2
|
Beckmann L, Berg V, Dickhut C, Sun C, Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A, Claasen J, Loroch S, Oliverio M, Underbayev C, Vaughn L, Thomalla D, Hülsemann MF, Tausch E, Fischer K, Fink AM, Eichhorst B, Sickmann A, Wendtner CM, Stilgenbauer S, Hallek M, Wiestner A, Zahedi RP, Frenzel LP. MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood 2021; 138:544-556. [PMID: 33735912 PMCID: PMC8377477 DOI: 10.1182/blood.2020009165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/18/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022] Open
Abstract
Bruton tyrosine kinase (BTK) inhibitors are highly active drugs for the treatment of chronic lymphocytic leukemia (CLL). To understand the response to BTK inhibitors on a molecular level, we performed (phospho)proteomic analyses under ibrutinib treatment. We identified 3466 proteins and 9184 phosphopeptides (representing 2854 proteins) in CLL cells exhibiting a physiological ratio of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) (pS:pT:pY). Expression of 83 proteins differed between unmutated immunoglobulin heavy-chain variable region (IGHV) CLL (UM-CLL) and mutated IGHV CLL (M-CLL). Strikingly, UM-CLL cells showed higher basal phosphorylation levels than M-CLL samples. Effects of ibrutinib on protein phosphorylation levels were stronger in UM-CLL, especially on phosphorylated tyrosines. The differentially regulated phosphopeptides and proteins clustered in pathways regulating cell migration, motility, cytoskeleton composition, and survival. One protein, myristoylated alanine-rich C-kinase substrate (MARCKS), showed striking differences in expression and phosphorylation level in UM-CLL vs M-CLL. MARCKS sequesters phosphatidylinositol-4,5-bisphosphate, thereby affecting central signaling pathways and clustering of the B-cell receptor (BCR). Genetically induced loss of MARCKS significantly increased AKT signaling and migratory capacity. CD40L stimulation increased expression of MARCKS. BCR stimulation induced phosphorylation of MARCKS, which was reduced by BTK inhibitors. In line with our in vitro findings, low MARCKS expression is associated with significantly higher treatment-induced leukocytosis and more pronounced decrease of nodal disease in patients with CLL treated with acalabrutinib.
Collapse
Affiliation(s)
- Laura Beckmann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valeska Berg
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Clarissa Dickhut
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Olaf Merkel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Sandra Robrecht
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Julia Claasen
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Matteo Oliverio
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lauren Vaughn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Daniel Thomalla
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte F Hülsemann
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Anna Maria Fink
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
| | - Clemens M Wendtner
- Department I of Internal Medicine and
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
- Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Michael Hallek
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften (ISAS) eV, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute and
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, QC, Canada; and
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lukas P Frenzel
- Department I of Internal Medicine and
- Center of Integrated Oncology Aachen Bonn Cologne Dusseldorf (ABCD), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Eustace NJ, Anderson JC, Langford CP, Trummell HQ, Hicks PH, Jarboe JS, Mobley JA, Hjelmeland AB, Hackney JR, Pedersen RT, Cosby K, Gillespie GY, Bonner JA, Willey CD. Myristoylated alanine-rich C-kinase substrate effector domain phosphorylation regulates the growth and radiation sensitization of glioblastoma. Int J Oncol 2019; 54:2039-2053. [PMID: 30942445 PMCID: PMC6521926 DOI: 10.3892/ijo.2019.4766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma harbors frequent alterations in receptor tyrosine kinases, phosphatidylinositol-3 kinase (PI3K) and phosphatase and tensin homolog (PTEN) that dysregulate phospholipid signaling driven tumor proliferation and therapeutic resistance. Myristoylated alanine-rich C-kinase substrate (MARCKS) is a 32 kDa intrinsically unstructured protein containing a polybasic (+13) effector domain (ED), which regulates its electrostatic sequestration of phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP2), and its binding to phosphatidylserine, calcium/calmodulin, filamentous actin, while also serving as a nuclear localization sequence. MARCKS ED is phosphorylated by protein kinase C (PKC) and Rho-associated protein kinase (ROCK) kinases; however, the impact of MARCKS on glioblastoma growth and radiation sensitivity remains undetermined. In the present study, using a tetracycline-inducible system in PTEN-null U87 cells, we demonstrate that MARCKS overexpression suppresses growth and enhances radiation sensitivity in vivo. A new image cytometer, Xcyto10, was utilized to quantify differences in MARCKS ED phosphorylation on localization and its association with filamentous actin. The overexpression of the non-phosphorylatable ED mutant exerted growth-suppressive and radiation-sensitizing effects, while the pseudo-phosphorylated ED mutant exhibited an enhanced colony formation and clonogenic survival ability. The identification of MARCKS protein-protein interactions using co-immunoprecipitation coupled with tandem mass spectrometry revealed novel MARCKS-associated proteins, including importin-β and ku70. On the whole, the findings of this study suggest that the determination of the MARCKS ED phosphorylation status is essential to understanding the impact of MARCKS on cancer progression.
Collapse
Affiliation(s)
- Nicholas J Eustace
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Catherine P Langford
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hoa Q Trummell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patricia H Hicks
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John S Jarboe
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B Hjelmeland
- Department of Cell molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James R Hackney
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Kadia Cosby
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James A Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|