1
|
Baxter JS, Brough R, Krastev DB, Song F, Sridhar S, Gulati A, Alexander J, Roumeliotis TI, Kozik Z, Choudhary JS, Haider S, Pettitt SJ, Tutt ANJ, Lord CJ. Cancer-associated FBXW7 loss is synthetic lethal with pharmacological targeting of CDC7. Mol Oncol 2024; 18:369-385. [PMID: 37866880 PMCID: PMC10850818 DOI: 10.1002/1878-0261.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/29/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
The F-box and WD repeat domain containing 7 (FBXW7) tumour suppressor gene encodes a substrate-recognition subunit of Skp, cullin, F-box (SCF)-containing complexes. The tumour-suppressive role of FBXW7 is ascribed to its ability to drive ubiquitination and degradation of oncoproteins. Despite this molecular understanding, therapeutic approaches that target defective FBXW7 have not been identified. Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screens, focussed RNA-interference screens and whole and phospho-proteome mass spectrometry profiling in multiple FBXW7 wild-type and defective isogenic cell lines, we identified a number of FBXW7 synthetic lethal targets, including proteins involved in the response to replication fork stress and proteins involved in replication origin firing, such as cell division cycle 7-related protein kinase (CDC7) and its substrate, DNA replication complex GINS protein SLD5 (GINS4). The CDC7 synthetic lethal effect was confirmed using small-molecule inhibitors. Mechanistically, FBXW7/CDC7 synthetic lethality is dependent upon the replication factor telomere-associated protein RIF1 (RIF1), with RIF1 silencing reversing the FBXW7-selective effects of CDC7 inhibition. The delineation of FBXW7 synthetic lethal effects we describe here could serve as the starting point for subsequent drug discovery and/or development in this area.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Rachel Brough
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Dragomir B. Krastev
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Feifei Song
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Sandhya Sridhar
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Aditi Gulati
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - John Alexander
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Zuza Kozik
- Functional Proteomics LaboratoryThe Institute of Cancer ResearchLondonUK
| | - Jyoti S. Choudhary
- Functional Proteomics LaboratoryThe Institute of Cancer ResearchLondonUK
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Andrew N. J. Tutt
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
2
|
Toghrayee Z, Montazeri H. Uncovering hidden cancer self-dependencies through analysis of shRNA-level dependency scores. Sci Rep 2024; 14:856. [PMID: 38195844 PMCID: PMC10776685 DOI: 10.1038/s41598-024-51453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024] Open
Abstract
Large-scale short hairpin RNA (shRNA) screens on well-characterized human cancer cell lines have been widely used to identify novel cancer dependencies. However, the off-target effects of shRNA reagents pose a significant challenge in the analysis of these screens. To mitigate these off-target effects, various approaches have been proposed that aggregate different shRNA viability scores targeting a gene into a single gene-level viability score. Most computational methods for discovering cancer dependencies rely on these gene-level scores. In this paper, we propose a computational method, named NBDep, to find cancer self-dependencies by directly analyzing shRNA-level dependency scores instead of gene-level scores. The NBDep algorithm begins by removing known batch effects of the shRNAs and selecting a subset of concordant shRNAs for each gene. It then uses negative binomial random effects models to statistically assess the dependency between genetic alterations and the viabilities of cell lines by incorporating all shRNA dependency scores of each gene into the model. We applied NBDep to the shRNA dependency scores available at Project DRIVE, which covers 26 different types of cancer. The proposed method identified more well-known and putative cancer genes compared to alternative gene-level approaches in pan-cancer and cancer-specific analyses. Additionally, we demonstrated that NBDep controls type-I error and outperforms statistical tests based on gene-level scores in simulation studies.
Collapse
Affiliation(s)
- Zohreh Toghrayee
- Department of Bioinformatics, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
| | - Hesam Montazeri
- Department of Bioinformatics, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Gram SB, Alosi D, Bagger FO, Østrup O, von Buchwald C, Friborg J, Wessel I, Vogelius IR, Rohrberg K, Rasmussen JH. Clinical implication of genetic intratumor heterogeneity for targeted therapy in head and neck cancer. Acta Oncol 2023; 62:1831-1839. [PMID: 37902999 DOI: 10.1080/0284186x.2023.2272293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Genomic profiling is increasingly used both in therapeutic decision-making and as inclusion criteria for trials testing targeted therapies. However, the mutational landscape may vary across different areas of a tumor and intratumor heterogeneity will challenge treatments or clinical decisions based on single tumor biopsies. The purpose of this study was to assess the clinical relevance of genetic intratumor heterogeneity in head and neck squamous cell carcinomas (HNSCC) using the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT). MATERIALS AND METHODS This prospective study included 33 whole tumor specimens from 28 patients with primary or recurrent HNSCC referred for surgery. Three tumor blocks were selected from central, semi-peripheral, and peripheral positions, mimicking biopsies in three different locations. Genetic analysis of somatic copy number alterations (SCNAs) was performed on the three biopsies using Oncoscan, focusing on 45 preselected HNSCC genes of interest. Clinical relevance was assessed using the ESCAT score to investigate whether and how treatment decisions would change based on the three biopsies from the same tumor. RESULTS The SCNAs identified among 45 preselected genes within the three tumor biopsies derived from the same tumor revealed distinct variations. The detected discrepancies could potentially influence treatment approaches or clinical decisions in 36% of the patients if only one tumor biopsy was used. Recurrent tumors exhibited significantly higher variation in SCNAs than primary tumors (p = .024). No significant correlation between tumor size and heterogeneity (p = .7) was observed. CONCLUSION In 36% of patients diagnosed with HNSCC, clinically significant intratumor heterogeneity was observed which may have implications for patient management. This finding substantiates the need for future studies that specifically investigate the clinical implications associated with intratumor heterogeneity.
Collapse
Affiliation(s)
- Signe Buhl Gram
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Daniela Alosi
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jeppe Friborg
- Department of Oncology, Section of Radiotherapy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Irene Wessel
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ivan Richter Vogelius
- Department of Oncology, Section of Radiotherapy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kristoffer Rohrberg
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jacob Høygaard Rasmussen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Chen S, Leng P, Guo J, Zhou H. FBXW7 in breast cancer: mechanism of action and therapeutic potential. J Exp Clin Cancer Res 2023; 42:226. [PMID: 37658431 PMCID: PMC10474666 DOI: 10.1186/s13046-023-02767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023] Open
Abstract
Breast cancer is one of the frequent tumors that seriously endanger the physical and mental well-being in women. F-box and WD repeat domain-containing 7 (FBXW7) is a neoplastic repressor. Serving as a substrate recognition element for ubiquitin ligase, FBXW7 participates in the ubiquitin-proteasome system and is typically in charge of the ubiquitination and destruction of crucial oncogenic proteins, further performing a paramount role in cell differentiation, apoptosis and metabolic processes. Low levels of FBXW7 cause abnormal stability of pertinent substrates, mutations and/or deletions in the FBXW7 gene have been reported to correlate with breast cancer malignant progression and chemoresistance. Given the lack of an effective solution to breast cancer's clinical drug resistance dilemma, elucidating FBXW7's mechanism of action could provide a theoretical basis for targeted drug exploration. Therefore, in this review, we focused on FBXW7's role in a range of breast cancer malignant behaviors and summarized the pertinent cellular targets, signaling pathways, as well as the mechanisms regulating FBXW7 expression. We also proposed novel perspectives for the exploitation of alternative therapies and specific tumor markers for breast cancer by therapeutic strategies aiming at FBXW7.
Collapse
Affiliation(s)
- Siyu Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hao Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Moukarzel LA, Ferrando L, Da Cruz Paula A, Brown DN, Geyer FC, Pareja F, Piscuoglio S, Papanastasiou AD, Fusco N, Marchiò C, Abu‐Rustum NR, Murali R, Brogi E, Wen HY, Norton L, Soslow RA, Vincent‐Salomon A, Reis‐Filho JS, Weigelt B. The genetic landscape of metaplastic breast cancers and uterine carcinosarcomas. Mol Oncol 2021; 15:1024-1039. [PMID: 33021035 PMCID: PMC8024717 DOI: 10.1002/1878-0261.12813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) and uterine carcinosarcoma (UCS) are rare aggressive cancers, characterized by an admixture of adenocarcinoma and areas displaying mesenchymal/sarcomatoid differentiation. We sought to define whether MBCs and UCSs harbor similar patterns of genetic alterations, and whether the different histologic components of MBCs and UCSs are clonally related. Whole-exome sequencing (WES) data from MBCs (n = 35) and UCSs (n = 57, The Cancer Genome Atlas) were reanalyzed to define somatic genetic alterations, altered signaling pathways, mutational signatures, and genomic features of homologous recombination DNA repair deficiency (HRD). In addition, the carcinomatous and sarcomatous components of an additional cohort of MBCs (n = 11) and UCSs (n = 6) were microdissected separately and subjected to WES, and their clonal relatedness was assessed. MBCs and UCSs harbored recurrent genetic alterations affecting TP53, PIK3CA, and PTEN, similar patterns of gene copy number alterations, and an enrichment in alterations affecting the epithelial-to-mesenchymal transition (EMT)-related Wnt and Notch signaling pathways. Differences were observed, however, including a significantly higher prevalence of FAT3 and FAT1 somatic mutations in MBCs compared to UCSs, and conversely, UCSs significantly more frequently harbored somatic mutations affecting FBXW7 and PPP2R1A as well as HER2 amplification than MBCs. Genomic features of HRD and biallelic alterations affecting bona fide HRD-related genes were found to be more prevalent in MBCs than in UCSs. The distinct histologic components of MBCs and UCSs were clonally related in all cases, with the sarcoma component likely stemming from a minor subclone of the carcinoma component in the samples with interpretable chronology of clonal evolution. Despite the similar histologic features and pathways affected by genetic alterations, UCSs differ from MBCs on the basis of FBXW7 and PPP2R1A mutations, HER2 amplification, and lack of HRD, supporting the notion that these entities are more than mere phenocopies of the same tumor type in different anatomical sites.
Collapse
Affiliation(s)
- Lea A. Moukarzel
- Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Lorenzo Ferrando
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Internal MedicineUniversity of GenoaItaly
| | | | - David N. Brown
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Felipe C. Geyer
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Fresia Pareja
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Salvatore Piscuoglio
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Visceral Surgery Research Laboratory, ClarunisDepartment of BiomedicineUniversity of BaselSwitzerland
| | - Anastasios D. Papanastasiou
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Biomedical SciencesUniversity of West AtticaAthensGreece
| | - Nicola Fusco
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Division of PathologyFondazione IRCCS Ca' Grande – Ospedale Maggiore PoliclinicoMilanItaly
| | - Caterina Marchiò
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Medical SciencesUniversity of TurinItaly
| | | | - Rajmohan Murali
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Edi Brogi
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Hannah Y. Wen
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Larry Norton
- Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Robert A. Soslow
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | | | - Britta Weigelt
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
7
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
8
|
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, Dudha N, Garg M. C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Curr Cancer Drug Targets 2021; 21:2-20. [PMID: 33069197 DOI: 10.2174/1568009620666201016121005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Universite Caddesi No. 27, Orhanli, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of physiotherapy, Faculty of rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Uttar Pradesh, India
| | - Manoj Garg
- Amity of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida-201313, India
| |
Collapse
|
9
|
Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol 2020; 107:28-35. [PMID: 32334991 DOI: 10.1016/j.semcdb.2020.03.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.
Collapse
Affiliation(s)
- Diego Martínez-Alonso
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| |
Collapse
|
10
|
Zhang G, Zhu Q, Fu G, Hou J, Hu X, Cao J, Peng W, Wang X, Chen F, Cui H. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br J Cancer 2019; 121:1069-1078. [PMID: 31740732 PMCID: PMC6964669 DOI: 10.1038/s41416-019-0633-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/21/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Background Thyroid hormone receptor interactor 13 (TRIP13) is an AAA + ATPase that plays an important role in the mitotic checkpoint. TRIP13 is highly expressed in various human tumours and promotes tumorigenesis. However, the biological effect of TRIP13 in GBM cells remains unclear. Methods We generated GBM cell models with overexpressed or silenced TRIP13 via lentivirus-mediated overexpression and RNAi methods. The biological role of TRIP13 in the proliferation, migration and invasion of GBM cells has been further explored. Results Our research indicated that TRIP13 was highly expressed in GBM tissues and cells. We found that the proliferation, migration and invasion abilities were inhibited in TRIP13-knockdown GBM cells. These results indicated that TRIP13 plays an important role in the tumorigenesis of GBM. Moreover, we found that TRIP13 first stabilised c-MYC by inhibiting the transcription of FBXW7, which is an E3 ubiquitin ligase of c-MYC, by directly binding to the promoter region of FBXW7. Therefore, our study indicated that the TRIP13/FBXW7/c-MYC pathway might provide a prospective therapeutic target in the treatment of GBM. Conclusions These results indicated that TRIP13 plays an oncogenic role in GBM. The TRIP13/FBXW7/c-MYC pathway might act as a prospective therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Qingzong Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Gang Fu
- Dental Hospital Affiliated to Chongqing Medical University, Chongqing, 400016, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jiangjun Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Fei Chen
- Department of Pharmaceutical Sciences EACPHS, Wayne State University 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China. .,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Asquith CRM, Berger BT, Wan J, Bennett JM, Capuzzi SJ, Crona DJ, Drewry DH, East MP, Elkins JM, Fedorov O, Godoi PH, Hunter DM, Knapp S, Müller S, Torrice CD, Wells CI, Earp HS, Willson TM, Zuercher WJ. SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). J Med Chem 2019; 62:2830-2836. [PMID: 30768268 DOI: 10.1021/acs.jmedchem.8b01213] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe SGC-GAK-1 (11), a potent, selective, and cell-active inhibitor of cyclin G-associated kinase (GAK), together with a structurally related negative control SGC-GAK-1N (14). 11 was highly selective in an in vitro kinome-wide screen, but cellular engagement assays defined RIPK2 as a collateral target. We identified 18 as a potent RIPK2 inhibitor lacking GAK activity. Together, this chemical probe set can be used to interrogate GAK cellular biology.
Collapse
Affiliation(s)
| | - Benedict-Tilman Berger
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15 , D-60438 Frankfurt am Main , Germany.,Institute for Pharmaceutical Chemistry , Johann Wolfgang Goethe University , Max-von-Laue-Straße 9 , D-60438 Frankfurt am Main , Germany
| | | | - James M Bennett
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | | | | | | | | | - Jonathan M Elkins
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building , Oxford OX3 7DQ , U.K.,Structural Genomics Consortium , Universidade Estadual de Campinas , Campinas , São Paulo 13083-886 , Brazil
| | - Oleg Fedorov
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building , Oxford OX3 7DQ , U.K
| | - Paulo H Godoi
- Structural Genomics Consortium , Universidade Estadual de Campinas , Campinas , São Paulo 13083-886 , Brazil
| | | | - Stefan Knapp
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15 , D-60438 Frankfurt am Main , Germany.,Institute for Pharmaceutical Chemistry , Johann Wolfgang Goethe University , Max-von-Laue-Straße 9 , D-60438 Frankfurt am Main , Germany
| | - Susanne Müller
- Structural Genomics Consortium, Johann Wolfgang Goethe University, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15 , D-60438 Frankfurt am Main , Germany
| | | | | | | | | | | |
Collapse
|
12
|
Wouters R, Tian J, Herdewijn P, De Jonghe S. A Scaffold-Hopping Strategy toward the Identification of Inhibitors of Cyclin G Associated Kinase. ChemMedChem 2019; 14:237-254. [PMID: 30548533 DOI: 10.1002/cmdc.201800690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Indexed: 11/05/2022]
Abstract
We recently reported the discovery of isothiazolo[4,3-b]pyridine-based inhibitors of cyclin G associated kinase (GAK) displaying low nanomolar binding affinity for GAK and demonstrating broad-spectrum antiviral activity. To come up with novel core structures that act as GAK inhibitors, a scaffold-hopping approach was applied starting from two different isothiazolo[4,3-b]pyridines. In total, 13 novel 5,6- and 6,6-fused bicyclic heteroaromatic scaffolds were synthesized. Four of them displayed GAK affinity with Kd values in the low micromolar range that can serve as chemical starting points for the discovery of GAK inhibitors based on a different scaffold.
Collapse
Affiliation(s)
- Randy Wouters
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Junjun Tian
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium.,Present affiliation: Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, 3000, Leuven, Belgium
| |
Collapse
|