1
|
Sun X, Chen J, Huang D, Ding F, Zhao L, Li HM, Wang XS, Zhang YX, Wu CZ. Semi-synthesis and in vitro anti-cancer effects evaluation of novel xanthohumol derivatives. Mol Divers 2024; 28:2749-2758. [PMID: 38064107 DOI: 10.1007/s11030-023-10706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 12/05/2024]
Abstract
Xanthohumol (Xn) is a chalcone compound isolated from Humulus lupulus Linn., that has various biological activities. In this study, eight Xn derivatives were synthesized by Williamson, Mannich, Reimer-Tiemann, and Schiff base reactions, and evaluated for their in vitro cytotoxic activity against five human cancer cell lines (MDA-MB-231, MCF-7, CNE-2Z, SMMC-7721, and H1975). Among these compounds, 2-((E)-2,4-dihydroxy-5-((E)-3-(4-hydroxyphenyl)acryloyl)-6-methoxy-3-(3- methylbut-2-en-1-yl)benzylidene)hydrazine-1-carboximidamide (8) exhibited the most potent cytotoxic activity against the five cancer cells, with IC50 values ranging from 4.87 to 14.35 µM. Wound-healing and transwell assays showed that compound 8 inhibited the migration and invasion of MDA-MB-231 cells by down-regulation HIF-1α, MMP-2 and MMP-9 protein expression. We further demonstrated that compound 8 induced apoptosis of MDA-MB-231 cells by increasing of Bax/Bcl-2 ratio and down-regulation of Akt protein expression.
Collapse
Affiliation(s)
- Xiaolong Sun
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China
| | - Jie Chen
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China
| | - Di Huang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China
| | - Feng Ding
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China
- Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, 233030, China
| | - Long Zhao
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China
- Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, 233030, China
| | - Hong-Mei Li
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China
- Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, 233030, China
| | - Xiang-Shu Wang
- School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China
| | - Yu-Xin Zhang
- Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, 233030, China.
- School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China.
| | - Cheng-Zhu Wu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, 233030, China.
- Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, 233030, China.
| |
Collapse
|
2
|
Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Abstract
Despite the significant progress made over the past decade with combination of molecular profiling data and the development of new clinical strategies, our understanding of metastasis remains elusive. Bone metastasis is a complex process and a major cause of mortality in breast and prostate cancer patients, for which there is no effective treatment to-date. The current review summarizes the routes taken by the metastatic cells and the interactions between them and the bone microenvironment. We emphasize the role of the specified niches and cues that promote cellular adhesion, colonization, prolonged dormancy, and reactivation. Understanding these mechanisms will provide better insights for future studies and treatment strategies for bone metastatic conditions.
Collapse
|
4
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Cao D, Zhu H, Zhao Q, Huang J, Zhou C, He J, Liang Y. MiR-128 suppresses metastatic capacity by targeting metadherin in breast cancer cells. Biol Res 2020; 53:43. [PMID: 32993809 PMCID: PMC7526227 DOI: 10.1186/s40659-020-00311-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023] Open
Abstract
Background Breast cancer, the most common cancer in women worldwide, causes the vast majority of cancer-related deaths. Undoubtedly, tumor metastasis and recurrence are responsible for more than 90 percent of these deaths. MicroRNAs are endogenous noncoding RNAs that have been integrated into almost all the physiological and pathological processes, including metastasis. In the present study, the role of miR-128 in breast cancer was investigated. Results Compared to the corresponding adjacent normal tissue, the expression of miR-128 was significantly suppressed in human breast cancer specimens. More importantly, its expression level was reversely correlated to histological grade of the cancer. Ectopic expression of miR-128 in the aggressive breast cancer cell line MDA-MB-231 could inhibit cell motility and invasive capacity remarkably. Afterwards, Metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric that implicated in various aspects of cancer progression and metastasis, was further identified as a direct target gene of miR-128 and its expression level was up-regulated in clinical samples as expected. Moreover, knockdown of MTDH in MDA-MB-231 cells obviously impaired the migration and invasion capabilities, whereas re-expression of MTDH abrogated the suppressive effect caused by miR-128. Conclusions Overall, these findings demonstrate that miR-128 could serve as a novel biomarker for breast cancer metastasis and a potent target for treatment in the future.
Collapse
Affiliation(s)
- Danxia Cao
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China
| | - Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Cixiang Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianrong He
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China.
| |
Collapse
|
6
|
Kamble S, Varamini P, Müllner M, Pelras T, Rohanizadeh R. Bisphosphonate-functionalized micelles for targeted delivery of curcumin to metastatic bone cancer. Pharm Dev Technol 2020; 25:1118-1126. [DOI: 10.1080/10837450.2020.1798458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sumedh Kamble
- School of Pharmacy, University of Sydney, Sydney, Australia
| | - Pegah Varamini
- School of Pharmacy, University of Sydney, Sydney, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, Australia
| | - Théophile Pelras
- Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, Australia
| | | |
Collapse
|
7
|
Lee S, Hu Y, Loo SK, Tan Y, Bhargava R, Lewis MT, Wang XS. Landscape analysis of adjacent gene rearrangements reveals BCL2L14-ETV6 gene fusions in more aggressive triple-negative breast cancer. Proc Natl Acad Sci U S A 2020; 117:9912-9921. [PMID: 32321829 PMCID: PMC7211963 DOI: 10.1073/pnas.1921333117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 10 to 20% of breast cancer, with chemotherapy as its mainstay of treatment due to lack of well-defined targets, and recent genomic sequencing studies have revealed a paucity of TNBC-specific mutations. Recurrent gene fusions comprise a class of viable genetic targets in solid tumors; however, their role in breast cancer remains underappreciated due to the complexity of genomic rearrangements in this cancer. Our interrogation of the whole-genome sequencing data for 215 breast tumors catalogued 99 recurrent gene fusions, 57% of which are cryptic adjacent gene rearrangements (AGRs). The most frequent AGRs, BCL2L14-ETV6, TTC6-MIPOL1, ESR1-CCDC170, and AKAP8-BRD4, were preferentially found in the more aggressive forms of breast cancers that lack well-defined genetic targets. Among these, BCL2L14-ETV6 was exclusively detected in TNBC, and interrogation of four independent patient cohorts detected BCL2L14-ETV6 in 4.4 to 12.2% of TNBC tumors. Interestingly, these fusion-positive tumors exhibit more aggressive histopathological features, such as gross necrosis and high tumor grade. Amid TNBC subtypes, BCL2L14-ETV6 is most frequently detected in the mesenchymal entity, accounting for ∼19% of these tumors. Ectopic expression of BCL2L14-ETV6 fusions induce distinct expression changes from wild-type ETV6 and enhance cell motility and invasiveness of TNBC and benign breast epithelial cells. Furthermore, BCL2L14-ETV6 fusions prime partial epithelial-mesenchymal transition and endow resistance to paclitaxel treatment. Together, these data reveal AGRs as a class of underexplored genetic aberrations that could be pathological in breast cancer, and identify BCL2L14-ETV6 as a recurrent gene fusion in more aggressive form of TNBC tumors.
Collapse
Affiliation(s)
- Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Michael T Lewis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232;
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
8
|
Lefley D, Howard F, Arshad F, Bradbury S, Brown H, Tulotta C, Eyre R, Alférez D, Wilkinson JM, Holen I, Clarke RB, Ottewell P. Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts. Breast Cancer Res 2019; 21:130. [PMID: 31783893 PMCID: PMC6884811 DOI: 10.1186/s13058-019-1220-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Background Late-stage breast cancer preferentially metastasises to bone; despite advances in targeted therapies, this condition remains incurable. The lack of clinically relevant models for studying breast cancer metastasis to a human bone microenvironment has stunted the development of effective treatments for this condition. To address this problem, we have developed humanised mouse models in which breast cancer patient-derived xenografts (PDXs) metastasise to human bone implants with low variability and high frequency. Methods To model the human bone environment, bone discs from femoral heads of patients undergoing hip replacement surgery were implanted subcutaneously into NOD/SCID mice. For metastasis studies, 7 patient-derived xenograft tumours (PDX: BB3RC32, ER+ PR+ HER2−; BB2RC08, ER+ PR+ ER2−; BB6RC37, ER− PR− HER2− and BB6RC39, ER+ PR+ HER2+), MDA-MB-231-luc2, T47D-luc2 or MCF7-Luc2 cells were injected into the 4th mammary ducts and metastases monitored by luciferase imaging and confirmed on histological sections. Bone integrity, viability and vascularisation were assessed by uCT, calcein uptake and histomorphometry. Expression profiling of genes/proteins during different stages of metastasis were assessed by whole genome Affymetrix array, real-time PCR and immunohistochemistry. Importance of IL-1 was confirmed following anakinra treatment. Results Implantation of femoral bone provided a metabolically active, human-specific site for tumour cells to metastasise to. After 4 weeks, bone implants were re-vascularised and demonstrated active bone remodelling (as evidenced by the presence of osteoclasts, osteoblasts and calcein uptake). Restricting bone implants to the use of subchondral bone and introduction of cancer cells via intraductal injection maximised metastasis to human bone implants. MDA-MB-231 cells specifically metastasised to human bone (70% metastases) whereas T47D, MCF7, BB3RC32, BB2RC08, and BB6RC37 cells metastasised to both human bone and mouse bones. Importantly, human bone was the preferred metastatic site especially from ER+ PDX (100% metastasis human bone compared with 20–75% to mouse bone), whereas ER-ve PDX developed metastases in 20% of human and 20% of mouse bone. Breast cancer cells underwent a series of molecular changes as they progressed from primary tumours to bone metastasis including altered expression of IL-1B, IL-1R1, S100A4, CTSK, SPP1 and RANK. Inhibiting IL-1B signalling significantly reduced bone metastasis. Conclusions Our reliable and clinically relevant humanised mouse models provide significant advancements in modelling of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Diane Lefley
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Faith Howard
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Fawaz Arshad
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Steven Bradbury
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Hannah Brown
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Claudia Tulotta
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Rachel Eyre
- Manchester Breast Centre, Oglesby Cancer Research Building, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Denis Alférez
- Manchester Breast Centre, Oglesby Cancer Research Building, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Robert B Clarke
- Manchester Breast Centre, Oglesby Cancer Research Building, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Penelope Ottewell
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
9
|
Identification of Alternatively-Activated Pathways between Primary Breast Cancer and Liver Metastatic Cancer Using Microarray Data. Genes (Basel) 2019; 10:genes10100753. [PMID: 31557971 PMCID: PMC6826985 DOI: 10.3390/genes10100753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Alternatively-activated pathways have been observed in biological experiments in cancer studies, but the concept had not been fully explored in computational cancer system biology. Therefore, an alternatively-activated pathway identification method was proposed and applied to primary breast cancer and breast cancer liver metastasis research using microarray data. Interestingly, the results show that cytokine-cytokine receptor interaction and calcium signaling were significantly enriched under both conditions. TGF beta signaling was found to be the hub in network topology analysis. In total, three types of alternatively-activated pathways were recognized. In the cytokine-cytokine receptor interaction pathway, four active alteration patterns in gene pairs were noticed. Thirteen cytokine-cytokine receptor pairs with inverse activity changes of both genes were verified by the literature. The second type was that some sub-pathways were active under only one condition. For the third type, nodes were significantly active in both conditions, but with different active genes. In the calcium signaling and TGF beta signaling pathways, node E2F5 and E2F4 were significantly active in primary breast cancer and metastasis, respectively. Overall, our study demonstrated the first time using microarray data to identify alternatively-activated pathways in breast cancer liver metastasis. The results showed that the proposed method was valid and effective, which could be helpful for future research for understanding the mechanism of breast cancer metastasis.
Collapse
|
10
|
McGrath J, Panzica L, Ransom R, Withers HG, Gelman IH. Identification of Genes Regulating Breast Cancer Dormancy in 3D Bone Endosteal Niche Cultures. Mol Cancer Res 2019; 17:860-869. [PMID: 30651373 DOI: 10.1158/1541-7786.mcr-18-0956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 01/07/2019] [Indexed: 01/25/2023]
Abstract
Tumor cell dormancy is a significant clinical problem in breast cancer. We used a three-dimensional (3D) in vitro model of the endosteal bone niche (EN), consisting of endothelial, bone marrow stromal cells, and fetal osteoblasts in a 3D collagen matrix (GELFOAM), to identify genes required for dormancy. Human triple-negative MDA-MB-231 breast cancer cells, but not the bone-tropic metastatic variant, BoM1833, established dormancy in 3D-EN cultures in a p38-MAPK-dependent manner, whereas both cell types proliferated on two-dimensional (2D) plastic or in 3D collagen alone. "Dormancy-reactivation suppressor genes" (DRSG) were identified using a genomic short hairpin RNA (shRNA) screen in MDA-MB-231 cells for gene knockdowns that induced proliferation in the 3D-EN. DRSG candidates enriched for genes controlling stem cell biology, neurogenesis, MYC targets, ribosomal structure, and translational control. Several potential DRSG were confirmed using independent shRNAs, including BHLHE41, HBP1, and WNT3. Overexpression of the WNT3/a antagonists secreted frizzled-related protein 2 or 4 (SFRP2/4) and induced MDA-MB-231 proliferation in the EN. In contrast, overexpression of SFRP3, known not to antagonize WNT3/a, did not induce proliferation. Decreased WNT3 or BHLHE41 expression was found in clinical breast cancer metastases compared with primary-site lesions, and the loss of WNT3 or BHLHE41 or gain of SFRP1, 2, and 4 in the context of TP53 loss/mutation correlated with decreased progression-free and overall survival. IMPLICATIONS: These data describe several novel, potentially targetable pathways controlling breast cancer dormancy in the EN.
Collapse
Affiliation(s)
- Julie McGrath
- Department of Cancer Biology, University of Arizona, Tucson, Arizona
| | - Louis Panzica
- University at Buffalo School of Law, Buffalo, New York
| | | | - Henry G Withers
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
11
|
Tulotta C, Groenewoud A, Snaar-Jagalska BE, Ottewell P. Animal Models of Breast Cancer Bone Metastasis. Methods Mol Biol 2019; 1914:309-330. [PMID: 30729473 DOI: 10.1007/978-1-4939-8997-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter is designed to provide a comprehensive overview outlining the different in vivo models available for research into breast cancer bone metastasis. The main focus is to guide the researcher through the methodological processes required to establish and utilize these models within their own laboratory. These detailed methods are designed to enable the acquisition of accurate and meaningful results that can be used for publication and future translation into clinical benefit for women with breast cancer-induced bone metastasis.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Penelope Ottewell
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Heterodimer formation by Oct4 and Smad3 differentially regulates epithelial-to-mesenchymal transition-associated factors in breast cancer progression. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29526821 DOI: 10.1016/j.bbadis.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The multifunctional cytokine TGF-β crucially participates in breast cancer (BCa) metastasis and works differently in the disease stages, thus contributing in BCa progression. We address connections between TGF-β and the stem cell-related transcription factor (TF) Oct4 in BCa. In 147 BCa patients with infiltrating duct carcinoma, we identified a significantly higher number of cases with both moderate/high Oct4 expression and high TGF-β in late stages compared to early stages of the disease. In vitro studies showed that TGF-β elevated Oct4 expression, which in turn, regulated Epithelial-to-Mesenchymal transition (EMT)-regulatory gene (Snail and Slug) expression, migratory ability, chemotactic invasiveness and extracellular matrix (ECM) degradation potential of BCa cells. Putative binding sites for Oct4 on the snail, slug and cxcl13 promoters and for Smad3 on the snail and slug promoters were identified. Promoter activities of snail and slug were greater in dual-treated cells than only TGF-β-treated or Oct4-overexpressing cells. CXCL13 mRNA fold changes, however, were low in cells induced with TGF-β, compared to dual-treated or Oct4-overexpressing cells. Our co-IP studies confirmed that Oct4 and Smad3 form heterodimers that recognize specific promoter sequences to promote Snail and Slug expression, but which in turn, indirectly inhibits Smad3-mediated repression of CXCL13 expression, allowing Oct4 to act as a positive TF for CXCL13. Taken together, these data suggest that TGF-β signaling and Oct4 cooperate to induce expression of EMT-related genes Snail, Slug and CXCL13, which accelerates disease progression, particularly in the late stages, and may indicate a poor prognosis for BCa patients.
Collapse
|
13
|
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn 2018; 18:227-243. [DOI: 10.1080/14737159.2018.1439382] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suruchi Mittal
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Nicola J. Brown
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, UK
| |
Collapse
|
14
|
Kitazawa R, Haraguchi R, Fukushima M, Kitazawa S. Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion. Histochem Cell Biol 2018; 149:405-415. [PMID: 29356963 DOI: 10.1007/s00418-018-1639-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in either over-resorption or over-formation of hard tissue. Local over-resorption by osteoclasts is typically observed in osteolytic metastases of malignancies, autoimmune arthritis, and giant cell tumor of bone (GCTB). In tumor-related local osteolysis, tumor-derived osteoclast-activating factors induce bone resorption not by directly acting on osteoclasts but by indirectly upregulating receptor activator of NFκB ligand (RANKL) on osteoblastic cells. Similarly, synovial tissue in the autoimmune arthritis model does overexpress RANKL and contains numerous osteoclast precursors, and like a landing craft, when it comes in contact with eroded bone surfaces, osteoclast precursors are immediately polarized to become mature osteoclasts, inducing rapidly progressive bone destruction at a late stage of the disease. GCTB, on the other hand, is a common primary bone tumor, usually arising at the metaphysis of the long bone in young adults. After the discovery of RANKL, the concept of GCTB as a tumor of RANKL-expressing stromal cells was established, and comprehensive exosome studies finally disclosed the causative single-point mutation at histone H3.3 (H3F3A) in stromal cells. Thus, osteolytic lesions under various pathological conditions are ultimately attributable to the overexpression of RANKL, which opens up a common, practical and useful therapeutic target for diverse osteolytic conditions.
Collapse
Affiliation(s)
- Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan.,Department of Molecular Pathology, Graduate School of Medicine, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Graduate School of Medicine, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mana Fukushima
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Graduate School of Medicine, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
15
|
LUO WW, ZHAO WW, LU JJ, WANG YT, CHEN XP. Cucurbitacin B suppresses metastasis mediated by reactive oxygen species (ROS) via focal adhesion kinase (FAK) in breast cancer MDA-MB-231 cells. Chin J Nat Med 2018; 16:10-19. [DOI: 10.1016/s1875-5364(18)30025-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 12/15/2022]
|
16
|
Trivanović D, Krstić J, Jauković A, Bugarski D, Santibanez JF. Mesenchymal stromal cell engagement in cancer cell epithelial to mesenchymal transition. Dev Dyn 2017; 247:359-367. [PMID: 28850772 DOI: 10.1002/dvdy.24583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/04/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Due to coexistence of stromal and epithelial tumor cells, their dynamic interactions have been widely recognized as significant cellular components to the tumor tissue integrity. Initiation and outcome of epithelial to mesenchymal transition (EMT) in tumor cells are dependent on their interaction with adjacent or recruited mesenchymal stromal cells (MSCs). A plethora of mechanisms are involved in MSCs-controlled employment of the developmental processes of EMT that contribute to loss of epithelial cell phenotype and acquisition of stemness, invasiveness and chemoresistance of tumor cells. Interplay of MSCs with tumor cells, including interchange of soluble biomolecules, plasma membrane structures, cytoplasmic content, and organelles, is established through cell-cell contact and/or by means of paracrine signaling. The main focus of this review is to summarize knowledge about involvement of MSCs in cancer cell EMT. Understanding the underlying cellular and molecular mechanism involved in the interplay between MSCs and cancer EMT is essential for development of effective therapy approaches, which in combination with current treatments may improve the control of tumor progression. Developmental Dynamics 247:359-367, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| |
Collapse
|
17
|
Bado I, Gugala Z, Fuqua SAW, Zhang XHF. Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 2017; 36:4527-4537. [PMID: 28368409 PMCID: PMC5552443 DOI: 10.1038/onc.2017.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggest tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also have important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, which involves the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of ERs in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge.
Collapse
Affiliation(s)
- Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Suzanne A. W. Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
18
|
Lin B, Zhang L, Li D, Sun H. MED23 in endocrinotherapy for breast cancer. Oncol Lett 2017; 13:4679-4684. [PMID: 28588722 PMCID: PMC5452902 DOI: 10.3892/ol.2017.6036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/21/2017] [Indexed: 12/29/2022] Open
Abstract
We investigated the role of the transcriptional mediator subunit 23 (MED23) in everolimus drug resistance, invasion and metastasis during breast cancer treatment and its molecular mechanism. We also evaluated the endocrinotherapy and prevention method for breast cancer. Breast cancer cell strains were established that can continuously express MED23, as well as inducible MED23-shRNA expression plasmids. The inductive agent, doxycycline (Dox), was added to the water for long-term silencing of MED23 in intratumoral cells. We conducted experiments on the role of MED23 in the regulation of invasion and metastasis of breast cancer using cell culture, western blotting, MTT proliferation experiment, fluorescent quantitative PCR and chromatin immunoprecipitation (ChIP). The silencing of MED23 significantly inhibited cellular growth and proliferation as well as soft agar cloning. Silencing of MED23 strengthened the sensitivity of the everolimus-resistant breast cancer cell strains BT474 and MCF-7/ADM cells to everolimus medication. The silencing of MED23, in combination with everolimus, inhibits the cell cycle progress of breast cancer cells. ChIP indicated that the mutual regulation of HER2 and MED23 also participates in the formation of the everolimus drug resistance mechanism. Therefore, MED23 plays an important role in everolimus drug resistance, invasion, and metastasis of breast cancer. As a potential molecular therapeutic target of breast cancer, MED23 overcomes drug resistance in clinical endocrinotherapy and controls the distal relapse and metastasis in breast cancer by the targeted silencing of MED23.
Collapse
Affiliation(s)
- Benrui Lin
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Lan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Dinuo Li
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Hongzhi Sun
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
19
|
Jafri MA, Al-Qahtani MH, Shay JW. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 2017; 44:117-131. [PMID: 28188828 DOI: 10.1016/j.semcancer.2017.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
Abstract
Metastasis is the spread and growth of localized cancer to new locations in the body and is considered the main cause of cancer-related deaths. Metastatic cancer cells display distinct genomic and epigenomic profiles and almost universally an aggressive pathophysiology. A better understanding of the molecular mechanisms and regulation of metastasis, including how metastatic tumors grow and survive in the nascent niche and the interactions of the emergent metastatic cancer cells within the local microenvironment may provide tools to design strategies to restrict metastatic dissemination. Aberrant microRNAs (miRNA) expression has been reported in metastatic cancer cells. MicroRNAs are known to regulate divergent and/or convergent metastatic gene pathways including activation of reprogramming switches during metastasis. An in-depth understanding of role of miRNAs in the metastatic cascade may lead to the identification of novel targets for anti-metastatic therapeutics as well as potential candidate miRNAs for cancer treatment. This review primarily focuses on the role of miRNAs in the mechanisms of cancer metastasis as well as implications for metastatic cancer treatment.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Jerry William Shay
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene 2016; 36:2680-2692. [PMID: 27893712 PMCID: PMC5426963 DOI: 10.1038/onc.2016.421] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 01/14/2023]
Abstract
During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.
Collapse
|
21
|
Di Martino A, Caldaria A, De Vivo V, Denaro V. Metastatic epidural spinal cord compression. Expert Rev Anticancer Ther 2016; 16:1189-1198. [PMID: 27654149 DOI: 10.1080/14737140.2016.1240038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Metastatic epidural spinal cord compression (MESSC) is a frequent event in patients affected by solid tumor metastases. Current available approaches for MESCC include corticosteroids, radiotherapy and surgery. In the last few years, surgery has evolved from decompression by laminectomy alone, with the introduction of instrumentation systems by metalware (screws and hooks), and this has been associated to an improvement of clinical results compared to radiotherapy alone. Areas covered: In this narrative review, we outline the phases of management of cancer patients affected by MESSC, and discuss the timing of treatments, their impact on the Quality of life (QoL), and the relative benefits and harms of surgery and radiotherapy. Expert commentary: Despite the fact that clinical and surgical trials will be required to determine the most appropriate surgical technique and timing of surgery, we do expect a newer and more important role for radiotherapy in the management of MESCC patients in the next future. In particular, the implementation of radiotactic stereosurgery as adjuvant to decompressive surgery is expected to increase in the next few years, above all in those patients that can be candidate to the so called separation surgery.
Collapse
Affiliation(s)
- Alberto Di Martino
- a CIR- Center of Integrated Research, Department of Orthopaedics and Trauma Surgery , University Campus Bio-Medico of Rome , Rome , Italy
| | - Antonio Caldaria
- a CIR- Center of Integrated Research, Department of Orthopaedics and Trauma Surgery , University Campus Bio-Medico of Rome , Rome , Italy
| | - Vincenzo De Vivo
- a CIR- Center of Integrated Research, Department of Orthopaedics and Trauma Surgery , University Campus Bio-Medico of Rome , Rome , Italy
| | - Vincenzo Denaro
- a CIR- Center of Integrated Research, Department of Orthopaedics and Trauma Surgery , University Campus Bio-Medico of Rome , Rome , Italy
| |
Collapse
|
22
|
Kan C, Vargas G, Pape FL, Clézardin P. Cancer Cell Colonisation in the Bone Microenvironment. Int J Mol Sci 2016; 17:ijms17101674. [PMID: 27782035 PMCID: PMC5085707 DOI: 10.3390/ijms17101674] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.
Collapse
Affiliation(s)
- Casina Kan
- National Institute of Health and Medical Research (INSERM), UMR 1033, Lyon 69372, France.
- Faculty of Medicine RTH Laennec, University of Lyon, Villeurbanne 69372, France.
| | - Geoffrey Vargas
- National Institute of Health and Medical Research (INSERM), UMR 1033, Lyon 69372, France.
- Faculty of Medicine RTH Laennec, University of Lyon, Villeurbanne 69372, France.
| | - François Le Pape
- National Institute of Health and Medical Research (INSERM), UMR 1033, Lyon 69372, France.
- Faculty of Medicine RTH Laennec, University of Lyon, Villeurbanne 69372, France.
| | - Philippe Clézardin
- National Institute of Health and Medical Research (INSERM), UMR 1033, Lyon 69372, France.
- Faculty of Medicine RTH Laennec, University of Lyon, Villeurbanne 69372, France.
| |
Collapse
|
23
|
Trincado JL, Sebestyén E, Pagés A, Eyras E. The prognostic potential of alternative transcript isoforms across human tumors. Genome Med 2016; 8:85. [PMID: 27535130 PMCID: PMC4989457 DOI: 10.1186/s13073-016-0339-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Phenotypic changes during cancer progression are associated with alterations in gene expression, which can be exploited to build molecular signatures for tumor stage identification and prognosis. However, it is not yet known whether the relative abundance of transcript isoforms may be informative for clinical stage and survival. METHODS Using information theory and machine learning methods, we integrated RNA sequencing and clinical data from The Cancer Genome Atlas project to perform the first systematic analysis of the prognostic potential of transcript isoforms in 12 solid tumors to build new signatures for stage and prognosis. This study was also performed in breast tumors according to estrogen receptor (ER) status and melanoma tumors with proliferative and invasive phenotypes. RESULTS Transcript isoform signatures accurately separate early from late-stage groups and metastatic from non-metastatic tumors, and are predictive of the survival of patients with undetermined lymph node invasion or metastatic status. These signatures show similar, and sometimes better, accuracies compared with known gene expression signatures in retrospective data and are largely independent of gene expression changes. Furthermore, we show frequent transcript isoform changes in breast tumors according to ER status, and in melanoma tumors according to the invasive or proliferative phenotype, and derive accurate predictive models of stage and survival within each patient subgroup. CONCLUSIONS Our analyses reveal new signatures based on transcript isoform abundances that characterize tumor phenotypes and their progression independently of gene expression. Transcript isoform signatures appear especially relevant to determine lymph node invasion and metastasis and may potentially contribute towards current strategies of precision cancer medicine.
Collapse
Affiliation(s)
- Juan L Trincado
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E08003, Barcelona, Spain
| | - E Sebestyén
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - A Pagés
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E08003, Barcelona, Spain
| | - E Eyras
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E08003, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, E08010, Barcelona, Spain.
| |
Collapse
|
24
|
Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer. Sci Rep 2016; 6:29384. [PMID: 27411810 PMCID: PMC4944130 DOI: 10.1038/srep29384] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/17/2016] [Indexed: 12/27/2022] Open
Abstract
The ability to rapidly assess the efficacy of therapeutic strategies for incurable bone metastatic prostate cancer is an urgent need. Pre-clinical in vivo models are limited in their ability to define the temporal effects of therapies on simultaneous multicellular interactions in the cancer-bone microenvironment. Integrating biological and computational modeling approaches can overcome this limitation. Here, we generated a biologically driven discrete hybrid cellular automaton (HCA) model of bone metastatic prostate cancer to identify the optimal therapeutic window for putative targeted therapies. As proof of principle, we focused on TGFβ because of its known pleiotropic cellular effects. HCA simulations predict an optimal effect for TGFβ inhibition in a pre-metastatic setting with quantitative outputs indicating a significant impact on prostate cancer cell viability, osteoclast formation and osteoblast differentiation. In silico predictions were validated in vivo with models of bone metastatic prostate cancer (PAIII and C4-2B). Analysis of human bone metastatic prostate cancer specimens reveals heterogeneous cancer cell use of TGFβ. Patient specific information was seeded into the HCA model to predict the effect of TGFβ inhibitor treatment on disease evolution. Collectively, we demonstrate how an integrated computational/biological approach can rapidly optimize the efficacy of potential targeted therapies on bone metastatic prostate cancer.
Collapse
|
25
|
Fontanella C, Fanotto V, Rihawi K, Aprile G, Puglisi F. Skeletal metastases from breast cancer: pathogenesis of bone tropism and treatment strategy. Clin Exp Metastasis 2015; 32:819-33. [PMID: 26343511 DOI: 10.1007/s10585-015-9743-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most common female cancer worldwide with approximately 10 % of new cases metastatic at diagnosis and 20-50 % of patients with early BC who will eventually develop metastatic disease. Bone is the most frequent site of colonisation and the development of skeletal metastases depends on a complex multistep process, from dissemination and survival of malignant cells into circulation to the actual homing and metastases formation inside bone. Disseminated tumor cells (DTCs) can be detected in bone marrow in approximately 30 % of BC patients, likely reflecting the presence of minimal residual disease that would eventually account for subsequent metastatic disease. Patients with bone marrow DTCs have poorer overall survival compared with patients without them. Although bone-only metastatic disease seems to have a rather indolent behavior compared to visceral disease, bone metastases can cause severe and debilitating effects, including pain, spinal cord compression, hypercalcemia and pathologic fractures. Delivering an appropriate treatment is therefore paramount and ideally it should require interdisciplinary care. Multiple options are currently available, from bisphosphonates to new drugs targeting RANK ligand and radiotherapy. In this review we describe the mechanisms underlying bone colonization and provide an update on existing systemic and locoregional treatments for bone metastases.
Collapse
Affiliation(s)
- Caterina Fontanella
- Department of Oncology, University Hospital of Udine, Piazzale S. Maria della Misericordia, 15, 33100, Udine, Italy.
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy.
| | - Valentina Fanotto
- Department of Oncology, University Hospital of Udine, Piazzale S. Maria della Misericordia, 15, 33100, Udine, Italy
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Karim Rihawi
- Department of Oncology, University Hospital of Udine, Piazzale S. Maria della Misericordia, 15, 33100, Udine, Italy
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Giuseppe Aprile
- Department of Oncology, University Hospital of Udine, Piazzale S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Fabio Puglisi
- Department of Oncology, University Hospital of Udine, Piazzale S. Maria della Misericordia, 15, 33100, Udine, Italy
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
26
|
Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 2015; 12:154-68. [PMID: 26607387 DOI: 10.1038/nrrheum.2015.160] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bone marrow niche consists of stem and progenitor cells destined to become mature cells such as haematopoietic elements, osteoblasts or adipocytes. Marrow cells, influenced by endocrine, paracrine and autocrine factors, ultimately function as a unit to regulate bone remodelling and haematopoiesis. Current evidence highlights that the bone marrow niche is not merely an anatomic compartment; rather, it integrates the physiology of two distinct organ systems, the skeleton and the marrow. The niche has a hypoxic microenvironment that maintains quiescent haematopoietic stem cells (HSCs) and supports glycolytic metabolism. In response to biochemical cues and under the influence of neural, hormonal, and biochemical factors, marrow stromal elements, such as mesenchymal stromal cells (MSCs), differentiate into mature, functioning cells. However, disruption of the niche can affect cellular differentiation, resulting in disorders ranging from osteoporosis to malignancy. In this Review, we propose that the niche reflects the vitality of two tissues - bone and blood - by providing a unique environment for stem and stromal cells to flourish while simultaneously preventing disproportionate proliferation, malignant transformation or loss of the multipotent progenitors required for healing, functional immunity and growth throughout an organism's lifetime. Through a fuller understanding of the complexity of the niche in physiologic and pathologic states, the successful development of more-effective therapeutic approaches to target the niche and its cellular components for the treatment of rheumatic, endocrine, neoplastic and metabolic diseases becomes achievable.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
27
|
EGF enhances low-invasive cancer cell invasion by promoting IMP-3 expression. Tumour Biol 2015; 37:2555-63. [DOI: 10.1007/s13277-015-4099-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023] Open
|
28
|
Hwang YS, Lindholm PF. Constitutive and Inducible Expression of Invasion-related Factors in PC-3 Prostate Cancer Cells. J Cancer Prev 2015; 20:121-8. [PMID: 26151045 PMCID: PMC4492356 DOI: 10.15430/jcp.2015.20.2.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 11/25/2022] Open
Abstract
Background: Tumor growth and invasion are interconnected with the tumor microenvironment. Overexpression of genes that regulate cancer cell invasion by growth factors, cytokines, and lipid factors can affect cancer aggressiveness. A comparative gene expression analysis between highly invasive and low invasive cells revealed that various genes are differentially expressed in association with invasive potential. In this study, we selected variant PC-3 prostate cancer cell sublines and discovered critical molecules that contributed to their invasive potential. Methods: The high invasive and low invasive variant PC-3 cell sublines were obtained by serial selection following Matrigel-coated Transwell invasion and were characterized by Transwell invasion, luciferase reporter assay, and Rhotekin pull-down assay. Lysophosphatidic acid (LPA) was added to the cultures to observe the response to this extracellular stimulus. The essential molecules related with cancer invasiveness were detected with Northern blotting, quantitative reverse transcription-polymerase chain reaction, and cDNA microarray. Results: Highly invasive PC-3 cells showed higher nuclear factor kappa B (NF-κB), activator protein 1 (AP-1) and RhoA activities than of low invasive PC-3 cells. LPA promoted cancer invasion through NF-κB, AP-1, and RhoA activities. Thrombospondin-1, interleukin-8, kallikrein 6, matrix metalloproteinase-1, and tissue factor were overexpressed in the highly invasive PC-3 variant cells and further upregulated by LPA stimulation. Conclusions: The results suggest that the target molecules are involved in invasiveness of prostate cancer. These molecules may have clinical value for anti-invasion therapy by serving as biomarkers for the prediction of aggressive cancers and the detection of pharmacological inhibitors.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam, Korea
| | - Paul F Lindholm
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|