1
|
Creignou M, Sirenko M, Moura PL, Mortera-Blanco T, Dimitriou M, Sander B, Domenico D, Arango Ossa JE, Tesi B, Beck DB, Woll P, Jacobsen SEW, Papaemmanuil E, Bernard E, Hellström-Lindberg E. Germline UBA1 Variant With Somatic Amplification in a Woman With Inflammatory Diseases and Myelodysplastic Syndrome. Ann Intern Med 2025; 178:300-304. [PMID: 39832370 DOI: 10.7326/l24-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Affiliation(s)
- Maria Creignou
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, and Phase 1 Unit, Center for Clinical Cancer Studies, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Sirenko
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, and Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Pedro L Moura
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marios Dimitriou
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska Institutet, and Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Dylan Domenico
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan E Arango Ossa
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bianca Tesi
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, and Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - David B Beck
- Center for Human Genetics and Genomics and Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Petter Woll
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sten-Eirik W Jacobsen
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet; Department of Cell and Molecular Biology, Karolinska Institutet; and Department of Hematology, Karolinska University Hospital, Stockholm, Sweden, and Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, and Department of Computational Oncology, UMR 981, Gustave Roussy, Villejuif, France
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, and Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
3
|
Guijarro F, López-Guerra M, Morata J, Bataller A, Paz S, Cornet-Masana JM, Banús-Mulet A, Cuesta-Casanovas L, Carbó JM, Castaño-Díez S, Jiménez-Vicente C, Cortés-Bullich A, Triguero A, Martínez-Roca A, Esteban D, Gómez-Hernando M, Álamo Moreno JR, López-Oreja I, Garrote M, Risueño RM, Tonda R, Gut I, Colomer D, Díaz-Beya M, Esteve J. Germ line variants in patients with acute myeloid leukemia without a suspicion of hereditary hematologic malignancy syndrome. Blood Adv 2023; 7:5799-5811. [PMID: 37450374 PMCID: PMC10561046 DOI: 10.1182/bloodadvances.2023009742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Germ line predisposition in acute myeloid leukemia (AML) has gained attention in recent years because of a nonnegligible frequency and an impact on management of patients and their relatives. Risk alleles for AML development may be present in patients without a clinical suspicion of hereditary hematologic malignancy syndrome. In this study we investigated the presence of germ line variants (GVs) in 288 genes related to cancer predisposition in 47 patients with available paired, tumor-normal material, namely bone marrow stroma cells (n = 29), postremission bone marrow (n = 17), and saliva (n = 1). These patients correspond to 2 broad AML categories with heterogeneous genetic background (AML myelodysplasia related and AML defined by differentiation) and none of them had phenotypic abnormalities, previous history of cytopenia, or strong cancer aggregation. We found 11 pathogenic or likely pathogenic variants, 6 affecting genes related to autosomal dominant cancer predisposition syndromes (ATM, DDX41, and CHEK2) and 5 related to autosomal recessive bone marrow failure syndromes (FANCA, FANCM, SBDS, DNAJC21, and CSF3R). We did not find differences in clinical characteristics nor outcome between carriers of GVs vs noncarriers. Further studies in unselected AML cohorts are needed to determine GV incidence and penetrance and, in particular, to clarify the role of ATM nonsense mutations in AML predisposition.
Collapse
Affiliation(s)
- Francesca Guijarro
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Monica López-Guerra
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Alex Bataller
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Sara Paz
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
| | | | | | | | | | - Sandra Castaño-Díez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carlos Jiménez-Vicente
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Albert Cortés-Bullich
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ana Triguero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandra Martínez-Roca
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Daniel Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Marta Gómez-Hernando
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Irene López-Oreja
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marta Garrote
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Dolors Colomer
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Marina Díaz-Beya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv 2021; 5:900-912. [PMID: 33560403 DOI: 10.1182/bloodadvances.2020003709] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi-whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All of the mentioned genes have either never been reported at diagnosis in de novo AML or have been reported at low frequency, suggesting important roles for these alterations predominantly in disease progression and/or resistance to therapy. Our findings shed further light on the complexity of relapsed AML and identified previously unappreciated alterations that may lead to improved outcomes through personalized medicine.
Collapse
|
5
|
Müller M, Graf R, Kashofer K, Macher S, Wölfler A, Zebisch A, Hrzenjak A, Heitzer E, Sill H. Detection of AML-specific TP53 mutations in bone marrow-derived mesenchymal stromal cells cultured under hypoxia conditions. Ann Hematol 2019; 98:2019-2020. [PMID: 30941510 PMCID: PMC6647597 DOI: 10.1007/s00277-019-03680-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Marian Müller
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036, Graz, Austria
| | - Ricarda Graf
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Susanne Macher
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, A-8036, Graz, Austria.
| |
Collapse
|