1
|
Dadashi M, Pourbagheri-Sigaroodi A, Anjam-Najmedini A, Bashash D. Synergistic Effects of PI3K Inhibition on Arsenic Trioxide Cytotoxicity in Acute Promyelocytic Leukemia Cells: A New Portrait of Idelalisib as an Adjuvant Therapy. Indian J Hematol Blood Transfus 2023; 39:208-219. [PMID: 37006983 PMCID: PMC10064366 DOI: 10.1007/s12288-022-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
The advent of small-molecule inhibitors targeting the components of oncogenic signaling pathways has revolutionized cancer treatment, where the pharmacological approaches have gone from an era of non-specific chemotherapeutic drugs to the golden age of targeted therapies. In the present study, we evaluated the therapeutic value of an isoform-specific inhibitor of PI3K (Idelalisib) in potentiating the anti-leukemic effects of arsenic trioxide (ATO), an eminent drug used in the treatment of acute promyelocytic leukemia (APL). We found that the abrogation of the PI3K axis profoundly reinforced the anti-leukemic effects of the lower concentrations of ATO, as revealed by the superior reduction in the viability, cell number, and metabolic activity of APL-derived NB4 cells as compared to either agent alone. The cytotoxic effect of Idelalisib in combination with ATO was probably mediated through suppression of c-Myc that was coupled with the elevation in the intracellular level of reactive oxygen species and induction of caspase-3-dependent apoptosis. Notably, our results showed that the suppression of autophagy reinforced the ability of the drugs in eradicating the leukemic cells, suggesting that the compensatory activation of this system may probably overshadow the success of Idelalisib-plus-ATO in APL cells. All in all and given the significant efficacy of Idelalisib against NB4 cells, we proposed the application of this PI3K inhibitor as a foreseeable approach with a safe profile in the treatment of APL.
Collapse
Affiliation(s)
- Maryam Dadashi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Anjam-Najmedini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
A pyridinesulfonamide derivative FD268 suppresses cell proliferation and induces apoptosis via inhibiting PI3K pathway in acute myeloid leukemia. PLoS One 2022; 17:e0277893. [PMID: 36413544 PMCID: PMC9681083 DOI: 10.1371/journal.pone.0277893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Aberration of PI3K signaling pathway has been confirmed to be associated with several hematological malignancies including acute myeloid leukemia (AML). FD268, a pyridinesulfonamide derivative characterized by the conjugation of 7-azaindole group, is a newly identified PI3K inhibitor showing high potent enzyme activity at nanomole concentration. In this study, we demonstrated that FD268 dose-dependently inhibits survival of AML cells with the efficacy superior to that of PI-103 (pan-PI3K inhibitor) and CAL-101 (selective PI3Kδ inhibitor) in the tested HL-60, MOLM-16, Mv-4-11, EOL-1 and KG-1 cell lines. Further mechanistic studies focused on HL-60 revealed that FD268 significantly inhibits the PI3K/Akt/mTOR signaling pathway, promotes the activation of pro-apoptotic protein Bad and downregulates the expression of anti-apoptotic protein Mcl-1, thus suppressing the cell proliferation and inducing caspase-3-dependent apoptosis. The bioinformatics analysis of the transcriptome sequencing data also indicated a potential involvement of the PI3K/Akt/mTOR pathway. These studies indicated that FD268 possesses high potent activity toward AML cells via inhibition of PI3K/Akt/mTOR signaling pathway, which sheds some light on the pyridinesulfonamide scaffold for further optimization and investigation.
Collapse
|
3
|
Abstract
Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.
Collapse
Affiliation(s)
- Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Vanessa Sanchez
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cydney Nichols
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
4
|
Darici S, Zavatti M, Braglia L, Accordi B, Serafin V, Horne GA, Manzoli L, Palumbo C, Huang X, Jørgensen HG, Marmiroli S. Synergistic cytotoxicity of dual PI3K/mTOR and FLT3 inhibition in FLT3-ITD AML cells. Adv Biol Regul 2021; 82:100830. [PMID: 34555701 DOI: 10.1016/j.jbior.2021.100830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy, characterized by a heterogeneous genetic landscape and complex clonal evolution, with poor outcomes. Mutation at the internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic alterations in AML, associated with high relapse rates and poor survival due to the constitutive activation of the FLT3 receptor tyrosine kinase and its downstream effectors, such as PI3K signaling. Thus, aberrantly activated FLT3-kinase is regarded as an attractive target for therapy for this AML subtype, and a number of small molecule inhibitors of this kinase have been identified, some of which are approved for clinical practice. Nevertheless, acquired resistance to these molecules is often observed, leading to severe clinical outcomes. Therapeutic strategies to tackle resistance include combining FLT3 inhibitors with other antileukemic agents. Here, we report on the preclinical activity of the combination of the FLT3 inhibitor quizartinib with the dual PI3K/mTOR inhibitor PF-04691502 in FLT3-ITD cells. Briefly, we show that the association of these two molecules displays synergistic cytotoxicity in vitro in FLT3-ITD AML cells, triggering 90% cell death at nanomolar concentrations after 48 h.
Collapse
Affiliation(s)
- Salihanur Darici
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Manuela Zavatti
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Luca Braglia
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Benedetta Accordi
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Valentina Serafin
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Gillian A Horne
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carla Palumbo
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.
| | - Heather G Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Sandra Marmiroli
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
5
|
Huang Y, Wang Y, Tang J, Qin S, Shen X, He S, Ju S. CAM-DR: Mechanisms, Roles and Clinical Application in Tumors. Front Cell Dev Biol 2021; 9:698047. [PMID: 34295898 PMCID: PMC8290360 DOI: 10.3389/fcell.2021.698047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the continuous improvement of various therapeutic techniques, the overall prognosis of tumors has been significantly improved, but malignant tumors in the middle and advanced stages still cannot be completely cured. It is now evident that cell adhesion-mediated resistance (CAM-DR) limits the success of cancer therapies and is a great obstacle to overcome in the clinic. The interactions between tumor cells and extracellular matrix (ECM) molecules or adjacent cells may play a significant role in initiating the intracellular signaling pathways that are associated with cell proliferation, survival upon binding to their ligands. Recent studies illustrate that these adhesion-related factors may contribute to the survival of cancer cells after chemotherapeutic therapy, advantageous to resistant cells to proliferate and develop multiple mechanisms of drug resistance. In this review, we focus on the molecular basis of these interactions and the main signal transduction pathways that are involved in the enhancement of the cancer cells’ survival. Furthermore, therapies targeting interactions between cancer cells and their environment to enhance drug response or prevent the emergence of drug resistance will also be discussed.
Collapse
Affiliation(s)
- Yuejiao Huang
- Medical School, Nantong University, Nantong, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuchan Wang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jie Tang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
7
|
Akhtar N, Baig MW, Haq IU, Rajeeve V, Cutillas PR. Withanolide Metabolites Inhibit PI3K/AKT and MAPK Pro-Survival Pathways and Induce Apoptosis in Acute Myeloid Leukemia Cells. Biomedicines 2020; 8:E333. [PMID: 32899914 PMCID: PMC7555989 DOI: 10.3390/biomedicines8090333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease and, despite advances, its treatment remains challenging. Therefore, it remains important to identify new agents for the management of this disease. Withanolides, a group of steroidal lactones found in Solanaceae plants are of potential interest due to their reported anticancer activities in different settings. In this study we investigated the anti-proliferative effects and mode of action of Solanaceae-derived withanolides in AML cell models; these metabolites include withametelin (WTH) and Coagulansin A (CoA) isolated from Datura innoxia and Withania coagluanse, respectively. Both withanolides inhibited the proliferation of AML cells and induced cell death, with WTH being more potent than CoA in the AML models tested. Quantitative label-free proteomics and phosphoproteomics were employed to define the mechanism of action of the studied withanolides. We identified and quantified 5269 proteins and 17,482 phosphosites in cells treated with WTH, CoA or vehicle control. Withanolides modulated the expression of proteins involved in regulating key cellular processes including cell cycle, metabolism, signaling, protein degradation and gene expression. Enrichment analysis of the phosphoproteomics data against kinase substrates, kinase-kinase relationships and canonical pathways showed that the withanolides decreased the activity of kinases such as phosphoinositide 3-kinase (PI3K), protein kinase B (PKB; also known as RAC-alpha serine/threonine-protein kinase or AKT), mammalian target of rapamycin (mTOR), extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and the serine/threonine-protein kinase A-Raf (ARAF), while increasing the activation of DNA repair kinases. These results indicate that withanolide metabolites have pleiotropic effects in the modulation of oncogenic pro-survival and pro-apoptotic signaling pathways that regulate the induction of apoptosis. Withanolide mediated apoptosis was confirmed by immunoblotting showing increased expression of cleaved PARP and Caspases 3, 8 and 9 as a result of treatment. Overall, our results suggest that WTH and CoA have therapeutic potential against AML with WTH exhibiting more potent effects and should be explored further.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-u.H.)
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-u.H.)
| | - Vinothini Rajeeve
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Pedro Rodriguez Cutillas
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| |
Collapse
|
8
|
Targeting PI3K Signaling in Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20020412. [PMID: 30669372 PMCID: PMC6358886 DOI: 10.3390/ijms20020412] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 01/11/2023] Open
Abstract
Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stroma cells triggers intracellular signals regulating cell-adhesion-mediated drug resistance (CAM-DR). Stromal cell protection of ALL cells has been shown to require active AKT. In chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT pathway is reported. A novel FDA-approved PI3Kδ inhibitor, CAL-101/idelalisib, leads to downregulation of p-AKT and increased apoptosis of CLL cells. Recently, two additional PI3K inhibitors have received FDA approval. As the PI3K/AKT pathway is also implicated in adhesion-mediated survival of ALL cells, PI3K inhibitors have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K in normal hematopoietic cells, and in ALL. We focus on summarizing targeting strategies of PI3K in ALL.
Collapse
|
9
|
Nguyen LXT, Zhu L, Lee Y, Ta L, Mitchell BS. Expression and Role of the ErbB3-Binding Protein 1 in Acute Myelogenous Leukemic Cells. Clin Cancer Res 2016; 22:3320-7. [PMID: 26813358 DOI: 10.1158/1078-0432.ccr-15-2282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The ErbB3-binding protein 1 (Ebp1) has been implicated in diverse cancers as having either oncogenic or tumor suppressor activities. The present study was undertaken to determine the effects of Ebp1 expression in AML cells and to determine the mechanisms by which Ebp1 promotes cell proliferation in these cells. EXPERIMENTAL DESIGN The expression of Ebp1 was studied in mononuclear cells obtained from the peripheral blood of 54 patients with AML by Western blot analysis. The effects of Ebp1 expression on proliferating cell nuclear antigen (PCNA) expression and cell proliferation was measured using Western blot analysis, immunoprecipitation, in vitro ubiquitination, and colony-forming assays. The role of Ebp1 in promoting rRNA synthesis and cell proliferation was evaluated by measuring the level of pre-rRNA and the recruitment of Pol I to rDNA. RESULTS Ebp1 is highly expressed in acute myelogenous leukemia (AML) cells and regulates the level of ribosomal RNA (rRNA) synthesis by binding to RNA Polymerase I (Pol I) and enhancing the formation of the Pol I initiation complex. Ebp1 also increases the stability of PCNA protein by preventing its interaction with Mdm2, for which it is a substrate. CONCLUSIONS These results demonstrate an important role of Ebp1 in promoting cell proliferation in AML cells through the regulation of both rRNA synthesis and PCNA expression. Clin Cancer Res; 22(13); 3320-7. ©2016 AACR.
Collapse
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Li Zhu
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Yunqin Lee
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Lynn Ta
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Beverly S Mitchell
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
10
|
Qu FL, Xia B, Li SX, Tian C, Yang HL, Li Q, Wang YF, Yu Y, Zhang YZ. Synergistic suppression of the PI3K inhibitor CAL-101 with bortezomib on mantle cell lymphoma growth. Cancer Biol Med 2016; 12:401-8. [PMID: 26779377 PMCID: PMC4706520 DOI: 10.7497/j.issn.2095-3941.2015.0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objective To investigate the effects of CAL-101, particularly when combined with bortezomib (BTZ) on mantle cell lymphoma (MCL) cells, and to explore its relative mechanisms. Methods MTT assay was applied to detect the inhibitory effects of different concentrations of CAL-101. MCL cells were divided into four groups: control group, CAL-101 group, BTZ group, and CAL-101/BTZ group. The expression of PI3K-p110σ, AKT, ERK, p-AKT and p-ERK were detected by Western blot. The apoptosis rates of CAL-101 group, BTZ group, and combination group were detected by flow cytometry. The location changes of nuclear factor kappa-B (NF-κB) of 4 groups was investigated by NF-κB Kit exploring. Western blot was applied to detect the levels of caspase-3 and the phosphorylation of AKT in different groups. Results CAL-101 dose- and time-dependently induced reduction in MCL cell viability. CAL-101 combined with BTZ enhanced the reduction in cell viability and apoptosis. Western blot analysis showed that CAL-101 significantly blocked the PI3K/AKT and ERK signaling pathway in MCL cells. The combination therapy contributed to the inactivation of NF-κB and AKT in MCL cell lines. However, cleaved caspase-3 was up-regulated after combined treatment. Conclusion Our study showed that PI3K/p110σ is a novel therapeutic target in MCL, and the underlying mechanism could be the blocking of the PI3K/AKT and ERK signaling pathways. These findings provided a basis for clinical evaluation of CAL-101 and a rationale for its application in combination therapy, particularly with BTZ.
Collapse
Affiliation(s)
- Fu-Lian Qu
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bing Xia
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Su-Xia Li
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Tian
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong-Liang Yang
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Li
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Ya-Fei Wang
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Yu
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi-Zhuo Zhang
- 1 Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China ; 2 Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng 475000, China ; 3 Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A, Saki N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci 2015; 72:2337-47. [PMID: 25712020 PMCID: PMC11113278 DOI: 10.1007/s00018-015-1867-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Increased activity of PI3K/AKT/mTOR pathway has been observed in a huge number of malignancies. This pathway can function as a prosurvival factor in leukemia stem cells and early committed leukemic precursors and its inhibition is regarded as a therapeutic approach. Accordingly, the aim of this review is to evaluate the PI3K/Akt/mTOR inhibitors used in leukemia models. DISCUSSION Inhibition of the PI3K/AKT/mTOR pathway has been reported to have beneficial therapeutic effects in leukemias, both in vitro in leukemia cell lines and in vivo in animal models. Overall, the use of dual PI3K/mTOR inhibitor, dual Akt/RTK inhibitor, Akt inhibitor, selective inhibitor of PI3K, mTOR inhibitor and dual PI3K/PDK1 inhibitor in CML, AML, APL, CLL, B-ALL and T-ALL has a better therapeutic effect than conventional treatments. CONCLUSIONS Targeting the PI3K/Akt/mTOR pathway may have pro-apoptotic and antiproliferative effects on hematological malignancies. Furthermore, modulation of miRNA can be used as a novel therapeutic approach to regulate the PI3K/Akt/mTOR pathway. However, both aspects require further clinical studies.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Nazanin Heidari
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Laura Mediani
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Nguyen LXT, Raval A, Garcia JS, Mitchell BS. Regulation of Ribosomal Gene Expression in Cancer. J Cell Physiol 2015; 230:1181-8. [DOI: 10.1002/jcp.24854] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Aparna Raval
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Jacqueline S. Garcia
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Beverly S. Mitchell
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| |
Collapse
|
13
|
Carneiro BA, Kaplan JB, Altman JK, Giles FJ, Platanias LC. Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biol Ther 2015; 16:648-56. [PMID: 25801978 PMCID: PMC4622839 DOI: 10.1080/15384047.2015.1026510] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/29/2022] Open
Abstract
An accumulating understanding of the complex pathogenesis of acute myeloid leukemia (AML) continues to lead to promising therapeutic approaches. Among the key aberrant intracellular signaling pathways involved in AML, the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) axis is of major interest. This axis modulates a wide array of critical cellular functions, including proliferation, metabolism, and survival. Pharmacologic inhibitors of components of this pathway have been developed over the past decade, but none has an established role in the treatment of AML. This review will discuss the preclinical data and clinical results driving ongoing attempts to exploit the PI3K/AKT/mTOR pathway in patients with AML and address issues related to negative feedback loops that account for leukemic cell survival. Targeting the PI3K/AKT/mTOR pathway is of high interest for the treatment of AML, but combination therapies with other targeted agents may be needed to block negative feedback loops in leukemia cells.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jason B Kaplan
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Francis J Giles
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
- Division of Hematology-Oncology; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL, USA
| |
Collapse
|