1
|
Yu C, Chen B, Su H, Yang Y. Long non-coding RNA MIAT serves as a biomarker of fragility fracture and promotes fracture healing. J Orthop Surg Res 2024; 19:343. [PMID: 38849896 PMCID: PMC11162066 DOI: 10.1186/s13018-024-04824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Fragility fracture is common in the elderly. Osteoblast differentiation is essential for bone healing and regeneration. Expression pattern of long non-coding RNA MIAT during fracture healing was examined, and its role in osteoblast differentiation was investigated. METHODS 90 women with simple osteoporosis and 90 women with fragility fractures were included. Another 90 age-matched women were set as the control group. mRNA levels were tested using RT-qPCR. Cell viability was detected via CCK-8, and osteoblastic biomarkers, including ALP, OCN, Collagen I, and RUNX2 were tested via ELISA. The downstream miRNAs and genes targeted by MIAT were predicted by bioinformatics analysis, whose functions and pathways were annotated via GO and KEGG analysis. RESULTS Serum MIAT was upregulated in osteoporosis women with high accuracy of diagnostic efficacy. Serum MIAT was even elevated in the fragility fracture group, but decreased in a time manner after operation. MIAT knockdown promoted osteogenic proliferation and differentiation of MC3T3-E1, but the influences were reversed by miR-181a-5p inhibitor. A total of 137 overlapping target genes of miR-181a-5p were predicted based on the miRDB, TargetScan and microT datasets, which were mainly enriched for terms related to signaling pathways regulating pluripotency of stem cells, cellular senescence, and osteoclast differentiation. CONCLUSIONS LncRNA MIAT serves as a promising biomarker for osteoporosis, and promotes osteogenic differentiation via targeting miR-181a-5p.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China
| | - Binbin Chen
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Hui Su
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yiqun Yang
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China.
| |
Collapse
|
2
|
Sun K, Sun Y, Du X, Zhang X, Ma Z, Gao Y, Liang X. Lnc-Clic5 as a sponge for miR-212-5p to inhibit cow barn PM 2.5-induced apoptosis in rat alveolar macrophages. Toxicology 2024; 504:153797. [PMID: 38583737 DOI: 10.1016/j.tox.2024.153797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Particulate matter 2.5 (PM2.5) is a highly hazardous airborne particulate matter that poses a significant risk to humans and animals. Urban airborne particulate matter contributes to the increased incidence and mortality of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), in humans. However, the specific mechanism by which PM2.5 affects animals in barn environments is yet to be elucidated. In this study, we investigated the effect of exposure to cow barn PM2.5 on rat alveolar macrophages (NR8383) and found that it induced apoptosis via the miR-212-5p/RASSF1 pathway. We found that lnc-Clic5 expression was downregulated in NR8383 cells exposed to cow barn PM2.5. Lnc-Clic5 plays a competitive endogenous RNA (ceRNA) regulatory role by sponging miR-212-5p to attenuate the regulation of RASSF1. Moreover, lnc-Clic5 overexpression inhibited NR8383 apoptosis by targeting the miR-212-5p/RASSF1 pathway. Co-treatment with miR-212-5p and lnc-Clic5 in the presence of cow barn PM2.5 revealed that lnc-Clic5 reversed NR8383 cell apoptosis induced by PM2.5 when miR-212-5p was overexpressed. These findings contribute to the study of ncRNAs and ceRNAs regulating PM2.5-induced apoptosis in animal farms, provide therapeutic targets for lung macrophage apoptosis, and may be useful for further evaluating the toxicological effects of PM2.5 in farmhouses on the respiratory systems of humans and animals.
Collapse
Affiliation(s)
- Ke Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaojun Liang
- Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China.
| |
Collapse
|
3
|
Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 2021; 76:120-131. [PMID: 33979676 PMCID: PMC8576067 DOI: 10.1016/j.semcancer.2021.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Genomic instability consists of a range of genetic alterations within the genome that contributes to tumor heterogeneity and drug resistance. It is a well-established characteristic of most cancer cells. Genome instability induction results from defects in DNA damage surveillance mechanisms, mitotic checkpoints and DNA repair machinery. Accumulation of genetic alterations ultimately sets cells towards malignant transformation. Recent studies suggest that miRNAs are key players in mediating genome instability. miRNAs are a class of small RNAs expressed in most somatic tissues and are part of the epigenome. Importantly, in many cancers, miRNA expression is dysregulated. Consequently, this review examines the role of miRNA dysregulation as a causal step for induction of genome instability and subsequent carcinogenesis. We focus specifically on mechanistic studies assessing miRNA(s) and specific subtypes of genome instability or known modes of genome instability. In addition, we provide insight on the existing knowledge gaps within the field and possible ways to address them.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Challagundla N, Agrawal-Rajput R. microRNAs (miR 9, 124, 155 and 224) transdifferentiate mouse macrophages to neurons. Exp Cell Res 2021; 402:112563. [PMID: 33757809 DOI: 10.1016/j.yexcr.2021.112563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Development is an irreversible process of differentiating the undifferentiated cells to functional cells. Brain development involves generation of cells with varied phenotype and functions, which is limited during adulthood, stress, damage/degeneration. Cellular reprogramming makes differentiation reversible process with reprogramming somatic/stem cells to alternative fate with/without stem cells. Exogenously expressed transcription factors or small molecule inhibitors have driven reprogramming of stem/somatic cells to neurons providing alternative approach for pre-clinical/clinical testing and therapeutics. Here in, we report a novel approach of microRNA (miR)- induced trans-differentiation of macrophages (CD11b high) to induced neuronal cells (iNCs) (neuronal markershigh- Nestin, Nurr1, Map2, NSE, Tubb3 and Mash1) without exogenous use of transcription factors. miR 9, 124, 155 and 224 successfully transdifferentiated macrophages to neurons with transient stem cell-like phenotype. We report trans differentiation efficacy 18% and 21% with miR 124 and miR 155. in silico(String 10.0, miR gator, mESAdb, TargetScan 7.0) and experimental analysis indicate that the reprogramming involves alteration of pluripotencygenes like Oct4, Sox2, Klf4, Nanog and pluripotency miR, miR 302. iNCs also shifted to G0 phase indicating manipulation of cell cycle by these miRs. Further, CD133+ intermediate cells obtained during current protocol could be differentiated to iNCs using miRs. The syanpsin+ neurons were functionally active and displayed intracellular Ca+2 evoke on activation. miRs could also transdifferentiate bone marrow-derived macrophages and peripheral blood mononuclear cells to neuronal cells. The current protocol could be employed for direct in vivo reprogramming of macrophages to neurons without teratoma formation for transplantation and clinical studies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab,Indian Institute of Advanced Research [IIAR], Gandhinagar, Gujarat, 382427, India.
| | - Reena Agrawal-Rajput
- Immunology Lab,Indian Institute of Advanced Research [IIAR], Gandhinagar, Gujarat, 382427, India.
| |
Collapse
|
5
|
Telford BJ, Yahyanejad S, de Gunst T, den Boer HC, Vos RM, Stegink M, van den Bosch MTJ, Alemdehy MF, van Pinxteren LAH, Schaapveld RQJ, Janicot M. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget 2021; 12:422-439. [PMID: 33747358 PMCID: PMC7939530 DOI: 10.18632/oncotarget.27894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Compelling evidence demonstrates that miR-193a-3p is a tumor suppressor microRNA in many cancer types, and its reduced expression is linked to cancer initiation and progression, metastasis, and therapy resistance. However, its mechanism of action is not consistently described between studies, and often contradicts the pleiotropic role of a microRNA in manipulating several different mRNA targets. We therefore comprehensively investigated miRNA-193a-3p's mode of action in a panel of human cancer cell lines, with a variety of genetic backgrounds, using 1B3, a synthetic microRNA mimic. Interestingly, the exact mechanism through which 1B3 reduced cell proliferation varied between cell lines. 1B3 efficiently reduced target gene expression, leading to reduced cell proliferation/survival, cell cycle arrest, induction of apoptosis, increased cell senescence, DNA damage, and inhibition of migration. SiRNA silencing of 1B3 target mRNAs further highlighted the advantage of the pleiotropic mechanism of 1B3 action, as repression of individual targets did not achieve the same robust effect on cell proliferation in all cell lines. Importantly, a novel lipid nanoparticle-based formulation of 1B3, INT-1B3, demonstrated marked anti-tumor activity as a single agent following systemic administration in tumor-bearing mice. Together, these data strongly support the development of 1B3 as a novel therapeutic agent for treatment of human cancer.
Collapse
Affiliation(s)
| | | | | | | | - Rogier M Vos
- InteRNA Technologies BV, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Cell division is a highly regulated and carefully orchestrated process. Understanding the mechanisms that promote proper cell division is an important step toward unraveling important questions in cell biology and human health. Early studies seeking to dissect the mechanisms of cell division used classical genetics approaches to identify genes involved in mitosis and deployed biochemical approaches to isolate and identify proteins critical for cell division. These studies underscored that post-translational modifications and cyclin-kinase complexes play roles at the heart of the cell division program. Modern approaches for examining the mechanisms of cell division, including the use of high-throughput methods to study the effects of RNAi, cDNA, and chemical libraries, have evolved to encompass a larger biological and chemical space. Here, we outline some of the classical studies that established a foundation for the field and provide an overview of recent approaches that have advanced the study of cell division.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
7
|
Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA, Tsatsakis AM. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol 2019; 9:348. [PMID: 31139559 PMCID: PMC6527883 DOI: 10.3389/fonc.2019.00348] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer metabolism is an essential aspect of tumorigenesis, as cancer cells have increased energy requirements in comparison to normal cells. Thus, an enhanced metabolism is needed in order to accommodate tumor cells' accelerated biological functions, including increased proliferation, vigorous migration during metastasis, and adaptation to different tissues from the primary invasion site. In this context, the assessment of tumor cell metabolic pathways generates crucial data pertaining to the mechanisms through which tumor cells survive and grow in a milieu of host defense mechanisms. Indeed, various studies have demonstrated that the metabolic signature of tumors is heterogeneous. Furthermore, these metabolic changes induce the exacerbated production of several molecules, which result in alterations that aid an inflammatory milieu. The therapeutic armentarium for oncology should thus include metabolic and inflammation regulators. Our expanding knowledge of the metabolic behavior of tumor cells, whether from solid tumors or hematologic malignancies, may provide the basis for the development of tailor-made cancer therapies.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Doctoral School, Biology Faculty, University of Bucharest, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Iulia Dana Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donato Zipeto
- Department Neuroscience, Biomedicine and Movement Science, School of Medicine, University of Verona, Verona, Italy
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Concettina Fenga
- Biomedical, Odontoiatric, Morphological and Functional Images Department, Occupational Medicine Section, University of Messina, Messina, Italy
| | - Constantine A Stratakis
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
8
|
Aakko S, Straume AH, Birkeland EE, Chen P, Qiao X, 'Lønning PE, Kallio MJ. MYC-Induced miR-203b-3p and miR-203a-3p Control Bcl-xL Expression and Paclitaxel Sensitivity in Tumor Cells. Transl Oncol 2019; 12:170-179. [PMID: 30359947 PMCID: PMC6199766 DOI: 10.1016/j.tranon.2018.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023] Open
Abstract
Taxanes are chemotherapeutic agents used in the treatment of solid tumors, particularly of breast, ovarian, and lung origin. However, patients show divergent therapy responses, and the molecular determinants of taxane sensitivity have remained elusive. Especially the signaling pathways that promote death of the taxane-treated cells are poorly characterized. Here we describe a novel part of a signaling route in which c-Myc enhances paclitaxel sensitivity through upregulation of miR-203b-3p and miR-203a-3p; two clustered antiapoptosis protein Bcl-xL controlling microRNAs. In vitro, the miR-203b-3p decreases the expression of Bcl-xL by direct targeting of the gene's mRNA 3'UTR. Notably, overexpression of the miR-203b-3p changed the fate of paclitaxel-treated breast and ovarian cancer cells from mitotic slippage to cell death. In breast tumors, high expression of the miR-203b-3p and MYC was associated with better therapy response and patient survival. Interestingly, in the breast tumors, MYC expression correlated negatively with BCL2L1 expression but positively with miR-203b-3p and miR-203a-3p. Finally, silencing of MYC suppressed the transcription of both miRNAs in breast tumor cells. Pending further validation, these results may assist in patient stratification for taxane therapy.
Collapse
Affiliation(s)
- Sofia Aakko
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anne Hege Straume
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Department of Clinical Oncology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Einar Elvbakken Birkeland
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Department of Clinical Oncology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Ping Chen
- Research Programs Unit, Genome-Scale Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland; Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, SE-141 57, Huddinge, Sweden
| | - Xi Qiao
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Per Eystein' 'Lønning
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway; Department of Clinical Oncology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Marko J Kallio
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
9
|
Wang W, Chen J, Hui Y, Huang M, Yuan P. Down-regulation of miR-193a-3p promotes osteoblast differentiation through up-regulation of LGR4/ATF4 signaling. Biochem Biophys Res Commun 2018; 503:2186-2193. [DOI: 10.1016/j.bbrc.2018.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
|