1
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Abdulla MH, Alzailai AA, Vaali-Mohammed MA, Ahmad R, Fatima S, Zubaidi A, Traiki TB, Mahmood A, Hamoud Alrashoudi R, Khan Z. The platinum coordination complex inhibits cell invasion-migration and epithelial-to-mesenchymal transition by altering the TGF-β-SMAD pathway in colorectal cancer. Front Pharmacol 2023; 14:1178190. [PMID: 38027033 PMCID: PMC10679924 DOI: 10.3389/fphar.2023.1178190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: There is a steady increase in colorectal cancer (CRC) incidences worldwide; at diagnosis, about 20 percent of cases show metastases. The transforming growth factor-beta (TGF-β) signaling pathway is one of the critical pathways that influence the expression of cadherins allowing the epithelial-to-mesenchymal transition (EMT), which is involved in the progression of the normal colorectal epithelium to adenoma and metastatic carcinoma. The current study aimed to investigate the impact of a novel coordination complex of platinum (salicylaldiminato) PT(II) complex with dimethyl propylene linkage (PT-complex) on TGF-β and EMT markers involved in the invasion and migration of the human HT-29 and SW620 CRC cell lines. Methods: Functional study and wound healing assay showed PT-complex significantly reduced cell motility and the migration and invasion of CRC cell lines compared to the untreated control. Western blot performed in the presence and absence of TGF-β demonstrated that PT-complex significantly regulated the TGF-β-mediated altered expressions of EMT markers. Results and Discussion: PT-complex attenuated the migration and invasion by upregulating the protein expression of EMT-suppressing factor E-cadherin and suppressing EMT-inducing factors such as N-Cadherin and Vimentin. Moreover, PT-complex significantly suppressed the activation of SMAD3 in both CRC cell lines. Further, the microarray data analysis revealed differential expression of genes related to invasion and migration. In conclusion, besides displaying antiproliferative activity, the PT complex can decrease the metastasis of CRC cell lines by modulating TGF-β-regulated EMT markers. These findings provide new insight into TGF-β/SMAD signaling as the molecular mechanism involved in the antitumoral properties of novel PT-complex.
Collapse
Affiliation(s)
- Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aminah Ahmad Alzailai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Zubaidi
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Thamer bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Reem Hamoud Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Khan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Qiao S, Jiang Y, Li N, Zhu X. The kinesin light chain-2, a target of mRNA stabilizing protein HuR, inhibits p53 protein phosphorylation to promote radioresistance in NSCLC. Thorac Cancer 2023. [PMID: 37055376 DOI: 10.1111/1759-7714.14886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Radioresistance hinders radiotherapy for the treatment of lung cancer. Kinesin light chain-2 (KLC2) has been found to be upregulated in lung cancer and also to be associated with poor prognosis. This study aimed to investigate the effect of KLC2 on radiosensitivity in lung cancer. METHODS The radioresistant role of KLC2 was determined by colony formation, neutral comet assay, and γH2AX immunofluorescent staining assay. We further verified the function of KLC2 in a xenograft tumor model. The downstream of KLC2 was identified through gene set enrichment analysis and validated by western blot. Finally, we analyzed clinical data from the TCGA database to reveal the upstream transcription factor of KLC2, which was validated by RNA binding protein immunoprecipitation assay. RESULTS Here, we found that downregulation of KLC2 could significantly reduce colony formation, increase γH2AX level, and double-stranded DNA breaks in vitro. Meanwhile, overexpressed KLC2 significantly increased the proportion of the S phase in lung cancer cells. KLC2 knockdown could activate P53 pathway, and ultimately promoting radiosensitivity. The mRNA of KLC2 was observed to bind with Hu-antigen R (HuR). The mRNA and protein expression of KLC2 in lung cancer cells was significantly reduced when combined with siRNA-HuR. Interestingly, KLC2 overexpression significantly increased the expression of HuR in lung cancer cells. CONCLUSION Taken together, these results indicated that HuR-KLC2 forms a positive feedback loop, which decreases the phosphorylation of p53 and thereby weaken the radiosensitivity of lung cancer cells. Our findings highlight the potential prognosis and therapeutic target value of KLC2 in lung cancer patients treated with radiotherapy.
Collapse
Affiliation(s)
- Simiao Qiao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhang Jiang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Seneviratne C, Shetty AC, Geng X, McCracken C, Cornell J, Mullins K, Jiang F, Stass S. A Pilot Analysis of Circulating cfRNA Transcripts for the Detection of Lung Cancer. Diagnostics (Basel) 2022; 12:2897. [PMID: 36552904 PMCID: PMC9776862 DOI: 10.3390/diagnostics12122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/20/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Lung cancers are the leading cause of cancer-related deaths worldwide. Studies have shown that non-small cell lung cancer (NSCLC), which constitutes the majority of lung cancers, is significantly more responsive to early-stage interventions. However, the early stages are often asymptomatic, and current diagnostic methods are limited in their precision and safety. The cell-free RNAs (cfRNAs) circulating in plasma (liquid biopsies) offer a non-invasive detection of spatial and temporal changes occurring in primary tumors since the early stages. To address gaps in the current cfRNA knowledge base, we conducted a pilot study for the comprehensive analysis of transcriptome-wide changes in plasma cfRNA in NSCLC patients. Total cfRNA was extracted from archived plasma collected from NSCLC patients (N = 12), cancer-free former smokers (N = 12), and non-smoking healthy volunteers (N = 12). Plasma cfRNA expression levels were quantified by using a tagmentation-based library preparation and sequencing. The comparisons of cfRNA expression levels between patients and the two control groups revealed a total of 2357 differentially expressed cfRNAs enriched in 123 pathways. Of these, 251 transcripts were previously reported in primary NSCLCs. A small subset of genes (N = 5) was validated in an independent sample (N = 50) using qRT-PCR. Our study provides a framework for developing blood-based assays for the early detection of NSCLC and warrants further validation.
Collapse
Affiliation(s)
- Chamindi Seneviratne
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amol Carl Shetty
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xinyan Geng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carrie McCracken
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jessica Cornell
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristin Mullins
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Laboratories of Pathology, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sanford Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Laboratories of Pathology, University of Maryland Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Pellegrino R, Castoldi M, Ticconi F, Skawran B, Budczies J, Rose F, Schwab C, Breuhahn K, Neumann UP, Gaisa NT, Loosen SH, Luedde T, Costa IG, Longerich T. LINC00152 Drives a Competing Endogenous RNA Network in Human Hepatocellular Carcinoma. Cells 2022; 11:cells11091528. [PMID: 35563834 PMCID: PMC9103153 DOI: 10.3390/cells11091528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Genomic and epigenomic studies revealed dysregulation of long non-coding RNAs in many cancer entities, including liver cancer. We identified an epigenetic mechanism leading to upregulation of the long intergenic non-coding RNA 152 (LINC00152) expression in human hepatocellular carcinoma (HCC). Here, we aimed to characterize a potential competing endogenous RNA (ceRNA) network, in which LINC00152 exerts oncogenic functions by sponging miRNAs, thereby affecting their target gene expression. Database and gene expression data of human HCC were integrated to develop a potential LINC00152-driven ceRNA in silico. RNA immunoprecipitation and luciferase assay were used to identify miRNA binding to LINC00152 in human HCC cells. Functionally active players in the ceRNA network were analyzed using gene editing, siRNA or miRNA mimic transfection, and expression vectors in vitro. RNA expression in human HCC in vivo was validated by RNA in situ hybridization. Let-7c-5p, miR-23a-3p, miR-125a-5p, miR-125b-5p, miR-143a-3p, miR-193-3p, and miR-195-5p were detected as new components of the potential LINC00152 ceRNA network in human HCC. LINC00152 was confirmed to sponge miR143a-3p in human HCC cell lines, thereby limiting its binding to their respective target genes, like KLC2. KLC2 was identified as a central mediator promoting pro-tumorigenic effects of LINC00152 overexpression in HCC cells. Furthermore, co-expression of LINC00152 and KLC2 was observed in human HCC cohorts and high KLC2 expression was associated with shorter patient survival. Functional assays demonstrated that KLC2 promoted cell proliferation, clonogenicity and migration in vitro. The LINC00152-miR-143a-3p-KLC2 axis may represent a therapeutic target in human HCC.
Collapse
Affiliation(s)
- Rossella Pellegrino
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
- Correspondence: ; Tel.: +49-(0)6221-56-34094
| | - Mirco Castoldi
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.C.); (S.H.L.); (T.L.)
| | - Fabio Ticconi
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (F.T.); (I.G.C.)
| | - Britta Skawran
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Fabian Rose
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Kai Breuhahn
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| | - Ulf P. Neumann
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Nadine T. Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.C.); (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.C.); (S.H.L.); (T.L.)
| | - Ivan G. Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, University Hospital RWTH Aachen, 52074 Aachen, Germany; (F.T.); (I.G.C.)
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (F.R.); (C.S.); (K.B.); (T.L.)
| |
Collapse
|
6
|
Pawar A, Chowdhury OR, Chauhan R, Talole S, Bhattacharjee A. Identification of key gene signatures for the overall survival of ovarian cancer. J Ovarian Res 2022; 15:12. [PMID: 35057823 PMCID: PMC8780391 DOI: 10.1186/s13048-022-00942-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The five-year overall survival (OS) of advanced-stage ovarian cancer remains nearly 25-35%, although several treatment strategies have evolved to get better outcomes. A considerable amount of heterogeneity and complexity has been seen in ovarian cancer. This study aimed to establish gene signatures that can be used in better prognosis through risk prediction outcome for the survival of ovarian cancer patients. Different studies' heterogeneity into a single platform is presented to explore the penetrating genes for poor or better survival. The integrative analysis of multiple data sets was done to determine the genes that influence poor or better survival. A total of 6 independent data sets was considered. The Cox Proportional Hazard model was used to obtain significant genes that had an impact on ovarian cancer patients. The gene signatures were prepared by splitting the over-expressed and under-expressed genes parallelly by the variable selection technique. The data visualisation techniques were prepared to predict the overall survival, and it could support the therapeutic regime. RESULTS We preferred to select 20 genes in each data set as upregulated and downregulated. Irrespective of the selection of multiple genes, not even a single gene was found common among data sets for the survival of ovarian cancer patients. However, the same analytical approach adopted. The chord plot was presented to make a comprehensive understanding of the outcome. CONCLUSIONS This study helps us to understand the results obtained from different studies. It shows the impact of the heterogeneity from one study to another. It shows the requirement of integrated studies to make a holistic view of the gene signature for ovarian cancer survival.
Collapse
Affiliation(s)
- Akash Pawar
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | - Oindrila Roy Chowdhury
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | - Ruby Chauhan
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | - Sanjay Talole
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Atanu Bhattacharjee
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
7
|
Sheikhpour M, Abolfathi H, Karimipoor M, Movafagh A, Shahsavani M. The Common miRNAs between Tuberculosis and Non-Small Cell Lung Cancer: A Critical Review. TANAFFOS 2021; 20:197-208. [PMID: 35382078 PMCID: PMC8978040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/05/2021] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) and non-small cell lung cancer (NSCLC) are two major contributors to mortality and morbidity worldwide. In this regard, TB and NSCLC have similar symptoms, and TB has symptoms that are identical to malignancy; therefore, sometimes it is mistakenly diagnosed as lung cancer. Moreover, patients with active pulmonary TB are at a higher risk of dying due to lung cancer. In addition, several signaling pathways involved in TB and NSCLC have been identified. Also, the miRNAs are biological molecules shown to play essential roles in the above-mentioned diseases through targeting the signaling pathways' genes. Most of the pathways affected by miRNAs are immune responses such as autophagy and apoptosis in TB and NSCLC, respectively. Several studies have separately investigated the expression of miRNAs profile in patients with NSCLC and infectious TB. In this critical review, we attempted to gather common miRNAs between TB and NSCLC and to explain the involved-pathways, which are affected by miRNAs in both TB and NSCLC. Results of this critical review show that the expressions of miR-155, miR-146a, miR-125b, miR-30a, miR-29a, and miR-Let7 have significantly changed in TB and NSCLC. The data suggest that miRNAs expression may provide a new method for screening or differential diagnosis of NSCLC and TB.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Cancer Research Center, Shohada Hospital, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahbubeh Shahsavani
- Department of Genetics & Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
8
|
Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif 2020; 54:e12913. [PMID: 33332677 PMCID: PMC7848968 DOI: 10.1111/cpr.12913] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies. The emerging information that elucidates the essential functions of miR-125b might help support its potentiality as a diagnostic and prognostic biomarker as well as an effective therapeutic tool against cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Poh Ying Theng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
9
|
Huang SP, Jiang YF, Yang LJ, Yang J, Liang MT, Zhou HF, Luo J, Yang DP, Mo WJ, Chen G, Shi L, Gan TQ. Downregulation of miR-125b-5p and Its Prospective Molecular Mechanism in Lung Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:125-140. [PMID: 32614608 DOI: 10.1089/cbr.2020.3657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.
Collapse
Affiliation(s)
- Shu-Ping Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Fan Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Mei-Ting Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jiao Luo
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
10
|
Zheng YY, Fei Y, Wang Z, Chen Y, Qiu C, Li FR. Tissue microRNAs in non-small cell lung cancer detected with a new kind of liquid bead array detection system. J Transl Med 2020; 18:108. [PMID: 32122370 PMCID: PMC7053089 DOI: 10.1186/s12967-020-02280-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background Commonly used miRNA detection methods cannot be applied for high-throughput analyses. However, this study was aimed to performed a liquid bead array detection system (LBAS) to detect tissue 6 miRNAs in non-small cell lung cancer (NSCLC). Methods In this study, evaluation of LBAS was performed to observe the precision, specificity, limitation and stability. Then, a total of 52 primary NSCLC patients who received resection operation without preoperative radiotherapy and chemotherapy between June 2013 and March 2014 were selected, and then the total RNA of the tissues were extracted. We prepared six NSCLC-related miRNAs for LBAS. After optimization and evaluation, LBAS was verified by detecting the relative expression levels of 6 microRNAs in the pathological tissues and corresponding normal tissues of 52 NSCLC patients. Results The results of evaluation of LBAS showed that the Mean Fluorescence Intensity (MFI) of the reaction only added with chimeric probes and beads showed no significant change after 180 days (P > 0.05). And the intra-assay Coefficient of Variation (CV) was between 1.57 and 3.5%, while the inter-assay CV was between 4.24 and 11.27%, indicating this system was ideal for diagnostic reagents. In addition, only the beads corresponding to the additional miRNAs showed high MFIs from 8426 to 18,769, whereas the fluorescence values of the other beads were under background levels (MFIs = 20 to 55) in each reaction, indicating no cross reactivity among the miRNAs. The limit of detection of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 were 5.27, 1.39, 1.85, 2.01, 1.34, and 2.73 amol/μL, respectively, showing that the lowest detection limit of miRNA by this system was under pM level. Then, the relative expression levels of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 by using this system were significantly correlated with NSCLC (P < 0.05). And the results of AUC method indicated that specific of the LBAS system was 94.2%. Conclusions Our findings suggest that LBAS was simple, high-throughput, and freely combined with absolute quantification. Thus, this system could be applied for tumor miRNAs detection.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Department of Pathophysiology, The Basic Medical School, Jinan University, Guangzhou, China.,Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Yun Fei
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Zheng Wang
- Department of Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Yue Chen
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Cheng Qiu
- Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China. .,Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.
| |
Collapse
|
11
|
Wang Y, Zeng G, Jiang Y. The Emerging Roles of miR-125b in Cancers. Cancer Manag Res 2020; 12:1079-1088. [PMID: 32104088 PMCID: PMC7024862 DOI: 10.2147/cmar.s232388] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded RNA molecules of 22 nucleotides in length. MiRNAs have both tumor-suppressive properties and oncogenic properties that can control critical processes in tumors. Mature miR-125b originates from miR-125b-1 and miR-125b-2 and leads to the degradation of target mRNAs or the inhibition of translation through binding to the 3′ untranslated regions (3′-UTR) of target mRNAs. Importantly, miR-125b is involved in regulating NF-κB, p53, PI3K/Akt/mTOR, ErbB2, Wnt, and another signaling pathways, thereby controlling cell proliferation, differentiation, metabolism, apoptosis, drug resistance and tumor immunity. This review aims to summarize the recent literature on the role of miR-125b in the regulation of tumorigenesis and to explore its potential clinical application in the diagnosis, prognosis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Guilin Zeng
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Yicheng Jiang
- Department of Oncology, The People's Hospital of Chongqing Hechuan, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Ilina EI, Armento A, Sanchez LG, Reichlmeir M, Braun Y, Penski C, Capper D, Sahm F, Jennewein L, Harter PN, Zukunft S, Fleming I, Schulte D, Le Guerroué F, Behrends C, Ronellenfitsch MW, Naumann U, Mittelbronn M. Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux. Oncotarget 2017; 8:67567-67591. [PMID: 28978054 PMCID: PMC5620194 DOI: 10.18632/oncotarget.18747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/12/2017] [Indexed: 01/05/2023] Open
Abstract
Carboxypeptidase E (CPE) has recently been described as a multifunctional protein that regulates proliferation, migration and survival in several tumor entities. In glioblastoma (GBM), the most malignant primary brain tumor, secreted CPE (sCPE) was shown to modulate tumor cell migration. In our current study, we aimed at clarifying the underlying molecular mechanisms regulating anti-migratory as well as novel metabolic effects of sCPE in GBM. Here we show that sCPE activates mTORC1 signaling in glioma cells detectable by phosphorylation of its downstream target RPS6. Additionally, sCPE diminishes glioma cell migration associated with a negative regulation of Rac1 signaling via RPS6, since both inhibition of mTOR and stimulation of Rac1 results in a reversed effect of sCPE on migration. Knockdown of CPE leads to a decrease of active RPS6 associated with increased GBM cell motility. Apart from this, we show that sCPE enhances glucose flux into the tricarboxylic acid cycle at the expense of lactate production, thereby decreasing aerobic glycolysis, which might as well contribute to a less invasive behavior of tumor cells. Our data contributes to a better understanding of the complexity of GBM cell migration and sheds new light on how tumor cell invasion and metabolic plasticity are interconnected.
Collapse
Affiliation(s)
- Elena I Ilina
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg
| | - Angela Armento
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Leticia Garea Sanchez
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Marina Reichlmeir
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Yannick Braun
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Cornelia Penski
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Capper
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Lukas Jennewein
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Francois Le Guerroué
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany.,Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Michael W Ronellenfitsch
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Senckenberg Institute of Neurooncology, Goethe University, 60528 Frankfurt, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Laboratoire National de Santé, Department of Pathology, 3555 Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Jin L, Zhang Z, Li Y, He T, Hu J, Liu J, Chen M, Gui Y, Chen Y, Lai Y. miR-125b is associated with renal cell carcinoma cell migration, invasion and apoptosis. Oncol Lett 2017; 13:4512-4520. [PMID: 28599452 PMCID: PMC5453059 DOI: 10.3892/ol.2017.5985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-125b has been identified as deregulated in a number of types of cancer. Previous studies have detected the expression of miR-125b in clear cell renal cell carcinoma (ccRCC) tissues by in situ hybridization and revealed that miR-125b was upregulated in ccRCC tissues, and was associated with recurrence and survival of patients with ccRCC. However, the function of miR-125b in RCC remains unclear. Thus, the expression of miR-125b was detected with quantitative polymerase chain reaction (qPCR) in 24 paired RCC and adjacent normal tissues. The result of qPCR showed that miR-125b was upregulated in RCC tissues. Furthermore, the function of miR-125b in RCC (786-O and ACHN) cells was detected by transfecting miR-125 mimic or inhibitor to upregulate or downregulate miR-125b expression. Cell proliferation assays (MTT and Cell Counting Kit-8), cell mobility assays (cell scratch and Transwell assay) and a cell apoptotic assay (flow cytometry assay) were performed to assess the function of miR-125b on RCC cells. Results from the assays demonstrated that overexpression of miR-125b could promote cell migration and invasion, and reduce the cell apoptotic rate. It was also revealed that downregulation of miR-125b could reduce cell migration and invasion, and induce cell apoptosis. However, the results of the cell proliferation assay revealed that miR-125b had no significant effect on cell proliferation. Not only could miR-125b predict recurrence and survival of ccRCC; the present study revealed that miR-125b could regulate RCC cell migration, invasion and apoptosis. Additional studies are required to determine the mechanism of miR-125b in RCC cells and define the target genes of miR-125b in RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Professor Yun Chen, Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Yongqing Lai, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
14
|
The microRNA signatures: aberrantly expressed microRNAs in head and neck squamous cell carcinoma. J Hum Genet 2016; 62:3-13. [PMID: 27557665 DOI: 10.1038/jhg.2016.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs) are responsible for fine tuning the normal expression of RNA networks in human cells. Accumulating studies have demonstrated that abnormally expressed miRNAs have pivotal roles in the development of head and neck squamous cell carcinoma (HNSCC). Specifically, expression signatures of miRNAs in HNSCC have revealed dysregulated production of miRNAs and the resultant abnormal production of mRNAs and proteins. In this review, we discuss current findings regarding aberrantly expressed miRNAs and their contribution to HNSCC molecular pathogenesis.
Collapse
|
15
|
MiR-125b regulates endometrial receptivity by targeting MMP26 in women undergoing IVF-ET with elevated progesterone on HCG priming day. Sci Rep 2016; 6:25302. [PMID: 27143441 PMCID: PMC4855158 DOI: 10.1038/srep25302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
On the women undergoing IVF-ET with elevated progesterone on human chorionic gonadotrophin priming, the assisted reproductive technology outcome is poor. But, due to the unknown mechanism of this process, no effective method has been found to overcome this difficulty. Here, we investigated the roles of miR-125b and its target gene, MMP26, in endometrial receptivity (ER) in these women. The expression of miR-125b was significantly up-regulated in EECs in women with elevated progesterone during the window of implantation, and it showed a progesterone-dependent effect in vitro. Similarly, the expression of miR-125b was significantly up-regulated in the preimplantation period, and was down-regulated in the implantation period and the post-implantation period in mouse EECs. In addition, miR-125b showed a greater decrease at implantation sites than it did at interimplantation sites. The luciferase report assay demonstrated that MMP26 is a target gene of miR-125b. And the expression profile of MMP26 showed an inverse relationship with miR-125b in vivo and in vitro. Overexpression of miR-125b in human EECs inhibited cell migration and invasion. Gain-of-function of miR-125b induced a significant decrease in the number of implantation sites. In conclusion, these data shed new light on how miR-125b triggers ER decline through the regulation of MMP26 function.
Collapse
|
16
|
Zuberi M, Khan I, Mir R, Gandhi G, Ray PC, Saxena A. Utility of Serum miR-125b as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer. PLoS One 2016; 11:e0153902. [PMID: 27092777 PMCID: PMC4836713 DOI: 10.1371/journal.pone.0153902] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to be dysregulated in epithelial ovarian cancer (EOC) and may function as either tumor suppressor genes (TSGs) or as oncogenes. Hypermethylation of miRNA silences the tumour suppressive function of a miRNA or hypermethylation of a TSG regulating that miRNA (or vice versa) leads to its loss of function. The present study aims to evaluate the impact of aberrant microRNA-125b (miR-125b) expression on various clinicopathological features in epithelial ovarian cancer and its association with anomalous methylation of several TSGs. We enrolled 70 newly diagnosed cases of epithelial ovarian cancer, recorded their clinical history and 70 healthy female volunteers. Serum miR-125b levels were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the methylation status of various TSGs was investigated by methylation specific PCR. ROC curves were constructed to estimate the diagnostic and prognostic usefulness of miR-125b. The Kaplan-Meier method was applied to compare survival curves. Expression of miR-125b was found to be significantly upregulated (p<0.0001) in comparison with healthy controls. The expression level of miR-125b was found to be significantly associated with FIGO stage, lymph node and distant metastasis. ROC curve for diagnostic potential yielded significant AUC with an equitable sensitivity and specificity. ROC curves for prognosis yielded significant AUCs for histological grade, distal metastasis, lymph node status and survival. The expression of miR-125b also correlated significantly with the hypermethylation of TSGs. Our results indicate that DNA hypermethylation may be involved in the inactivation of miR-125b and miR-125b may function as a potential independent biomarker for clinical outcome in EOC.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Imran Khan
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia, Tabuk-71491
| | - Gauri Gandhi
- Department of Gynaecology and Obstetrics, Lok Nayak Hospital, New Delhi, India
| | - Prakash Chandra Ray
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
17
|
Zhao L, Wang W. miR-125b suppresses the proliferation of hepatocellular carcinoma cells by targeting Sirtuin7. Int J Clin Exp Med 2015; 8:18469-18475. [PMID: 26770454 PMCID: PMC4694354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Previous studies have shown that microRNAs are involved in many human cancers. However, the role of miR-125b in hepatocellular carcinoma (HCC) has not been fully understood. In our study, we detected the expression of miR-125b using Real-time quantitative-polymerase chain reaction (RT-PCR) and found that the expressions of miR-125b were significantly inhibited in HCC tissues and cell lines. The levels of miR-125b were associated with the degree of HCC malignancy. Otherwise, MTT assay showed that the proliferation was significantly decreased after transfection of miR-125b mimics into HepG2 cells; while the proliferation was significantly increased in HepG2 cells transfected with miR-125b inhibitors. Furthermore, TargetScan was conducted to predict the target gene of miR-125b and Sirtuin7 (SIRT7) was chosen to a potential target gene. And then we used luciferase reporter assay and western blot to confirm that SIRT7 is a direct target gene. Western blot indicated that transfection of miR-125b mimics could significantly inhibit the expression of SIRT7 in HepG2 cells, whereas, transfection of miR-125b inhibitor could significantly increase the expression of SIRT7 in HepG2 cells. These results suggest that miR-125b can inhibit the proliferation of HCC by adjusting the expression of SIRT7 and may be a key element of HCC progression.
Collapse
Affiliation(s)
- Lixin Zhao
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, China
| | - Weixing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, China
| |
Collapse
|
18
|
Yin H, Sun Y, Wang X, Park J, Zhang Y, Li M, Yin J, Liu Q, Wei M. Progress on the relationship between miR-125 family and tumorigenesis. Exp Cell Res 2015; 339:252-60. [PMID: 26407906 DOI: 10.1016/j.yexcr.2015.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/25/2015] [Accepted: 09/19/2015] [Indexed: 12/21/2022]
Abstract
miRNA-125 family, which is a highly conserved miRNA family throughout evolution, is consist of miRNA-125a-3p, miRNA-125a-5p, miRNA-125b-1 and miRNA-125b-2.The aberrant expression of miR-125 familyis tightly related to tumorigenesis and tumor development. The downstream targets of miRNA-125 include transcription factors like STAT3, cytokines like IL-6 and TGF-β, tumor suppressing protein p53, pro-apoptotic protein Bak1 and RNA binding protein HuR et al. Through regulating these downstream targets miR-125 family is involved in regulating tumorigenesis and tumor development. Nowadays, miR-125b have already became a putative and valuable biomarker for cancer diagnosis, treatment and prognosis. In this review, we mainly summarize the dual function of miRNA-125 family in suppression and promotion of cancer cells and further elaborate its regulatory mechanisms from four facets, proliferation, apoptosis, invasion or metastasis and immune response.
Collapse
Affiliation(s)
- Hang Yin
- Dalian 24 High School, Dalian 116023, China
| | - Yuqiang Sun
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaofeng Wang
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jeiyoun Park
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuanyang Zhang
- Department of Ultrasonography, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Molin Li
- Department of Pathophysiology, Dalian Medical University, Dalian 116044, China
| | - Jian Yin
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Qiang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Minghai Wei
- Department of Neurosurgery, The Second Afiliated Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|