1
|
Abinun M, Slatter MA. Haematopoietic stem cell transplantation in paediatric rheumatic disease. Curr Opin Rheumatol 2021; 33:387-397. [PMID: 34261117 DOI: 10.1097/bor.0000000000000823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW A small proportion of children affected by rheumatic diseases suffer from severe, progressive disease, resistant to conventional antirheumatic therapies and to biologic agents interfering with inflammatory cytokines, costimulatory molecules expressed on immune system cells and intracellular signalling pathways. Adding to the poor prognosis is a high risk from significant morbidity and mortality associated with long-term treatment with multiple, often combined anti-inflammatory and immunosuppressive agents. Carefully selected patients from this unfortunate group may benefit from treatment with haematopoietic stem cell transplantation. RECENT FINDINGS The majority of patients with severe paediatric rheumatic and autoinflammatory diseases treated with autologous and/or allogeneic haematopoietic stem cell transplantation achieved long-term remission. However, the incidence of disease relapse and transplant related morbidity and mortality is still significant. SUMMARY Careful patient and donor selection, timing of the transplant earlier in the course of disease rather than the 'last resort' and choosing the most suitable conditioning regimen for each individual patient are the major factors favouring successful outcome. Close co-operation between the patients, their family, and involved medical teams is essential.
Collapse
Affiliation(s)
- Mario Abinun
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University
| | - Mary A Slatter
- Haematopoietic Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals, National Health Service Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Mina-Osorio P. Stem Cell Therapy in the Treatment of Rheumatic Diseases and Application in the Treatment of Systemic Lupus Erythematosus. NEXT-GENERATION THERAPIES AND TECHNOLOGIES FOR IMMUNE-MEDIATED INFLAMMATORY DISEASES 2017. [PMCID: PMC7123283 DOI: 10.1007/978-3-319-42252-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current systemic therapies help to improve the symptoms and quality of life for patients with severe life-threatening rheumatic diseases but provide no curative treatment. For the past two decades, preclinical and clinical studies of stem cell transplantation (SCT) have demonstrated tremendous therapeutic potential for patients with autoimmune rheumatic diseases. Herein, the current advances on stem cell therapies, both in animal models and clinical studies, are discussed, with particular attention on systemic lupus erythematosus (SLE). Despite extensive research and promising data, our knowledge on mechanisms of action for SCT, its administration route and timing, the optimal dose of cells, the cells’ fate and distribution in vivo, and the safety and efficacy of the treatments remains limited. Further research on stem cell biology is required to ensure that therapeutic safety and efficacy, as observed in animal models, can be successfully translated in clinical trials. Current understanding, limitations, and future directions for SCT with respect to rheumatic diseases are also discussed.
Collapse
|
3
|
Khanna G, Sargar K, Baszis KW. Pediatric vasculitis: recognizing multisystemic manifestations at body imaging. Radiographics 2016; 35:849-65. [PMID: 25969938 DOI: 10.1148/rg.2015140076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric vasculitides are multisystem diseases that can be diagnostic challenges because of variable clinical manifestations. The clinical manifestation is determined by the size of the affected vessels, organs involved, extent of vascular injury, and underlying pathologic characteristics. Henoch-Schönlein purpura and Kawasaki disease are the two most common subtypes of pediatric vasculitis. Diagnosis of pediatric vasculitis can be difficult, and the outcome can be serious or fatal in the absence of timely intervention. Imaging plays a central role in establishing the diagnosis of vasculitis involving large- and medium-sized vessels, visualizing its vascular and extravascular manifestations, and monitoring the disease course and response to treatment. Although imaging cannot depict the vessel changes of small-vessel vasculitis directly, it can be used to detect tissue damage resulting from vessel inflammation. This article discusses the classification and clinical features of the major pediatric vasculitides. The imaging approach to and nonneurologic findings of major pediatric vasculitis subtypes are reviewed for the pediatric body imager.
Collapse
Affiliation(s)
- Geetika Khanna
- From the Mallinckrodt Institute of Radiology (G.K., K.S.) and Department of Pediatrics (K.B.), Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131-MIR, St Louis, MO 63110
| | | | | |
Collapse
|
5
|
Matthes-Martin S, Lawitschka A, Fritsch G, Lion T, Grimm B, Breuer S, Boztug H, Karlhuber S, Holter W, Peters C, Minkov M. Stem cell transplantation after reduced-intensity conditioning for sickle cell disease. Eur J Haematol 2013; 90:308-12. [PMID: 23369103 DOI: 10.1111/ejh.12082] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
Abstract
Sickle cell disease (SCD) is still associated with substantial morbidity and reduced life expectancy. Disease-related mortality rises to 14% in adolescents and young adults. Overall and disease-free survival following haematopoietic stem cell transplantation (HSCT) is 90% and 95%, respectively. To reduce transplant-associated late effects, the feasibility of a highly immunosuppressive reduced-intensity conditioning (RIC) regimen was explored in children with SCD and a matched sibling donor. Eight patients (median age, 9 yr) and symptomatic SCD were included. The conditioning regimen consisted of fludarabine, melphalan and either thiotepa or total lymphoid irradiation plus antithymocyte globuline or alemtuzumab. The graft was bone marrow in seven and cord blood in one case. The conditioning regimen was well tolerated and no severe infectious complications occurred. All patients displayed mixed chimaerism on day +28. After a median follow-up of 4 yr, 3/8 patients have mixed leucocyte chimaerism and 8/8 patients have 100% donor erythropoiesis. HSCT from matched sibling donors following a RIC regimen was well tolerated and resulted in cure in all patients studied. If confirmed in larger patient cohorts, these observations will have important implications for the indications of HSCT in children with SCD.
Collapse
Affiliation(s)
- Susanne Matthes-Martin
- Department of Paediatrics, St. Anna Children's Hospital, Medical University, Kinderspitalgasse 6, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mascarenhas S, Avalos B, Ardoin SP. An update on stem cell transplantation in autoimmune rheumatologic disorders. Curr Allergy Asthma Rep 2012; 12:530-40. [PMID: 22956390 DOI: 10.1007/s11882-012-0298-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cell transplant (SCT) has long been the standard of care for several hematologic, immunodeficient, and oncologic disorders. Recently, SCT has become an increasingly utilized therapy for refractory autoimmune rheumatologic disorders (ARDs). The efficacy of SCT in ARDs has been attributed to resetting an aberrant immune system either through direct immune replacement with hematopoietic stem cells or through immunomodulation with mesenchymal stem cells. Among ARDs, refractory systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are the most common indications for SCT. SCT has also been used in refractory rheumatoid arthritis, inflammatory myopathies, antiphospholipid syndrome, granulomatosis with polyangiitis, and pediatric ARDs. Complete responses have been reported in approximately 30 % of patients in all disease categories. Transplant-related mortality, however, remains a concern. Future large multi-center prospective randomized clinical trials will help to better define the specific role of SCT in the treatment of patients with ARDs.
Collapse
Affiliation(s)
- Sheryl Mascarenhas
- Division of Rheumatology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
7
|
Snowden JA, Saccardi R, Allez M, Ardizzone S, Arnold R, Cervera R, Denton C, Hawkey C, Labopin M, Mancardi G, Martin R, Moore JJ, Passweg J, Peters C, Rabusin M, Rovira M, van Laar JM, Farge D. Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2012; 47:770-90. [PMID: 22002489 PMCID: PMC3371413 DOI: 10.1038/bmt.2011.185] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/04/2011] [Accepted: 07/04/2011] [Indexed: 12/13/2022]
Abstract
In 1997, the first consensus guidelines for haematopoietic SCT (HSCT) in autoimmune diseases (ADs) were published, while an international coordinated clinical programme was launched. These guidelines provided broad principles for the field over the following decade and were accompanied by comprehensive data collection in the European Group for Blood and Marrow Transplantation (EBMT) AD Registry. Subsequently, retrospective analyses and prospective phase I/II studies generated evidence to support the feasibility, safety and efficacy of HSCT in several types of severe, treatment-resistant ADs, which became the basis for larger-scale phase II and III studies. In parallel, there has also been an era of immense progress in biological therapy in ADs. The aim of this document is to provide revised and updated guidelines for both the current application and future development of HSCT in ADs in relation to the benefits, risks and health economic considerations of other modern treatments. Patient safety considerations are central to guidance on patient selection and HSCT procedural aspects within appropriately experienced and Joint Accreditation Committee of International Society for Cellular Therapy and EBMT accredited centres. A need for prospective interventional and non-interventional studies, where feasible, along with systematic data reporting, in accordance with EBMT policies and procedures, is emphasized.
Collapse
Affiliation(s)
- J A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - R Saccardi
- Department of Haematology, Careggi University Hospital, Firenze, Italy
| | - M Allez
- Service de Gastroentérologie, INSERM U 662, Hôpital St Louis, Paris, France
| | - S Ardizzone
- Department of Gastroenterology, Sacco University Hospital, Milan, Italy
| | - R Arnold
- Charite Hospital Berlin, Berlin, Germany
| | - R Cervera
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona, Spain
| | - C Denton
- Centre for Rheumatology, Royal Free and University College Medical School, Hampstead, London, UK
| | - C Hawkey
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - M Labopin
- Hôpital Saint Antoine, Service d'Hématologie et Thérapie Cellulaire, AP-HP, UPMC Univ Paris 06, Paris, France
| | - G Mancardi
- Department of Neuroscience, Ophthalmology and Genetics, University of Genova, Genova, Italy
| | - R Martin
- Institute for Neuroimmunology and Clinical MS Research, Hamburg, Germany
| | - J J Moore
- St Vincent's Hospital, Sydney, NSW, Australia
| | - J Passweg
- Universitaetsspital Basel, Basel, Switzerland
| | - C Peters
- BMT Unit, St Anna Children's Hospital, Vienna, Austria
| | - M Rabusin
- BMT Unit, Department of Pediatrics, Institute of Maternal and Child Health Burlo Garofolo, Trieste, Italy
| | - M Rovira
- SCT Unit, Hematology Department, Hospital Clinic, Barcelona, Spain
| | | | - D Farge
- Department of Internal Medicine, INSERM U 796, Hôpital St Louis, Paris, France
| |
Collapse
|