnidiol-induced mitochondrial fission and apoptosis. Knockdown of either Drp1 or cofilin abrogated arnidiol-induced mitochondrial translocation, interaction of Drp1 and cofilin, mitochondrial fission and apoptosis. Only dephosphorylated Drp1 (Ser637) and cofilin (Ser3) were translocated to the mitochondria. Mutants of Drp1 S637A and cofilin S3A, which mimic the dephosphorylated forms, enhanced mitochondrial fission and apoptosis induced by arnidiol, whereas mutants of Drp1 S637D and cofilin S3E, which mimic the phosphorylated forms, suppressed mitochondrial fission and apoptosis induced by arnidiol. A mechanistic study revealed that ROCK1 activation plays an important role in the arnidiol-mediated Drp1 and cofilin dephosphorylation and mitochondrial translocation, mitochondrial fission, and apoptosis. CONCLUSIONS Our data reveal a novel role of both Drp1 and cofilin in the regulation of mitochondrial fission and apoptosis and suggest that arnidiol could be developed as a potential agent for the treatment of human cancer.
Collapse
Affiliation(s)
- Jinjiao Hu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hongwei Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jie Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yanhao Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Liwen Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Ning Gao
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
6
|
Hu J, Zhang Y, Jiang X, Zhang H, Gao Z, Li Y, Fu R, Li L, Li J, Cui H, Gao N. ROS-mediated activation and mitochondrial translocation of CaMKII contributes to Drp1-dependent mitochondrial fission and apoptosis in triple-negative breast cancer cells by isorhamnetin and chloroquine. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:225. [PMID: 31138329 PMCID: PMC6540563 DOI: 10.1186/s13046-019-1201-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is often aggressive and associated with a poor prognosis. Due to the lack of available targeted therapies and to problems of resistance with conventional chemotherapeutic agents, finding new treatments for TNBC remains a challenge and a better therapeutic strategy is urgently required. Methods TNBC cells and xenograft mice were treated with a combination of chloroquine (CQ) and isorhamnetin (IH). Mitochondrial fission, apoptosis, and related signaling pathways were determined by flow cytometry, immunofluorescence, and related molecular biological techniques. Results The inhibition of autophagy/mitophagy by CQ selectively enhances IH-induced mitochondrial fission and apoptosis in TNBC cells but not in estrogen-dependent breast cancer cells. These events were accompanied by mitochondrial translocation of Bax and the release of cytochrome c. Mechanistically, these effects were associated with oxidative stress-mediated phosphorylation of CaMKII (Thr286) and Drp1 (S616), and subsequent mitochondrial translocation of CaMKII and Drp1. The interruption of the CaMKII pathway by genetic approaches (e.g. CaMKII mutant or siRNA) attenuated combination-mediated mitochondrial fission and apoptosis. The combination of CQ/IH was a marked inhibitor tumor growth, inducing apoptosis in the TNBC xenograft mouse model in association with the activation of CaMKII and Drp1 (S616). Conclusions Our study highlights the critical role of ROS-mediating CaMKII/Drp1 signaling in the regulation of mitochondrial fission and apoptosis induced by combination of CQ/IH. These findings also suggest that IH could potentially be further developed as a novel chemotherapeutic agent. Furthermore, a combination of IH with classic autophagy/mitophagy inhibitor could represent a novel therapeutic strategy for the treatment of TNBC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1201-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinjiao Hu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yanhao Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hongwei Zhang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ziyi Gao
- Greater Philadelphia Pharmacy, Philadelphia, USA
| | - Yunong Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ruoqiu Fu
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lirong Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jie Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400716, China. .,Medical Research Institute, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400716, China.
| | - Ning Gao
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
7
|
Lin YJ, Liang WM, Chen CJ, Tsang H, Chiou JS, Liu X, Cheng CF, Lin TH, Liao CC, Huang SM, Chen J, Tsai FJ, Li TM. Network analysis and mechanisms of action of Chinese herb-related natural compounds in lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152893. [PMID: 30901663 DOI: 10.1016/j.phymed.2019.152893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chinese herbal medicines (CHMs) are a resource of natural compounds (ingredients) and their potential chemical derivatives with anticancer properties, some of which are already in clinical use. Bei-Mu (BM), Jie-Geng (JG), and Mai-Men-Dong-Tang (MMDT) are important CHMs prescribed for patients with lung cancer that have improved the survival rate. HYPOTHESIS/PURPOSE The aim of this study was to systemically investigate the mechanisms of action of these CHM products in lung cancer cells. METHODS We used a network pharmacology approach to study CHM product-related natural compounds and their lung cancer targets. In addition, the underlying anti-lung cancer effects of the natural compounds on apoptosis, cell cycle progression, autophagy, and the expression of related proteins was investigated in vitro. RESULTS Ingredient-lung cancer target network analysis identified 20 natural compounds. Three of these compounds, ursolic acid, 2-(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano(6,5-f)chromen-3-yl)-5-methoxyphenol, and licochalcone A, inhibited the proliferation of A549 lung cancer cells in a dose-dependent manner. Signal pathway analyses suggested that these three ingredients may target cellular apoptosis, anti-apoptosis, and cell cycle-related proteins. These three ingredients induced apoptosis through the regulation of the expression of apoptotic and anti-apoptotic proteins, including B-cell lymphoma-2 and full-length and cleaved poly(ADP-ribose) polymerase proteins. They also induced cell cycle arrest in S and G2/M phases and autophagy in A549 cells. CONCLUSION The pharmacological mechanisms of ingredients from MMDT on lung cancer may be strongly associated with their modulatory effects on apoptosis, autophagy, cell cycle progression, and cell proliferation.
Collapse
Affiliation(s)
- Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hsinyi Tsang
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Gaithersburg, MD, USA; Attain, LLC, McClean, VA, USA
| | - Jian-Shiun Chiou
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiang Liu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Gaithersburg, MD, USA
| | - Chi-Fung Cheng
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jianxin Chen
- Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Leng F, Liu Y, Li G, Lai W, Zhang Q, Liu W, Hu C, Li P, Sheng F, Huang J, Zhang R. Cu2−xSe nanoparticles (Cu2−xSe NPs) mediated neurotoxicityviaoxidative stress damage in PC-12 cells and BALB/c mice. RSC Adv 2019; 9:36558-36569. [PMID: 35539053 PMCID: PMC9075139 DOI: 10.1039/c9ra06245a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/26/2019] [Indexed: 12/02/2022] Open
Abstract
Cu2−xSe nanoparticles (Cu2−xSe NPs) are widely used for optical diagnostic imaging and photothermal therapy due to their strong near-infrared (NIR) optical absorption. With the continuous expansion of applications using Cu2−xSe NPs, their biosafety has received increasing attention in recent years. Cu2−xSe NPs can enter the brain by crossing the blood–brain barrier, but the neurotoxicity of NPs remains unclear. The present investigation provides direct evidence that the toxicity of Cu2−xSe NPs can be specifically exploited to kill rat pheochromocytoma PC-12 cells (a cell line used as an in vitro model for brain neuron research) in dose- and time-dependent manners. These cytotoxicity events were accompanied by mitochondrial damage, adenosine triphosphate (ATP) depletion, production of oxidizing species (including reactive oxygen species (ROS), malondialdehyde (MDA) and hydrogen peroxide (H2O2)), as well as reductions in antioxidant defense systems (glutathione (GSH) and superoxide dismutase (SOD)). Moreover, our in vivo study also confirmed that Cu2−xSe NPs markedly induced neurotoxicity and oxidative stress damage in the striatum and hippocampal tissues of BALB/c mice. These findings suggest that Cu2−xSe NPs induce neurotoxicity in PC-12 cells and BALB/c mice via oxidative stress damage, which provides useful information for understanding the neurotoxicity of Cu2−xSe NPs. Cu2−xSe nanoparticles (Cu2−xSe NPs) are widely used for optical diagnostic imaging and photothermal therapy due to their strong near-infrared (NIR) optical absorption.![]()
Collapse
Affiliation(s)
- Faning Leng
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Yali Liu
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Guobing Li
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Wenjing Lai
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Qian Zhang
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Wuyi Liu
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Changpeng Hu
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Pantong Li
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Fangfang Sheng
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Jingbin Huang
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Rong Zhang
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| |
Collapse
|
9
|
Tang Q, Liu W, Zhang Q, Huang J, Hu C, Liu Y, Wang Q, Zhou M, Lai W, Sheng F, Li G, Zhang R. Dynamin-related protein 1-mediated mitochondrial fission contributes to IR-783-induced apoptosis in human breast cancer cells. J Cell Mol Med 2018; 22:4474-4485. [PMID: 29993201 PMCID: PMC6111821 DOI: 10.1111/jcmm.13749] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023] Open
Abstract
IR‐783 is a kind of heptamethine cyanine dye that exhibits imaging, cancer targeting and anticancer properties. A previous study reported that its imaging and targeting properties were related to mitochondria. However, the molecular mechanism behind the anticancer activity of IR‐783 has not been well demonstrated. In this study, we showed that IR‐783 inhibits cell viability and induces mitochondrial apoptosis in human breast cancer cells. Exposure of MDA‐MB‐231 cells to IR‐783 resulted in the loss of mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) depletion, mitochondrial permeability transition pore (mPTP) opening and cytochrome c (Cyto C) release. Furthermore, we found that IR‐783 induced dynamin‐related protein 1 (Drp1) translocation from the cytosol to the mitochondria, increased the expression of mitochondrial fission proteins mitochondrial fission factor (MFF) and fission‐1 (Fis1), and decreased the expression of mitochondrial fusion proteins mitofusin1 (Mfn1) and optic atrophy 1 (OPA1). Moreover, knockdown of Drp1 markedly blocked IR‐783‐mediated mitochondrial fission, loss of MMP, ATP depletion, mPTP opening and apoptosis. Our in vivo study confirmed that IR‐783 markedly inhibited tumour growth and induced apoptosis in an MDA‐MB‐231 xenograft model in association with the mitochondrial translocation of Drp1. Taken together, these findings suggest that IR‐783 induces apoptosis in human breast cancer cells by increasing Drp1‐mediated mitochondrial fission. Our study uncovered the molecular mechanism of the anti‐breast cancer effects of IR‐783 and provided novel perspectives for the application of IR‐783 in the treatment of breast cancer.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Zheng Y, Ouyang Q, Fu R, Liu L, Zhang H, Hu X, Liu Y, Chen Y, Gao N. The cyclohexene derivative MC-3129 exhibits antileukemic activity via RhoA/ROCK1/PTEN/PI3K/Akt pathway-mediated mitochondrial translocation of cofilin. Cell Death Dis 2018; 9:656. [PMID: 29844397 PMCID: PMC5974298 DOI: 10.1038/s41419-018-0689-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/31/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023]
Abstract
The effects of MC-3129, a synthetic cyclohexene derivative, on cell viability and apoptosis have been investigated in human leukemia cells. Exposure of leukemia cells to MC-3129 led to the inhibition of cell viability and induction of apoptosis through the dephosphorylation and mitochondrial translocation of cofilin. A mechanistic study revealed that interruption of the RhoA/ROCK1/PTEN/PI3K/Akt signaling pathway plays a crucial role in the MC-3129-mediated dephosphorylation and mitochondrial translocation of cofilin and induction of apoptosis. Our in vivo study also showed that the MC-3129-mediated inhibition of the tumor growth in a mouse leukemia xenograft model is associated with the interruption of ROCK1/PTEN/PI3K/Akt signaling and apoptosis. Molecular docking suggested that MC-3129 might activate the RhoA/ROCK1 pathway by targeting LPAR2. Collectively, these findings suggest a hierarchical model, in which the induction of apoptosis by MC-3129 primarily results from the activation of RhoA/ROCK1/PTEN and inactivation of PI3K/Akt, leading to the dephosphorylation and mitochondrial translocation of cofilin, and culminating in cytochrome c release, caspase activation, and apoptosis. Our study reveals a novel role for RhoA/ROCK1/PTEN/PI3K/Akt signaling in the regulation of mitochondrial translocation of cofilin and apoptosis and suggests MC-3129 as a potential drug for the treatment of human leukemia.
Collapse
Affiliation(s)
- Yi Zheng
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Ruoqiu Fu
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Lei Liu
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Hongwei Zhang
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | | | - Yanxia Liu
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China
| | - Yingchun Chen
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China.
| | - Ning Gao
- College of Pharmacy, Third Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
11
|
Li GB, Fu RQ, Shen HM, Zhou J, Hu XY, Liu YX, Li YN, Zhang HW, Liu X, Zhang YH, Huang C, Zhang R, Gao N. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget 2018; 8:10359-10374. [PMID: 28060722 PMCID: PMC5354664 DOI: 10.18632/oncotarget.14413] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms underlying the anti-breast cancer effects of polyphyllin I, a natural compound extracted from Paris polyphylla rhizomes, are not fully understood. In the present study, we found that polyphyllin I induces mitochondrial translocation of DRP1 by dephosphorylating DRP1 at Ser637, leading to mitochondrial fission, cytochrome c release from mitochondria into the cytosol and, ultimately apoptosis. Polyphyllin I also increased the stabilization of full-length PINK1 at the mitochondrial surface, leading to the recruitment of PARK2, P62, ubiquitin, and LC3B-II to mitochondria and culminating in mitophagy. PINK1 knockdown markedly suppressed polyphyllin I-induced mitophagy and enhanced polyphyllin I-induced, DRP1-dependent mitochondrial fission and apoptosis. Furthermore, suppression of DRP1 by mdivi-1 or shRNA inhibited PINK1 knockdown/polyphyllin I-induced mitochondrial fragmentation and apoptosis, suggesting that PINK1 depletion leads to excessive fission and, subsequently, mitochondrial fragmentation. An in vivo study confirmed that polyphyllin I greatly inhibited tumor growth and induced apoptosis in MDA-MB-231 xenografts, and these effects were enhanced by PINK1 knockdown. These data describe the mechanism by which PINK1 contributes to polyphyllin I-induced mitophagy and apoptosis and suggest that polyphyllin I may be an effective drug for breast cancer treatment.
Collapse
Affiliation(s)
- Guo-Bing Li
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China.,Department of Pharmacy, The Second Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Ruo-Qiu Fu
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jing Zhou
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xiao-Ye Hu
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yan-Xia Liu
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yu-Nong Li
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Hong-Wei Zhang
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yan-Hao Zhang
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Cheng Huang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Ning Gao
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhou WD, Wang X, Sun XZ, Hu J, Zhang RR, Hong Z. Actein induces apoptosis in leukemia cells through suppressing RhoA/ROCK1 signaling pathway. Int J Oncol 2017; 51:1831-1841. [DOI: 10.3892/ijo.2017.4150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/23/2017] [Indexed: 11/06/2022] Open
|
13
|
Chen Y, Chuan HL, Yu SY, Li CZ, Wu ZB, Li GL, Zhang YZ. A Novel Invasive-Related Biomarker in Three Subtypes of Nonfunctioning Pituitary Adenomas. World Neurosurg 2017; 100:514-521. [PMID: 28093347 DOI: 10.1016/j.wneu.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To identify biomarkers key to invasiveness of the 3 subtypes of nonfunctioning pituitary adenomas (NFPAs) and provide a guidance for therapeutic decision making and identification of potential adjuvant drugs. METHODS Fifty NFPA tumor tissues obtained from transsphenoidal surgery were used in the study. Three invasive NFPAs and 4 noninvasive NFPAs were used for gene expression microarray analyses. In addition, there are 5 invasive NFPAs and 4 noninvasive NFPAs used for proteomic analyses. Invasive-related biomarkers were identified by bioinformatics analysis by integrating the transcriptomics and proteomics data sets. All 3 subtypes of NFPAs (null cell adenomas, oncocytomas, and gonadotroph adenomas) were used to validate differentially expressed candidate biomarkers by means of quantitative real-time reverse transcription polymerase chain reaction and Western blot. The level of EZR was downregulated in pituitary adenoma cell line GH3 to investigate the invasive effect of EZR on GH3 cells by using the RNA interference technique. RESULTS Eight genes involved in the invasion function were found by bioinformatics analysis, and the EZR gene was identified as a novel invasive-related biomarker in the 3 subtypes of NFPAs. The expression level of EZR was found higher in terms of invasiveness than the noninvasive ones of the 3 subtypes of NFPAs. Moreover, the knockdown of EZR inhibited the invasion of GH3 cells in vitro. CONCLUSIONS EZR is a novel biomarker in terms of invasion among the 3 subtypes of NFPAs, and it is a promising guide for therapeutic decision making as well.
Collapse
Affiliation(s)
- Yong Chen
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Li Chuan
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-Yuan Yu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chu-Zhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe-Bao Wu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gui-Lin Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ya-Zhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Sohn EJ, Won G, Lee J, Yoon SW, Lee I, Kim HJ, Kim SH. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell. Int J Biol Sci 2016; 12:1279-1288. [PMID: 28090191 PMCID: PMC5236005 DOI: 10.7150/ijbs.13453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| |
Collapse
|
15
|
Zhou J, Li G, Zheng Y, Shen HM, Hu X, Ming QL, Huang C, Li P, Gao N. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 2016; 11:1259-79. [PMID: 26114658 DOI: 10.1080/15548627.2015.1056970] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autophagy inhibition has been widely accepted as a promising therapeutic strategy in cancer, while the lack of effective and specific autophagy inhibitors hinders its application. Here we found that liensinine, a major isoquinoline alkaloid, inhibits late-stage autophagy/mitophagy through blocking autophagosome-lysosome fusion. This effect is likely achieved via inhibiting the recruitment of RAB7A to lysosomes but not to autophagosomes. We further investigated the effects of autophagy inhibition by liensinine on the therapeutic efficacy of chemotherapeutic drugs and found that cotreatment of liensinine markedly decreased the viability and increased apoptosis in breast cancer cells treated with various chemotherapeutic agents. Mechanistically, we found that inhibition of autophagy/mitophagy by liensinine enhanced doxorubicin-mediated apoptosis by triggering mitochondrial fission, which resulted from dephosphorylation and mitochondrial translocation of DNM1L. However, blocking autophagosome/mitophagosome formation by pharmacological or genetic approaches markedly attenuated mitochondrial fission and apoptosis in cells with combinatatorial treatment. Moreover, liensinine was synergized with doxorubicin to inhibit tumor growth in MDA-MB-231 xenograft in vivo. Our findings suggest that liensinine could potentially be further developed as a novel autophagy/mitophagy inhibitor, and a combination of liensinine with classical chemotherapeutic drugs could represent a novel therapeutic strategy for treatment of breast cancer.
Collapse
Affiliation(s)
- Jing Zhou
- a College of Pharmacy; 3rd Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang LJ, Tang Q, Wu J, Chen Y, Zheng F, Dai Z, Hann SS. Inter-regulation of IGFBP1 and FOXO3a unveils novel mechanism in ursolic acid-inhibited growth of hepatocellular carcinoma cells. J Exp Clin Cancer Res 2016; 35:59. [PMID: 27036874 PMCID: PMC4815122 DOI: 10.1186/s13046-016-0330-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ursolic acid (UA), a natural pentacyclic triterpenoid, exerts anti-tumor effects in various cancer types including hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying this remain largely unknown. METHODS Cell viability and cell cycle were examined by MTT and Flow cytometry assays. Western blot analysis was performed to measure the phosphorylation and protein expression of p38 MAPK, insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and forkhead box O3A (FOXO3a). Quantitative real-time PCR (qRT-PCR) was used to examine the mRNA levels of IGFBP1 gene. Small interfering RNAs (siRNAs) method was used to knockdown IGFBP1 gene. Exogenous expressions of IGFBP1 and FOXO3a were carried out by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair™ Dual Luminescence Assay Kit . In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings in vitro. RESULTS We showed that UA stimulated phosphorylation of p38 MAPK. In addition, UA increased the protein, mRNA levels, and promoter activity of IGFBP1, which was abrogated by the specific inhibitor of p38 MAPK (SB203580). Intriguingly, we showed that UA increased the expression of FOXO3a and that overexpressed FOXO3a enhanced phosphorylation of p38 MAPK, all of which were not observed in cells silencing of endogenous IGFBP1 gene. Moreover, exogenous expressed IGFBP1 strengthened UA-induced phosphorylation of p38 MAPK and FOXO3a protein expression, and more importantly, restored the effect of UA-inhibited growth in cells silencing of endogenous IGFBP1 gene. Consistent with these, UA suppressed tumor growth and increased phosphorylation of p38 MAPK, protein expressions of IGFBP1 and FOXO3a in vivo. CONCLUSION Collectively, our results show that UA inhibits growth of HCC cells through p38 MAPK-mediated induction of IGFBP1 and FOXO3a expression. The interactions between IGFBP1 and FOXO3a, and feedback regulatory loop of p38 MAPK by IGFBP1 and FOXO3a resulting in reciprocal pathways, contribute to the overall effects of UA. This in vitro and in vivo study corroborates a potential novel mechanism by which UA controls HCC growth and implies that the rational targeting IGFBP1 and FOXO3a can be potential for the therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Li Jun Yang
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Qing Tang
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Jingjing Wu
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Yuqing Chen
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Fang Zheng
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Zhenhui Dai
- />Department of Radiation Therapy, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
| | - Swei Sunny Hann
- />Laboratory of Tumor Biology and Target Therapy, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120 China
- />No. 55, Neihuan West Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong Province 510006 P. R. China
| |
Collapse
|
17
|
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015; 20:20614-41. [PMID: 26610440 PMCID: PMC6332387 DOI: 10.3390/molecules201119721] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical properties. In this review the current state of knowledge about the health-promoting properties of this widespread, biologically active compound, as well as information about its occurrence and biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use of UA have already been conducted. Amongst other pharmacological properties of UA one can mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis. Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV viruses and Plasmodium protozoa causing malaria.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| |
Collapse
|
18
|
Flores-Téllez TNJ, Lopez TV, Vásquez Garzón VR, Villa-Treviño S. Co-Expression of Ezrin-CLIC5-Podocalyxin Is Associated with Migration and Invasiveness in Hepatocellular Carcinoma. PLoS One 2015; 10:e0131605. [PMID: 26135398 PMCID: PMC4489913 DOI: 10.1371/journal.pone.0131605] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Prognostic markers are important for predicting the progression and staging of hepatocellular carcinoma (HCC). Ezrin (EZR) and Podocalyxin (PODXL) are proteins associated with invasion, migration and poor prognosis in various types of cancer. Recently, it has been observed that chloride intracellular channel 5 (CLIC5) forms a complex with EZR and PODXL and that it is required for podocyte structure and function. In this study, we evaluated the overexpression of EZR, PODXL and CLIC5 in HCC. Methods The modified resistant hepatocyte model (MRHR), human biopsies and HCC cell lines (HepG2, Huh7 and SNU387) were used in this study. Gene and protein expression levels were evaluated in the MRHR by qRT-PCR, Western blot and immunohistochemistry analyses, and protein expression in the human biopsies was evaluated by immunohistochemistry. Protein expression in the HCC cell lines was evaluated by immunofluorescence and Western blot, also the migration and invasive abilities of Huh7 cells were evaluated using shRNA-mediated inhibition. Results Our results indicated that these genes and proteins were overexpressed in HCC. Moreover, when the expression of CLIC5 and PODXL was inhibited in Huh7 cells, we observed decreased migration and invasion. Conclusion This study suggested that EZR, CLIC5 and PODXL could be biological markers to predict the prognosis of HCC and that these proteins participate in migration and invasion processes.
Collapse
Affiliation(s)
- Teresita N. J. Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
| | - Tania V. Lopez
- Instituto Nacional De Medicina Genómica (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, Distrito Federal
- * E-mail: (TVL); (SVT)
| | - Verónica Rocío Vásquez Garzón
- Facultad de Medicina y Cirugía, Universidad Benito Juárez de Oaxaca. Av Universidad S/N, Col. 5 Señores. C.P. 68120, México, Oaxaca
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco, México 14, CP 07360, México, Distrito Federal
- * E-mail: (TVL); (SVT)
| |
Collapse
|
19
|
Li G, Shan C, Liu L, Zhou T, Zhou J, Hu X, Chen Y, Cui H, Gao N. Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS One 2015; 10:e0117440. [PMID: 25659153 PMCID: PMC4320086 DOI: 10.1371/journal.pone.0117440] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) play important roles in angiogenesis and tumor growth. Tanshinone IIA (T2A) is a novel antiangiogenic agent with promising antitumor effects; however, the molecular mechanism underlying the antiangiogenic effects of T2A remains unclear. In the present study, we provided evidence showing that T2A inhibited angiogenesis and breast cancer growth by down-regulating VEGF expression. Specifically, T2A repressed HIF-1α expression at the translational level and inhibited the transcriptional activity of HIF-1α, which led to the down-regulation of VEGF expression. Suppression of HIF-1α synthesis by T2A correlated with strong dephosphorylation of mammalian target of rapamycin (mTOR) and its effectors ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), a pathway regulating HIF-1α expression at the translational level. In addition, we also found that T2A inhibited the angiogenesis and growth of human breast cancer xenografts in nude mice through suppression of HIF-1α and VEGF. Our study provides novel perspectives and potential targets for the treatment of human breast cancer.
Collapse
MESH Headings
- Abietanes/pharmacology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antineoplastic Agents, Phytogenic
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle Proteins
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Mice
- Mice, Nude
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Phosphoproteins/metabolism
- Ribosomal Protein S6/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Vascular Endothelial Growth Factor A/biosynthesis
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guobing Li
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Changyu Shan
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lei Liu
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting Zhou
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jing Zhou
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoye Hu
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yibiao Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ning Gao
- College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Li G, Liu L, Shan C, Cheng Q, Budhraja A, Zhou T, Cui H, Gao N. RhoA/ROCK/PTEN signaling is involved in AT-101-mediated apoptosis in human leukemia cells in vitro and in vivo. Cell Death Dis 2014; 5:e998. [PMID: 24434521 PMCID: PMC4040709 DOI: 10.1038/cddis.2013.519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/11/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022]
Abstract
R-(-)-gossypol acetic acid (AT-101) is a natural cottonseed product that exhibits anticancer activity. However, the molecular mechanism behind the antileukemic activity of AT-101 has not been well characterized. In this study, we investigated how AT-101 induces apoptosis in human leukemia cells. Exposure to AT-101 significantly increased apoptosis in both human leukemia cell lines and primary human leukemia cells. This increase was accompanied by the activation of caspases, cytochrome c release, Bcl2-associated X protein (Bax) translocation, myeloid cell leukemia-1 (Mcl-1) downregulation, Bcl-2-associated death promoter (Bad) dephosphorylation, Akt inactivation, and RhoA/Rho-associated coiled-coil containing protein kinase 1/phosphatase and tensin homolog (RhoA/ROCK1/PTEN) activation. RhoA, rather than caspase-3 cleavage, mediated the cleavage/activation of ROCK1 that AT-101 induced. Inhibiting RhoA and ROCK1 activation by C3 exoenzyme (C3) and Y27632, respectively, attenuated the ROCK1 cleavage/activation, PTEN activity, Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and apoptosis mediated by AT-101. Knocking down ROCK1 expression using a ROCK1-specific siRNA also significantly abrogated AT-101-mediated apoptosis. Constitutively active Akt prevented the AT-101-induced Mcl-1 downregulation, Bad dephosphorylation, and apoptosis. Conversely, AT-101 lethality was potentiated by the phosphatidylinositol 3-kinase inhibitor LY294002. In vivo, the tumor growth inhibition caused by AT-101 was also associated with RhoA/ROCK1/PTEN activation and Akt inactivation in a mouse leukemia xenograft model. Collectively, these findings suggest that AT-101 may preferentially induce apoptosis in leukemia cells by interrupting the RhoA/ROCK1/PTEN pathway, leading to Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and Bax translocation, which culminate in mitochondrial injury and apoptosis.
Collapse
Affiliation(s)
- G Li
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - L Liu
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - C Shan
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Q Cheng
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - A Budhraja
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - T Zhou
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - H Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - N Gao
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Liggi S, Drakakis G, Koutsoukas A, Cortes-Ciriano I, Martínez-Alonso P, Malliavin TE, Velazquez-Campoy A, Brewerton SC, Bodkin MJ, Evans DA, Glen RC, Carrodeguas JA, Bender A. Extending in silico mechanism-of-action analysis by annotating targets with pathways: application to cellular cytotoxicity readouts. Future Med Chem 2014; 6:2029-2056. [PMID: 25531967 DOI: 10.4155/fmc.14.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND An in silico mechanism-of-action analysis protocol was developed, comprising molecule bioactivity profiling, annotation of predicted targets with pathways and calculation of enrichment factors to highlight targets and pathways more likely to be implicated in the studied phenotype. RESULTS The method was applied to a cytotoxicity phenotypic endpoint, with enriched targets/pathways found to be statistically significant when compared with 100 random datasets. Application on a smaller apoptotic set (10 molecules) did not allowed to obtain statistically relevant results, suggesting that the protocol requires modification such as analysis of the most frequently predicted targets/annotated pathways. CONCLUSION Pathway annotations improved the mechanism-of-action information gained by target prediction alone, allowing a better interpretation of the predictions and providing better mapping of targets onto pathways.
Collapse
Affiliation(s)
- Sonia Liggi
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu L, Li G, Li Q, Jin Z, Zhang L, Zhou J, Hu X, Zhou T, Chen J, Gao N. Triptolide induces apoptosis in human leukemia cells through caspase-3-mediated ROCK1 activation and MLC phosphorylation. Cell Death Dis 2013; 4:e941. [PMID: 24309928 PMCID: PMC3877542 DOI: 10.1038/cddis.2013.469] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/20/2013] [Accepted: 10/29/2013] [Indexed: 01/20/2023]
Abstract
The diterpene triepoxide triptolide is a major active component of Tripterygium wilfordii Hook F, a popular Chinese herbal medicine with the potential to treat hematologic malignancies. In this study, we investigated the roles of triptolide in apoptosis and cell signaling events in human leukemia cell lines and primary human leukemia blasts. Triptolide selectively induced caspase-dependent cell death that was accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. Furthermore, we found that triptolide dramatically induced ROCK1 cleavage/activation and MLC and MYPT phosphorylation. ROCK1 was cleaved and activated by caspase-3, rather than RhoA. Inhibiting MLC phosphorylation by ML-7 significantly attenuated triptolide-mediated apoptosis, caspase activation, and cytochrome c release. In addition, ROCK1 inhibition also abrogated MLC and MYPT phosphorylation. Our in vivo study showed that both ROCK1 activation and MLC phosphorylation were associated with the tumor growth inhibition caused by triptolide in mouse leukemia xenograft models. Collectively, these findings suggest that triptolide-mediated ROCK1 activation and MLC phosphorylation may be a novel therapeutic strategy for treating hematological malignancies.
Collapse
Affiliation(s)
- L Liu
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Parameswaran N, Gupta N. Re-defining ERM function in lymphocyte activation and migration. Immunol Rev 2013; 256:63-79. [DOI: 10.1111/imr.12104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Neetha Parameswaran
- Department of Immunology; Lerner Research Institute; Cleveland Clinic; Cleveland OH USA
| | - Neetu Gupta
- Department of Immunology; Lerner Research Institute; Cleveland Clinic; Cleveland OH USA
| |
Collapse
|
24
|
Li GB, Cheng Q, Liu L, Zhou T, Shan CY, Hu XY, Zhou J, Liu EH, Li P, Gao N. Mitochondrial translocation of cofilin is required for allyl isothiocyanate-mediated cell death via ROCK1/PTEN/PI3K signaling pathway. Cell Commun Signal 2013; 11:50. [PMID: 23895248 PMCID: PMC3734051 DOI: 10.1186/1478-811x-11-50] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022] Open
Abstract
Background Cofilin is a member of the actin depolymerizing factor (ADF)/cofilin family, which regulates actin dynamics. Increasing evidence suggests that mitochondrial translocation of cofilin appears necessary for the regulation of apoptosis. Results We report that allyl isothiocyanate (AITC) potently induces mitochondria injury and apoptosis. These events were accompanied by a loss of polymerized filamentous actin (F-actin) and increase in unpolymerized globular actin (G-actin). AITC also induces dephosphorylation of cofilin through activation of PP1 and PP2A. Only dephosphorylated cofilin binds to G-actin and translocates to mitochondria during AITC-mediated apoptosis. Mechanistic study revealed that interruption of ROCK1/PTEN/PI3K signaling pathway plays a critical role in AITC-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. Our in vivo study also showed that AITC-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with dephosphorylation of cofilin. Conclusions These findings support a model in which induction of apoptosis by AITC stems primarily from activation of ROCK1 and PTEN, and inactivation of PI3K, leading in turn to activation of PP1 and PP2A, resulting in dephosphorylation of cofilin, which binds to G-actin and translocates to mitochondria, culminating in the dysfunction of mitochondria, release of cytochrome c and apoptosis.
Collapse
Affiliation(s)
- Guo-bing Li
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|