Han W, He X, Zhang M, Hu S, Sun F, Ren L, Hua J, Peng S. Establishment of a porcine pancreatic stem cell line using T-REx(™) system-inducible Wnt3a expression.
Cell Prolif 2015;
48:301-10. [PMID:
25894737 PMCID:
PMC6496436 DOI:
10.1111/cpr.12188]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES
Porcine pancreatic stem cells (PSCs) are highly valuable in transplantation applications for type II diabetes. However, there are still many problems to be solved before they can be used in the clinic, such as insufficient cell number availability and low secretion level of insulin. It has been reported that Wnt3a plays pivotal roles during cell proliferation and differentiation. Here, we have aimed to establish an ideal research platform using the T-REx(™) system, to study mechanisms of Wnt3a during PSC proliferation and differentiation.
MATERIALS AND METHODS
Construction of the recombinant plasmid and cell transfection were used for establishment of a porcine PSC line. Related gene expressions were examined using quantitative real-time PCR (QRT-PCR), western blotting, immunostaining and flow cytometry. BrdU incorporation assay and cell cycle analysis were used to investigate Wnt3a roles in PSCs.
RESULTS
Wnt3a-expressing clones regulated by T-REx(™) were successfully obtained. Wnt3a and GFP expression were strictly regulated by Dox in a time- and dose-dependent manner. Furthermore, we found that Wnt3a-expressing porcine PSCs induced by Dox exhibited raised proliferative potential. After Dox stimulation, expression of PCNA, C-MYC and active β-catenin were higher, but were down-regulated after Dkk1 addition.
CONCLUSION
We established a porcine PSC line that dynamically expressed Wnt3a, and we found that Wnt3a promoted PSC proliferative potential. This inducible expression system thus provides an important tool for further study on porcine PSC development and differentiation.
Collapse