1
|
Parsyan A, Bhat V, Athwal H, Goebel EA, Allan AL. Artemis and its role in cancer. Transl Oncol 2025; 51:102165. [PMID: 39520877 PMCID: PMC11584690 DOI: 10.1016/j.tranon.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Artemis is a key nuclease involved in the non-homologous end joining repair pathway upon DNA double-stranded breaks and during V(D)J recombination. It participates in various cellular processes and cooperates with various proteins involved in tumorigenesis. Its hereditary mutations lead to several pathological conditions, such as severe combined immunodeficiency with radiation sensitivity. Recent studies suggest that Artemis deregulation plays an important role in cancer and is associated with poorer oncologic outcomes and resistance to treatment including radiotherapy, chemotherapy and targeted therapeutics. Artemis emerges as an attractive candidate for cancer prognosis and treatment. Its role in modulating sensitivity to ionizing radiation and DNA-damaging agents makes it an appealing target for drug development. Various existing drugs and novel compounds have been described to inhibit Artemis activity. This review synthesizes the up-to-date information regarding Artemis function, its role in different malignancies and its clinical utility as a potential biomarker and therapeutic target in Oncology.
Collapse
Affiliation(s)
- Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada; Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, London, ON, N6A 4V2, Canada.
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Emily A Goebel
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre and Western University, London, ON, N6A 5A5, Canada
| | - Alison L Allan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada
| |
Collapse
|
2
|
Frangiamone M, Lozano M, Cimbalo A, Font G, Manyes L. AFB1 and OTA Promote Immune Toxicity in Human LymphoBlastic T Cells at Transcriptomic Level. Foods 2023; 12:259. [PMID: 36673351 PMCID: PMC9858301 DOI: 10.3390/foods12020259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are typical contaminants of food and feed, which have serious implications for human and animal health, even at low concentrations. Therefore, a transcriptomic study was carried out to analyze gene expression changes triggered by low doses of AFB1 and OTA (100 nM; 7 days), individually and combined, in human lymphoblastic T cells. RNA-sequencing analysis showed that AFB1-exposure resulted in 99 differential gene expressions (DEGs), while 77 DEGs were obtained in OTA-exposure and 3236 DEGs in the combined one. Overall, 16% of human genome expression was altered. Gene ontology analysis revealed, for all studied conditions, biological processes and molecular functions typically associated with the immune system. PathVisio analysis pointed to ataxia telangiectasia mutated signaling as the most significantly altered pathway in AFB1-exposure, glycolysis in OTA-exposure, and ferroptosis in the mixed condition (Z-score > 1.96; adjusted p-value ≤ 0.05). Thus, the results demonstrated the potential DNA damage caused by AFB1, the possible metabolic reprogramming promoted by OTA, and the plausible cell death with oxidative stress prompted by the mixed exposure. They may be considered viable mechanisms of action to promote immune toxicity in vitro.
Collapse
Affiliation(s)
| | | | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | | | |
Collapse
|
3
|
Yao Y, Chen C, Cai Z, Liu G, Ding C, Lim D, Chao D, Feng Z. Screen identifies fasudil as a radioprotector on human fibroblasts. Toxicol Res (Camb) 2022; 11:662-672. [PMID: 36051660 PMCID: PMC9424713 DOI: 10.1093/toxres/tfac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 07/24/2023] Open
Abstract
Background Radioprotectors safeguard biological system exposed to ionizing radiation (IR) by protecting normal cells from radiation damage during radiotherapy. Due to the toxicity and limited clinical utility of the present radioprotectors, it prompts us to identify novel radioprotectors that could alleviate IR-induced cytotoxicity of normal tissues. Aims and Methods To identify new radioprotectors, we screened a chemical molecular library comprising 253 compounds in normal human fibroblasts (HFs) or 16HBE cells upon IR by CCK-8 assays and clonogenic survival assays. Fasudil was identified as a potential effective radioprotector. Results The results indicated that Fasudil exerts radioprotective effects on HFs against IR-induced DNA double-strand breaks (DSBs) through the regulation of DSB repair. Fasudil increased homologous recombination (HR) repair by 45.24% and decreased non-homologous end-joining (NHEJ) by 63.88% compared with untreated cells, without affecting changes to cell cycle profile. We further found that fasudil significantly facilitated the expression and foci formation of HR core proteins such as Rad51 and BRCA1 upon IR, and decreased the expression of NHEJ-associated proteins such as DNA-PKcs at 24 h post-IR. Conclusion Our study identified fasudil as a novel radioprotector that exert radioprotective effects on normal cells through regulation of DSB repair by promoting HR repair.
Collapse
Affiliation(s)
- Yanling Yao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chenxia Ding
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - David Lim
- Health services Management, School of Science and Health, Translational Health Research Institute, Western Sydney University, Campbelltown 1797, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park 5042, Australia
| | - Dong Chao
- Corresponding author: Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China. ;
| | - Zhihui Feng
- Corresponding author: Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China. ;
| |
Collapse
|
4
|
Charrier S, Lagresle-Peyrou C, Poletti V, Rothe M, Cédrone G, Gjata B, Mavilio F, Fischer A, Schambach A, de Villartay JP, Cavazzana M, Hacein-Bey-Abina S, Galy A. Biosafety Studies of a Clinically Applicable Lentiviral Vector for the Gene Therapy of Artemis-SCID. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:232-245. [PMID: 31720302 PMCID: PMC6838972 DOI: 10.1016/j.omtm.2019.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Genetic deficiency of the nuclease DCLRE1C/Artemis causes radiosensitive severe combined immunodeficiency (RS-SCID) with lack of peripheral T and B cells and increased sensitivity to ionizing radiations. Gene therapy based on transplanting autologous gene-modified hematopoietic stem cells could significantly improve the health of patients with RS-SCID by correcting their immune system. A lentiviral vector expressing physiological levels of human ARTEMIS mRNA from an EF1a promoter without post-transcriptional regulation was developed as a safe clinically applicable candidate for RS-SCID gene therapy. The vector was purified in GMP-comparable conditions and was not toxic in vitro or in vivo. Long-term engraftment of vector-transduced hematopoietic cells was achieved in irradiated Artemis-deficient mice following primary and secondary transplantation (6 months each). Vector-treated mice displayed T and B lymphopoiesis and polyclonal T cells, had structured lymphoid tissues, and produced immunoglobulins. Benign signs of inflammation were noted following secondary transplants, likely a feature of the model. There was no evidence of transgene toxicity and no induction of hematopoietic malignancy. In vitro, the vector had low genotoxic potential on murine hematopoietic progenitor cells using an immortalization assay. Altogether, these preclinical data show safety and efficacy, and support further development of the vector for the gene therapy of RS-SCID.
Collapse
Affiliation(s)
- Sabine Charrier
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002 Evry, France
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France.,Laboratory of Human Lymphohematopoiesis, UMR 1163, INSERM, Université Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Valentina Poletti
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002 Evry, France
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Grégory Cédrone
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002 Evry, France
| | - Bernard Gjata
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002 Evry, France
| | - Fulvio Mavilio
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002 Evry, France
| | - Alain Fischer
- INSERM, UMR 1163, Paris Descartes University-Sorbonne Paris Cité, Paris, France.,Imagine Institute, Paris, France.,Immunology Pediatric Department, Hopital Necker-Enfants Malades, AP-HP, Paris, France.,Collège de France, Paris, France
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, UMR1163, INSERM, Université Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France.,Laboratory of Human Lymphohematopoiesis, UMR 1163, INSERM, Université Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Salima Hacein-Bey-Abina
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Anne Galy
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002 Evry, France
| |
Collapse
|
5
|
Bourton EC, Ahorner PA, Plowman PN, Zahir SA, Al-Ali H, Parris CN. The PARP-1 inhibitor Olaparib suppresses BRCA1 protein levels, increases apoptosis and causes radiation hypersensitivity in BRCA1 +/- lymphoblastoid cells. J Cancer 2017; 8:4048-4056. [PMID: 29187880 PMCID: PMC5706007 DOI: 10.7150/jca.21338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
The use of polyADPribose polymerase inhibitors in cancer treatment provides a unique opportunity to target DNA repair processes in cancer cells while leaving normal tissue intact. The PARP-1 enzyme repairs DNA single strand breaks (SSB). Therefore PARP-1 inhibition in BRCA1 negative cancers results in the formation of cytotoxic DNA double strand breaks (DSB) causing synthetic lethality. The use of PARP1 inhibitors is gaining momentum in the treatment of a variety of tumours with BRCA1 involvement including breast, ovarian, pancreatic and prostate cancer. Our previous work showed that the PARP-1 inhibitor Olaparib causes both hypersensitivity of BRCA1+/- cells following exposure to gamma radiation due to the persistence of DNA strand breaks in cells, measured by the DNA damage biomarker γ-H2AX. Therefore dual treatment of cancers with radiotherapy and PARP1 inhibition may lead to cases of increased normal tissue toxicity in cancer patients. In this study we exposed two normal lymphoblastoid cell lines and three heterozygous BRCA1 lymphoblastoid cell lines to the PARP-1 inhibitor Olaparib and gamma radiation and after measured BRCA1 protein expression and apoptosis levels following treatment. BRCA1 protein foci analysis was performed on cells exposed to 2 Gy radiation in the presence or absence of 5 μM Olaparib. Using immunofluorescence and imaging flow cytometry, foci were measured in untreated cells and at 0.5, 3, 5 and 24 hours post-irradiation. Exposing normal and BRCA1+/- cells to Olaparib followed by gamma radiation results in a dramatic change in BRCA1 protein foci expression, with a significant reduction in BRCA1 protein expression observed in the heterozygote cells, together with an increase in apoptosis levels in these cells. In conclusion, combining PARP1 inhibitors with radiotherapy in treating of BRCA1-related cancers has clinical relevance, however this study and our previous publications serve to highlight the potential problems of increased side effects in these scenarios.
Collapse
Affiliation(s)
- Emma C Bourton
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, Uxbridge Middlesex, UB8 3PH, UK
| | - Pia-Amata Ahorner
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, Uxbridge Middlesex, UB8 3PH, UK
| | - Piers N Plowman
- Department of Radiotherapy, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Sheba Adam Zahir
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, Uxbridge Middlesex, UB8 3PH, UK
| | - Hussein Al-Ali
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, Uxbridge Middlesex, UB8 3PH, UK
| | - Christopher N Parris
- Department of Biomedical and Forensic Science, Faculty of Science and Technology, Anglia Ruskin University, East Road Cambridge, Cambridgeshire, CB1 1PT, UK
| |
Collapse
|
6
|
The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis. PLoS One 2017; 12:e0185126. [PMID: 28961258 PMCID: PMC5621691 DOI: 10.1371/journal.pone.0185126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
P53 protein is more frequently mutated in human tumours compared with the other proteins. While the majority of the p53 mutations, especially within its DNA-binding domain, lead to the loss of the wild-type function, there are accumulating data demonstrating that the p53 mutants gain tumour promoting activities; the latter triggers a revitalised interest in functional analysis of the p53 mutants. A systematic screening for p53 mutations in surgical materials from patients with glioma revealed a 378C>G mutation that creates a stop codon at the position of amino acid residue 126. The mutation eliminates the recognition site for the restriction endonuclease Sca I that allowed us to carry out RFLP analysis of DNA extracted from the clinical samples and suggests that this mutation is more frequent than is documented in the p53 databases. Both the ECV-304 and EJ cell lines, that probably originate from the bladder carcinoma T24 cell line, were confirmed to contain the homozygous 378C>G mutation but were shown to produce the p53 protein of expected full-length size detected by Western blotting. We provide evidence that the 378C>G mutation generates an alternative 3’ splice site (ss) which is more often used instead of the authentic upstream 3’ ss, driving the production of mRNA encoding the protein with the single amino acid deletion (p53ΔY126). Using endogenous expression, we demonstrated that the p53ΔY126 protein is nearly as active as the wild type protein in inducing the p21/Waf1 expression and apoptosis.
Collapse
|
7
|
Jadhav PD, Shen J, Sammynaiken R, Reaney MJT. Site Covalent Modification of Methionyl Peptides for the Production of FRET Complexes. Chemistry 2015; 21:17023-34. [DOI: 10.1002/chem.201502699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 11/05/2022]
|
8
|
Rivera-Munoz P, Abramowski V, Jacquot S, André P, Charrier S, Lipson-Ruffert K, Fischer A, Galy A, Cavazzana M, de Villartay JP. Lymphopoiesis in transgenic mice over-expressing Artemis. Gene Ther 2015; 23:176-86. [PMID: 26361272 DOI: 10.1038/gt.2015.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022]
Abstract
Artemis is a factor of the non-homologous end joining pathway involved in DNA double-strand break repair that has a critical role in V(D)J recombination. Mutations in DCLRE1C/ARTEMIS gene result in radiosensitive severe combined immunodeficiency in humans owing to a lack of mature T and B cells. Given the known drawbacks of allogeneic hematopoietic stem cell transplantation (HSCT), gene therapy appears as a promising alternative for these patients. However, the safety of an unregulated expression of Artemis has to be established. We developed a transgenic mouse model expressing human Artemis under the control of the strong CMV early enhancer/chicken beta actin promoter through knock-in at the ROSA26 locus to analyze this issue. Transgenic mice present a normal development, maturation and function of T and B cells with no signs of lymphopoietic malignancies for up to 15 months. These results suggest that the over-expression of Artemis in mice (up to 40 times) has no deleterious effects in early and mature lymphoid cells and support the safety of gene therapy as a possible curative treatment for Artemis-deficient patients.
Collapse
Affiliation(s)
- P Rivera-Munoz
- Laboratory of Genome Dynamics in the Immune System (DGSI), INSERM UMR1163, Paris, France.,Paris-Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - V Abramowski
- Laboratory of Genome Dynamics in the Immune System (DGSI), INSERM UMR1163, Paris, France.,Paris-Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - S Jacquot
- Institut Clinique de la Souris, PHENOMIN, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - P André
- Institut Clinique de la Souris, PHENOMIN, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | | | - K Lipson-Ruffert
- Service des Animaux Transgéaniques, UPS44, CNRS, Villejuif, France
| | - A Fischer
- Paris-Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Unité d'Immunologie et Hématologie Pédiatrique, AP/HP, Hôpital Necker-Enfants Malades, Paris, France.,Collège de France, Paris, France
| | | | - M Cavazzana
- Paris-Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Unité d'Immunologie et Hématologie Pédiatrique, AP/HP, Hôpital Necker-Enfants Malades, Paris, France
| | - J-P de Villartay
- Laboratory of Genome Dynamics in the Immune System (DGSI), INSERM UMR1163, Paris, France.,Paris-Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
9
|
Adam-Zahir S, Plowman PN, Bourton EC, Sharif F, Parris CN. Increased γ-H2AX and Rad51 DNA Repair Biomarker Expression in Human Cell Lines Resistant to the Chemotherapeutic Agents Nitrogen Mustard and Cisplatin. Chemotherapy 2015; 60:310-20. [PMID: 26138778 DOI: 10.1159/000430086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023]
Abstract
Chemotherapeutic anticancer drugs mediate cytotoxicity by a number of mechanisms. However, alkylating agents which induce DNA interstrand crosslinks (ICL) are amongst the most effective anticancer agents and often form the mainstay of many anticancer therapies. The effectiveness of these drugs can be limited by the development of drug resistance in cancer cells and many studies have demonstrated that alterations in DNA repair kinetics are responsible for drug resistance. In this study we developed two cell lines resistant to the alkylating agents nitrogen mustard (HN2) and cisplatin (Pt). To determine if drug resistance was associated with enhanced ICL DNA repair we used immunocytochemistry and imaging flow cytometry to quantitate the number of γ-H2AX and Rad51 foci in the nuclei of cells after drug exposure. γ-H2AX was used to evaluate DNA strand breaks caused by repair incision nucleases and Rad51 was used to measure the activity of homologous recombination in the repair of ICL. In the drug-resistant derivative cell lines there was overall a significant increase in the number and persistence of both γ-H2AX and Rad51 foci in the nuclei of cells over a 72-hour period, when compared to the non-resistant parental cell lines (ANOVA p < 0.0001). In a Pt-resistant ovarian cancer cell line (A2780cis(R)) a similar enhancement of DNA repair was observed when compared to the non-drug-resistant wild-type ovarian cancer cells (A2780) following exposure to HN2. Our data suggest that using DNA repair biomarkers to evaluate mechanisms of resistance in cancer cell lines and human tumours may be of experimental and clinical benefit. We concede, however, that examination of a larger population of cell lines and tumours is required to fully evaluate the validity of this approach.
Collapse
Affiliation(s)
- Sheba Adam-Zahir
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, Uxbridge, UK
| | | | | | | | | |
Collapse
|
10
|
Parris CN, Adam Zahir S, Al-Ali H, Bourton EC, Plowman C, Plowman PN. Enhanced γ-H2AX DNA damage foci detection using multimagnification and extended depth of field in imaging flow cytometry. Cytometry A 2015; 87:717-23. [PMID: 26087127 PMCID: PMC4744970 DOI: 10.1002/cyto.a.22697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 01/16/2023]
Abstract
Accurate and rapid methods for the detection of DNA damage foci in eukaryotic cells are central to DNA repair studies, which identify differences in DNA repair capacity in cell lines. Such assays have been important in delineating mechanisms of DNA repair in human cells. Previously we were the first to demonstrate the use of imaging flow cytometry for the detection of γ-H2AX foci in cells exposed to ionizing radiation causing the induction of DNA strand breaks. In this report we extend these studies and show an enhancement of foci quantitation and image resolution using next generation imaging flow cytometry with the Amnis Imagestream(X) Mark II. We demonstrate using cell lines derived from normal individuals, and DNA double strand break repair defective cells that the number of foci observed is significantly increased when using 60× as compared to 40× magnification. Also, foci numbers and resolution is further increased with the application of the focus stacking (Extended Depth of Field-EDF) capacity activated. This report represents the first such demonstration of multimagnification and EDF for the enhanced quantitation of DNA damage in cells and provides a level of resolution, which near matches in situ microscopy methods for the detection of γ-H2AX foci.
Collapse
Affiliation(s)
- Christopher N Parris
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Sheba Adam Zahir
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Hussein Al-Ali
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Emma C Bourton
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Christina Plowman
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| | - Piers N Plowman
- Department of Radiotherapy, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, United Kingdom
| |
Collapse
|
11
|
Calugaru V, Nauraye C, Cordelières FP, Biard D, De Marzi L, Hall J, Favaudon V, Mégnin-Chanet F. Involvement of the Artemis protein in the relative biological efficiency observed with the 76-MeV proton beam used at the Institut Curie Proton Therapy Center in Orsay. Int J Radiat Oncol Biol Phys 2014; 90:36-43. [PMID: 25195988 DOI: 10.1016/j.ijrobp.2014.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 05/14/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). METHODS AND MATERIALS The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP. Quantification of incident SSBs and DSBs by the alkaline elution technique and 3-dimensional (3D) immunofluorescence of γ-H2AX foci, respectively, was performed in SQ20 B cells. RESULTS We showed that the amount of SSBs and DSBs depends directly on the particle fluence and that the increase in relative biological efficiency observed in the distal part of the SOBP is due to a subset of lesions generated under these conditions, leading to cell death via a pathway in which the Artemis protein plays a central role. CONCLUSIONS Because therapies like proton or carbon beams are now being used to treat cancer, it is even more important to dissect the mechanisms implicated in the repair of the lesions generated by these particles. Additionally, alteration of the expression or activity of the Artemis protein could be a novel therapeutic tool before high linear energy transfer irradiation treatment.
Collapse
Affiliation(s)
- Valentin Calugaru
- Institut Curie Centre de Protonthérapie d'Orsay, Centre Universitaire, Orsay, France; Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France
| | - Catherine Nauraye
- Institut Curie Centre de Protonthérapie d'Orsay, Centre Universitaire, Orsay, France
| | | | - Denis Biard
- Centre d'Etude Atomique, Direction des Sciences du Vivant, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etude des Prions et des Infections Atypiques, Fontenay-aux-Roses, France
| | - Ludovic De Marzi
- Institut Curie Centre de Protonthérapie d'Orsay, Centre Universitaire, Orsay, France
| | - Janet Hall
- Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France
| | - Vincent Favaudon
- Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France
| | - Frédérique Mégnin-Chanet
- Institut Curie, Centre Universitaire, Orsay, France; INSERM U612, Centre Universitaire, Orsay, France.
| |
Collapse
|