1
|
Vidicevic-Novakovic S, Stanojevic Z, Tomonjic N, Karapandza K, Zekovic J, Martinovic T, Grujicic D, Ilic R, Raicevic S, Tasic J, Isakovic A. Proapoptotic and proautophagy effect of H1-receptor antagonist desloratadine in human glioblastoma cell lines. Med Oncol 2023; 40:241. [PMID: 37452991 DOI: 10.1007/s12032-023-02117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Glioblastomas are aggressive and usually incurable high-grade gliomas without adequate treatment. In this study, we aimed to investigate the potential of desloratadine to induce apoptosis/autophagy as genetically regulated processes that can seal cancer cell fates. All experiments were performed on U251 human glioblastoma cell line and primary human glioblastoma cell culture. Cytotoxic effect of desloratadine was investigated using MTT and CV assays, while oxidative stress, apoptosis, and autophagy were detected by flow cytometry and immunoblot. Desloratadine treatment decreased cell viability of U251 human glioblastoma cell line and primary human glioblastoma cell culture (IC50 value 50 µM) by an increase of intracellular reactive oxygen species and caspase activity. Also, desloratadine decreased the expression of main autophagy repressor mTOR and its upstream activator Akt and increased the expression of AMPK. Desloratadine exerted dual cytotoxic effect inducing both apoptosis- and mTOR/AMPK-dependent cytotoxic autophagy in glioblastoma cells and primary glioblastoma cell culture.
Collapse
Affiliation(s)
- Sasenka Vidicevic-Novakovic
- School of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Zeljka Stanojevic
- School of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Nina Tomonjic
- School of Medicine, Institute of Rheumatology, University of Belgrade, Belgrade, Serbia
| | - Katarina Karapandza
- School of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Janko Zekovic
- School of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Martinovic
- School of Medicine, Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - Danica Grujicic
- Clinic of Neurosurgery, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rosanda Ilic
- Clinic of Neurosurgery, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Savo Raicevic
- Clinic of Neurosurgery, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tasic
- School of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia.
| | - Aleksandra Isakovic
- School of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Zugic A, Jeremic I, Isakovic A, Arsic I, Savic S, Tadic V. Evaluation of Anticancer and Antioxidant Activity of a Commercially Available CO2 Supercritical Extract of Old Man's Beard (Usnea barbata). PLoS One 2016; 11:e0146342. [PMID: 26745885 PMCID: PMC4706385 DOI: 10.1371/journal.pone.0146342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/11/2015] [Indexed: 11/21/2022] Open
Abstract
There is a worldwide ongoing investigation for novel natural constituents with cytotoxic and antioxidant properties. The aim of this study was to investigate chemical profile and stated biological activities of the supercritical CO2 extract (SCE) of old man’s beard compared to the extracts obtained using the conventional techniques (Soxhlet extracts and macerate). The most abundant compound identified was usnic acid, which content was inversely proportional to the polarity of the solvent used and was the highest in the SCE, which was the sample revealing the highest cytotoxic activity in tested tumor cell lines (B16 mouse melanoma and C6 rat glioma), with lower IC50 values compared to pure usnic acid. Further investigations suggested both SCE and usnic acid to induce apoptosis and/or autophagy in B16 and C6, indicating higher cytotoxicity of SCE to be related to the higher degree of ROS production. A good correlation of usnic acid content in the extracts and their antioxidant capacity was established, extricating SCE as the most active one. Presented results support further investigations of SCE of old man’s beard as a prospective therapeutic agent with potential relevance in the treatment of cancer and/or in oxidative stress-mediated conditions.
Collapse
Affiliation(s)
- Ana Zugic
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Belgrade, Serbia
| | - Ivica Jeremic
- Institute of Rheumatology, University of Belgrade, Belgrade, Serbia
- Institute of Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Arsic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Vanja Tadic
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
3
|
Autophagy Activated by Bluetongue Virus Infection Plays a Positive Role in Its Replication. Viruses 2015; 7:4657-75. [PMID: 26287233 PMCID: PMC4576199 DOI: 10.3390/v7082838] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 01/19/2023] Open
Abstract
Bluetongue virus (BTV) is an important pathogen of wild and domestic ruminants. Despite extensive study in recent decades, the interplay between BTV and host cells is not clearly understood. Autophagy as a cellular adaptive response plays a part in many viral infections. In our study, we found that BTV1 infection triggers the complete autophagic process in host cells, as demonstrated by the appearance of obvious double-membrane autophagosome-like vesicles, GFP-LC3 dots accumulation, the conversion of LC3-I to LC3-II and increased levels of autophagic flux in BSR cells (baby hamster kidney cell clones) and primary lamb lingual epithelial cells upon BTV1 infection. Moreover, the results of a UV-inactivated BTV1 infection assay suggested that the induction of autophagy was dependent on BTV1 replication. Therefore, we investigated the role of autophagy in BTV1 replication. The inhibition of autophagy by pharmacological inhibitors (3-MA, CQ) and RNA interference (siBeclin1) significantly decreased viral protein synthesis and virus yields. In contrast, treating BSR cells with rapamycin, an inducer of autophagy, promoted viral protein expression and the production of infectious BTV1. These findings lead us to conclude that autophagy is activated by BTV1 and contributes to its replication, and provide novel insights into BTV-host interactions.
Collapse
|
4
|
Ristic B, Bosnjak M, Arsikin K, Mircic A, Suzin-Zivkovic V, Bogdanovic A, Perovic V, Martinovic T, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells. Exp Cell Res 2014; 326:90-102. [PMID: 24907655 DOI: 10.1016/j.yexcr.2014.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
Abstract
We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.
Collapse
Affiliation(s)
- Biljana Ristic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Arsikin
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Aleksandar Mircic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Violeta Suzin-Zivkovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia.
| | - Ljubica Harhaji-Trajkovic
- Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
5
|
Gioacchini G, Dalla Valle L, Benato F, Fimia GM, Nardacci R, Ciccosanti F, Piacentini M, Borini A, Carnevali O. Interplay between autophagy and apoptosis in the development of Danio rerio follicles and the effects of a probiotic. Reprod Fertil Dev 2014. [PMID: 23195281 DOI: 10.1071/rd12187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study investigated autophagic processes in Danio rerio preovulatory follicles (Stage III and IV). There were more autophagosomes, as revealed by electron microscopy, in follicles from females fed the probiotic Lactobacillus rhamnosus IMC 501. This was confirmed by increased expression of genes involved in the autophagic process, namely ambra1, becn1, lc3 and uvrag. In addition, preovulatory follicles from females fed the probiotic contained more microtubule-associated protein 1 light chain 3 isoform II (LC3-II) and less p62 protein. The increased autophagy in preovulatory follicles from females fed the probiotic was concomitant with a decrease in the apoptotic process in the ovary, as evidenced by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling analysis and confirmed by lower expression of genes involved in apoptosis (i.e., p53, bax, apaf and cas3) and higher expression as igfII and igf1r. The results of the present study provide preliminary evidence of the involvement of autophagy during follicle development in the zebrafish ovary. In addition, we have demonstrated for the first time that a functional food, such as L. rhamnosus IMC 501, can modulate the balance between apoptosis and autophagy that regulates ovary physiology in zebrafish by inhibiting follicular apoptosis and improving follicular survival.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Arsikin K, Kravic-Stevovic T, Jovanovic M, Ristic B, Tovilovic G, Zogovic N, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L. Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1826-36. [DOI: 10.1016/j.bbadis.2012.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 01/01/2023]
|
7
|
Gu L, Musiienko V, Bai Z, Qin A, Schneller SW, Li Q. Novel virostatic agents against bluetongue virus. PLoS One 2012; 7:e43341. [PMID: 22905259 PMCID: PMC3419696 DOI: 10.1371/journal.pone.0043341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
Bluetongue virus (BTV), a member in the family Reoviridae, is a re-emerging animal disease infecting cattle and sheep. With its recent outbreaks in Europe, there is a pressing need for efficacious antivirals. We presented here the identification and characterization of a novel virostatic molecule against BTV, an aminothiophenecarboxylic acid derivative named compound 003 (C003). The virostatic efficacy of C003 could be improved via chemical modification, leading to a de novo synthesized compound 052 (C052). The 50% effective concentrations (EC(50)) of C003 and C052 were determined at 1.76 ± 0.73 µM and 0.27 ± 0.12 µM, respectively. The 50% cytotoxicity concentration (CC(50)) of C003 was over 100 µM and the CC(50) of C052 was at 82.69 µM. Accordingly, the 50% selective index (SI(50)) of C003 and C052 against BTV was over 57 and 306, respectively. The inhibitory effect of C003/C052 on BTV-induced apoptosis was also confirmed via the inhibition of caspase-3/-7 activation post BTV infection. C003/C052 could inhibit BTV induced CPE even when added as late as 24 h.p.i., indicating that they might act at late stage of viral life-cycle. C003/C052 could reduce over two-logs of both the progeny virus production and the number of genomic viral RNA copies. Interestingly, both the activation of host autophagy and viral protein expression were inhibited post BTV infection when cells were treated with C003 and C052, suggesting that C003/C052 might act as virostatic agents via inhibiting host autophagy activation. Although further investigations might be needed to pin down the exact mechanism of C003/C052, our finding suggested that these compounds might be potent lead compounds with potential novel mechanism of action against BTV.
Collapse
Affiliation(s)
- Linlin Gu
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Alabama, United States of America
| | - Volodymyr Musiienko
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, United States of America
| | - Zhijun Bai
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Alabama, United States of America
- Guangzhou Center for Disease Control and Prevention, Guangdong, China
| | - Aijian Qin
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Stewart W. Schneller
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, United States of America
| | - Qianjun Li
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tucci P. Caloric restriction: is mammalian life extension linked to p53? Aging (Albany NY) 2012; 4:525-34. [PMID: 22983298 PMCID: PMC3461340 DOI: 10.18632/aging.100481] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022]
Abstract
Caloric restriction, that is limiting food intake, is recognized in mammals as the best characterized and most reproducible strategy for extending lifespan, retarding physiological aging and delaying the onset of age-associated diseases. The aim of this mini review is to argue that p53 is the connection in the abilities of both the Sirt-1 pathway and the TOR pathway to impact on longevity of cells and organisms. This novel, lifespan regulating function of p53 may be evolutionarily more ancient than its relatively recent role in apoptosis and tumour suppression, and is likely to provide many new insights into lifespan modulation.
Collapse
Affiliation(s)
- Paola Tucci
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.
| |
Collapse
|
9
|
Misirkic M, Janjetovic K, Vucicevic L, Tovilovic G, Ristic B, Vilimanovich U, Harhaji-Trajkovic L, Sumarac-Dumanovic M, Micic D, Bumbasirevic V, Trajkovic V. Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin. Pharmacol Res 2012; 65:111-9. [DOI: 10.1016/j.phrs.2011.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022]
|
10
|
Trmcic MV, Matovic RV, Tovilovic GI, Ristic BZ, Trajkovic VS, Ferjancic ZB, Saicic RN. A novel C,D-spirolactone analogue of paclitaxel: autophagy instead of apoptosis as a previously unknown mechanism of cytotoxic action for taxoids. Org Biomol Chem 2012; 10:4933-42. [DOI: 10.1039/c2ob25514f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Ogawa M, Mimuro H, Yoshikawa Y, Ashida H, Sasakawa C. Manipulation of autophagy by bacteria for their own benefit. Microbiol Immunol 2011; 55:459-71. [PMID: 21707736 DOI: 10.1111/j.1348-0421.2011.00343.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is the host innate immune system's first line of defense against microbial intruders. When the innate defense system recognizes invading bacterial pathogens and their infection processes, autophagic proteins act as cytosolic sensors that allow the autophagic pathway to be rapidly activated. However, many intracellular bacterial pathogens deploy highly evolved mechanisms to evade autophagic recognition, manipulate the autophagic pathway, and remodel the autophagosomal compartment for their own benefit. Here current topics regarding the recognition of invasive bacteria by the cytosolic innate immune system are highlighted, including autophagy and the mechanisms that enable bacteria to evade autophagy. Also highlighted are some selective examples of bacterial activities that manipulate the autophagic pathways for their own benefit.
Collapse
Affiliation(s)
- Michinaga Ogawa
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | |
Collapse
|
12
|
Pan Y, Gao Y, Chen L, Gao G, Dong H, Yang Y, Dong B, Chen X. Targeting autophagy augments in vitro and in vivo antimyeloma activity of DNA-damaging chemotherapy. Clin Cancer Res 2011; 17:3248-58. [PMID: 21288924 DOI: 10.1158/1078-0432.ccr-10-0890] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Although autophagy occurs in most tumor cells following DNA damage, it is still a mystery how this DNA-damaging event turns on the autophagy machinery in multiple myeloma (MM) and how the functional status of autophagy impacts on its susceptibility to death in response to DNA-damaging chemotherapy. EXPERIMENTAL DESIGN We investigate the effects of DNA damage on autophagy in MM cells and elucidate its underlying molecular mechanism. Then, we examined the impacts of pharmacologic or genetic inhibition of autophagy on DNA damage-induced apoptosis. Furthermore, the antimyeloma activity of autophagy inhibitor in combination with DNA-damaging agents was evaluated in MM xenograft models. RESULTS We showed that DNA-damaging drugs, doxorubicin and melphalan, induce caspase-dependent apoptosis and concurrently trigger Beclin 1-regulated autophagy in human MM cell lines H929 and RPMI 8226. Mechanistically, association of autophagy execution proteins Beclin 1 with class III phosphoinositide 3-kinase, which is inhibited by Bcl-2 recruitment, contributes directly to the autophagic process. Importantly, targeting suppression of autophagy by minimally toxic concentrations of pharmacologic inhibitors (hydroxychloroquine and 3-methyladenine) or short hairpin RNAs against autophagy genes, Beclin 1 and Atg5, dramatically augments proapoptotic activity of DNA-damaging chemotherapy both in vitro using MM cell lines or purified patient MM cells and in vivo in a human plasmacytoma xenograft mouse model. CONCLUSION These data can help unravel the underlying molecular mechanism of autophagy in DNA-damaged MM cells and also provide a rationale for clinical evaluation of autophagy inhibitors in combination with DNA-damaging chemotherapy in MM.
Collapse
Affiliation(s)
- Yaozhu Pan
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Walsh CM, Bell BD. T cell intrinsic roles of autophagy in promoting adaptive immunity. Curr Opin Immunol 2010; 22:321-5. [PMID: 20392618 DOI: 10.1016/j.coi.2010.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/17/2010] [Indexed: 02/09/2023]
Abstract
Autophagy, an ancient cellular response where autophagic vacuoles are formed within the cytosol, is induced in response to a variety of cellular insults, including growth factor or nutrient withdrawal, organelle damage, and misfolded proteins. Autophagy is rapidly induced in T lymphocytes following antigenic stimulation and blockade of autophagic signaling greatly reduces T cell clonal expansion, suggesting that autophagy is primarily involved in promoting T cell survival. In contrast, a recently identified negative feedback loop involving FADD and caspase-8 limits the level of autophagy in T cells. Failure to activate caspase-8 during T cell mitogenesis leads to hyperactive autophagy and cellular death through a programmed necrotic mechanism. These findings suggest that crosstalk between these cellular processes is essential for T cell activation and homeostasis.
Collapse
Affiliation(s)
- Craig M Walsh
- The Institute for Immunology, University of California, Irvine, CA 92697-3900, USA.
| | | |
Collapse
|
14
|
Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A. Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 2010; 6:e1000702. [PMID: 20221256 PMCID: PMC2832675 DOI: 10.1371/journal.pcbi.1000702] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/02/2010] [Indexed: 11/19/2022] Open
Abstract
Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFkappaB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments.
Collapse
|