1
|
Campagnaro GD, Lorenzon LB, Rodrigues MA, Defina TPA, Pinzan CF, Ferreira TR, Cruz AK. Overexpression of Leishmania major protein arginine methyltransferase 6 reduces parasite infectivity in vivo. Acta Trop 2023; 244:106959. [PMID: 37257676 DOI: 10.1016/j.actatropica.2023.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Arginine methylation is catalysed by Protein Arginine Methyltransferases (PRMTs) and can affect how a target protein functions and how it interacts with other macromolecules, which in turn impacts on cell metabolism and gene expression control. Leishmania parasites express five different PRMTs, and although the presence of each individual PRMT is not essential per se, the imbalanced activity of these PRMTs can impact the virulence of Leishmania parasites in vitro and in vivo. Here we created a Leishmania major cell line overexpressing PRMT6 and show that similar to what was observed for the T. brucei homologous enzyme, L. major PRMT6 probably has a narrow substrate range. However, its overexpression notably impairs the infection in mice, with a mild reduction in the number of viable parasites in the lymph nodes. Our results indicate that arginine methylation by LmjPRMT6 plays a significant role in the adaptation of the parasite to the environment found in the mammalian host.
Collapse
Affiliation(s)
- Gustavo Daniel Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Bigolin Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mateus Augusto Rodrigues
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tânia Paula Aquino Defina
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tiago Rodrigues Ferreira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Padmanabhan PK, Ferreira GR, Zghidi-Abouzid O, Oliveira C, Dumas C, Mariz FC, Papadopoulou B. Genetic depletion of the RNA helicase DDX3 leads to impaired elongation of translating ribosomes triggering co-translational quality control of newly synthesized polypeptides. Nucleic Acids Res 2021; 49:9459-9478. [PMID: 34358325 PMCID: PMC8450092 DOI: 10.1093/nar/gkab667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.
Collapse
Affiliation(s)
- Prasad Kottayil Padmanabhan
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Gabriel Reis Ferreira
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Ouafa Zghidi-Abouzid
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Camila Oliveira
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Carole Dumas
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Filipe Colaço Mariz
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center-University Laval, Quebec, QC G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC G1V 4G2, Canada
| |
Collapse
|
3
|
Mokdadi M, Abdelkrim YZ, Banroques J, Huvelle E, Oualha R, Yeter-Alat H, Guizani I, Barhoumi M, Tanner NK. The In Silico Identification of Potential Members of the Ded1/DDX3 Subfamily of DEAD-Box RNA Helicases from the Protozoan Parasite Leishmania infantum and Their Analyses in Yeast. Genes (Basel) 2021; 12:212. [PMID: 33535521 PMCID: PMC7912733 DOI: 10.3390/genes12020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
DEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation. In this paper, we identified and aligned the protein sequences of 28 different DEAD-box proteins from the kinetoplast-protozoan parasite Leishmania infantum, which is the cause of the visceral form of leishmaniasis that is often lethal if left untreated, and compared them with the consensus sequence derived from DEAD-box proteins in general, and from the Ded1/DDX3 subfamily in particular, from a wide variety of other organisms. We identified three potential homologs of the Ded1/DDX3 subfamily and the equivalent proteins from the related protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness. We subsequently tested these proteins for their ability to complement a yeast strain deleted for the essential DED1 gene. We found that the DEAD-box proteins from Trypanosomatids are highly divergent from other eukaryotes, and consequently they are suitable targets for protein-specific drugs.
Collapse
Affiliation(s)
- Molka Mokdadi
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
- Institut National des Sciences Appliquées et Technologies, Université de Carthage, CEDEX, Tunis 1080, Tunisia
| | - Yosser Zina Abdelkrim
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Josette Banroques
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Emmeline Huvelle
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Rafeh Oualha
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Hilal Yeter-Alat
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur, BP74 Tunis-Belvédère 1002, Tunisia; (R.O.); (I.G.)
| | - N. Kyle Tanner
- Expression Génétique Microbienne, UMR8261 CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France; (M.M.); (Y.Z.A.); (J.B.); (E.H.); (H.Y.-A.)
- PSL Research University, 75005 Paris, France
| |
Collapse
|
4
|
Vasquez-Rifo A, Ricci EP, Ambros V. Pseudomonas aeruginosa cleaves the decoding center of Caenorhabditis elegans ribosomes. PLoS Biol 2020; 18:e3000969. [PMID: 33259473 PMCID: PMC7707567 DOI: 10.1371/journal.pbio.3000969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022] Open
Abstract
Pathogens such as Pseudomonas aeruginosa advantageously modify animal host physiology, for example, by inhibiting host protein synthesis. Translational inhibition of insects and mammalian hosts by P. aeruginosa utilizes the well-known exotoxin A effector. However, for the infection of Caenorhabditis elegans by P. aeruginosa, the precise pathways and mechanism(s) of translational inhibition are not well understood. We found that upon exposure to P. aeruginosa PA14, C. elegans undergoes a rapid loss of intact ribosomes accompanied by the accumulation of ribosomes cleaved at helix 69 (H69) of the 26S ribosomal RNA (rRNA), a key part of ribosome decoding center. H69 cleavage is elicited by certain virulent P. aeruginosa isolates in a quorum sensing (QS)–dependent manner and independently of exotoxin A–mediated translational repression. H69 cleavage is antagonized by the 3 major host defense pathways defined by the pmk-1, fshr-1, and zip-2 genes. The level of H69 cleavage increases with the bacterial exposure time, and it is predominantly localized in the worm’s intestinal tissue. Genetic and genomic analysis suggests that H69 cleavage leads to the activation of the worm’s zip-2-mediated defense response pathway, consistent with translational inhibition. Taken together, our observations suggest that P. aeruginosa deploys a virulence mechanism to induce ribosome degradation and H69 cleavage of host ribosomes. In this manner, P. aeruginosa would impair host translation and block antibacterial responses. During infection of the nematode Caenorhabditis elegans by the bacterium Pseudomonas aeruginosa, a bacterial virulence mechanism leads to the cleavage of host ribosomal RNAs at the decoding center, thereby shutting down translation.
Collapse
Affiliation(s)
- Alejandro Vasquez-Rifo
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (AV-R); (VA)
| | - Emiliano P. Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210 Lyon, France
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (AV-R); (VA)
| |
Collapse
|
5
|
Pandey SC, Pande V, Samant M. DDX3 DEAD-box RNA helicase (Hel67) gene disruption impairs infectivity of Leishmania donovani and induces protective immunity against visceral leishmaniasis. Sci Rep 2020; 10:18218. [PMID: 33106577 PMCID: PMC7589518 DOI: 10.1038/s41598-020-75420-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne disease caused by the digenetic protozoan parasite Leishmania donovani complex. So far there is no effective vaccine available against VL. The DDX3 DEAD-box RNA Helicase (Hel67) is 67 kDa protein which is quite essential for RNA metabolism, amastigote differentiation, and infectivity in L. major and L. infantum. To investigate the role of Hel67 in the L. donovani, we created L. donovani deficient in the Hel67. Helicase67 null mutants (LdHel67-/-) were not able to differentiate as axenic amastigotes and were unable to infect the hamster. So, we have analyzed the prophylactic efficacy of the LdHel67-/- null mutant in hamsters. The LdHel67-/- null mutant based candidate vaccine exhibited immunogenic response and a higher degree of protection against L. donovani in comparison to the infected control group. Further, the candidate vaccine displayed antigen-specific delayed-type hypersensitivity (DTH) as well as strong antibody response and NO production which strongly correlates to long term protection of candidate vaccine against the infection. This study confirms the potential of LdHel67-/- null mutant as a safe and protective live attenuated vaccine candidate against visceral leishmaniasis.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India.,Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India.
| |
Collapse
|
6
|
Pandey SC, Kumar A, Samant M. Genetically modified live attenuated vaccine: A potential strategy to combat visceral leishmaniasis. Parasite Immunol 2020; 42:e12732. [PMID: 32418227 DOI: 10.1111/pim.12732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Visceral leishmaniasis (VL) is caused by a protozoan parasite Leishmania donovani mainly influencing the population of tropical and subtropical regions across the globe. The arsenal of drugs available is limited, and prolonged use of such drugs makes parasite to become resistant. Therefore, it is very imperative to develop a safe, cost-effective and inexpensive vaccine against VL. Although in recent years, many strategies have been pursued by researchers, so far only some of the vaccine candidates reached for clinical trial and more than half of them are still in pipeline. There is now a broad consent among Leishmania researchers that the perseverance of parasite is very essential for eliciting a protective immune response and may perhaps be attained by live attenuated parasite vaccination. For making a live attenuated parasite, it is very essential to ensure that the parasite is deficient of virulence and should further study genetically modified parasites to perceive the mechanism of pathogenesis. So it is believed that in the near future, a complete understanding of the Leishmania genome will explore clear strategies to discover a novel vaccine. This review describes the need for a genetically modified live attenuated vaccine against VL, and obstacles associated with its development.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Mukesh Samant
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India
| |
Collapse
|
7
|
Abstract
Leishmaniases still represent a global scourge and new therapeutic tools are necessary to replace the current expensive, difficult to administer treatments that induce numerous adverse effects and for which resistance is increasingly worrying. In this context, the particularly original organization of the Leishmania parasite in comparison to higher eukaryotes is a great advantage. It allows for the development of new, very specific, and thus non-cytotoxic treatments. Among these originalities, Leishmania cell death can be cited. Despite a classic pattern of apoptosis, key mammalian apoptotic proteins are not present in Leishmania, such as caspases, cell death receptors, and anti-apoptotic molecules. Recent studies have helped to develop a better understanding of parasite cell death, identifying new proteins or even new apoptotic pathways. This review provides an overview of the current knowledge on Leishmania cell death, describing its physiological roles and its phenotype, and discusses the involvement of various proteins: endonuclease G, metacaspase, aquaporin Li-BH3AQP, calpains, cysteine proteinase C, LmjHYD36 and Lmj.22.0600. From these data, potential apoptotic pathways are suggested. This review also offers tools to identify new Leishmania cell death effectors. Lastly, different approaches to use this knowledge for the development of new therapeutic tools are suggested: either inhibition of Leishmania cell death or activation of cell death for instance by treating cells with proteins or peptides involved in parasite death fused to a cell permeant peptide or encapsulated into a lipidic vector to target intra-macrophagic Leishmania cells.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis Team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 09, France
| |
Collapse
|
8
|
Wippel HH, Malgarin JS, Inoue AH, Leprevost FDV, Carvalho PC, Goldenberg S, Alves LR. Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiol 2019; 19:128. [PMID: 31185899 PMCID: PMC6560856 DOI: 10.1186/s12866-019-1505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Background RNA-binding proteins (RBPs) are well known as key factors in gene expression regulation in eukaryotes. These proteins associate with mRNAs and other proteins to form mRNP complexes that ultimately determine the fate of target transcripts in the cell. This association is usually mediated by an RNA-recognition motif (RRM). In the case of trypanosomatids, these proteins play a paramount role, as gene expression regulation is mostly posttranscriptional. Despite their relevance in the life cycle of Trypanosoma cruzi, the causative agent of Chagas’ disease, to date, few RBPs have been characterized in this parasite. Results We investigated the role of DRBD2 in T. cruzi, an RBP with two RRM domains that is associated with cytoplasmic translational complexes. We show that DRBD2 is an ortholog of the Gbp2 in yeast, an SR-rich protein involved in mRNA quality control and export. We used an immunoprecipitation assay followed by shotgun proteomics and RNA-seq to assess the interaction partners of the DRBD2-mRNP complex in epimastigotes. The analysis identified mostly proteins involved in RNA metabolism and regulation, such as ALBA1, ALBA3, ALBA4, UBP1, UBP2, DRBD3, and PABP2. The RNA-seq results showed that most of the transcripts regulated by the DRBD2 complex mapped to hypothetical proteins related to multiple processes, such as to biosynthetic process, DNA metabolic process, protein modification, and response to stress. Conclusions The identification of regulatory proteins in the DRBD2-mRNP complex corroborates the important role of DRBD2 in gene expression regulation in T. cruzi. We consider these results an important contribution to future studies regarding gene expression regulation in T. cruzi, especially in the field of RNA-binding proteins. Electronic supplementary material The online version of this article (10.1186/s12866-019-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | | | - Alexandre Haruo Inoue
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.,Molecular Biology Institute-Paraná, Curitiba, Brazil
| | - Felipe da Veiga Leprevost
- Medical Science Unit I, Department of Pathology, University of Michigan, EUA, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paulo Costa Carvalho
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Lysangela Ronalte Alves
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.
| |
Collapse
|
9
|
Pandey SC, Jha A, Kumar A, Samant M. Evaluation of antileishmanial potential of computationally screened compounds targeting DEAD-box RNA helicase of Leishmania donovani. Int J Biol Macromol 2019; 121:480-487. [DOI: 10.1016/j.ijbiomac.2018.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/03/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
|
10
|
Zinskie JA, Ghosh A, Trainor BM, Shedlovskiy D, Pestov DG, Shcherbik N. Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae. J Biol Chem 2018; 293:14237-14248. [PMID: 30021840 DOI: 10.1074/jbc.ra118.004174] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Stress-induced strand breaks in rRNA have been observed in many organisms, but the mechanisms by which they originate are not well-understood. Here we show that a chemical rather than an enzymatic mechanism initiates rRNA cleavages during oxidative stress in yeast (Saccharomyces cerevisiae). We used cells lacking the mitochondrial glutaredoxin Grx5 to demonstrate that oxidant-induced cleavage formation in 25S rRNA correlates with intracellular iron levels. Sequestering free iron by chemical or genetic means decreased the extent of rRNA degradation and relieved the hypersensitivity of grx5Δ cells to the oxidants. Importantly, subjecting purified ribosomes to an in vitro iron/ascorbate reaction precisely recapitulated the 25S rRNA cleavage pattern observed in cells, indicating that redox activity of the ribosome-bound iron is responsible for the strand breaks in the rRNA. In summary, our findings provide evidence that oxidative stress-associated rRNA cleavages can occur through rRNA strand scission by redox-active, ribosome-bound iron that potentially promotes Fenton reaction-induced hydroxyl radical production, implicating intracellular iron as a key determinant of the effects of oxidative stress on ribosomes. We propose that iron binding to specific ribosome elements primes rRNA for cleavages that may play a role in redox-sensitive tuning of the ribosome function in stressed cells.
Collapse
Affiliation(s)
| | - Arnab Ghosh
- From the Department of Cell Biology and Neuroscience and
| | - Brandon M Trainor
- From the Department of Cell Biology and Neuroscience and.,Graduate School for Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| | | | | | | |
Collapse
|
11
|
Guedes Aguiar B, Padmanabhan PK, Dumas C, Papadopoulou B. Valosin-containing protein VCP/p97 is essential for the intracellular development of Leishmania and its survival under heat stress. Cell Microbiol 2018; 20:e12867. [PMID: 29895095 DOI: 10.1111/cmi.12867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Valosin-containing protein (VCP)/p97/Cdc48 is one of the best-characterised type II cytosolic AAA+ ATPases most known for their role in ubiquitin-dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homologue (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, Leishmania infantum promastigotes can grow with less VCP. In contrast, growth of axenic and intracellular amastigotes is dramatically affected upon decreased LiVCP levels in heterozygous and temperature sensitive (ts) LiVCP mutants or the expression of dominant negative mutants known to specifically target the second conserved VCP ATPase domain, a major contributor of the VCP overall ATPase activity. Interestingly, these VCP mutants are also unable to survive heat stress, and a ts VCP mutant is defective in amastigote growth. Consistent with LiVCP's essential function in amastigotes, LiVCP messenger ribonucleic acid undergoes 3'Untranslated Region (UTR)-mediated developmental regulation, resulting in higher VCP expression in amastigotes. Furthermore, we show that parasite mutant lines expressing lower VCP levels or dominant negative VCP forms exhibit high accumulation of polyubiquitinated proteins and increased sensitivity to proteotoxic stress, supporting the ubiquitin-selective chaperone function of LiVCP. Together, these results emphasise the crucial role LiVCP plays under heat stress and during the parasite intracellular development.
Collapse
Affiliation(s)
- Bruno Guedes Aguiar
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, Canada.,Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, Canada.,Department of Community Medicine, Federal University of Piauí, Teresina, Brazil
| | - Prasad K Padmanabhan
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, Canada.,Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, Canada
| | - Carole Dumas
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, Canada.,Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, Canada.,Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, Canada
| |
Collapse
|
12
|
de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol 2018; 15:739-755. [PMID: 29569995 DOI: 10.1080/15476286.2018.1445958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.
Collapse
Affiliation(s)
| | | | - Kleison C Merlo
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | - Tatiany P Romão
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Ludmila A Assis
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Camila C Xavier
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | | | - Barbara Papadopoulou
- c CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology , Laval University , Quebec , QC , Canada
| |
Collapse
|
13
|
Abstract
AbstractThe protozoan parasiteLeishmaniais endemic in large parts of the world which causes leishmaniasis. Its visceral form is fatal if not treated and is caused mostly byLeishmania donovani,Leishmania infantumandLeishmania chagasi. Given the difficulties linked to vector (sandfly) control and the lack of an effective vaccine, the control of leishmaniasis relies mostly on chemotherapy. Unfortunately, the prevalence of parasites becoming resistant to the first-line drug pentavalent antimony (SbV) is increasing worldwide. Few alternative drugs are available that includes amphotericin B, pentamidine and miltefosine (oral). Already, decreases in efficacy, resistance and toxicity have been noted against these drugs. Dry antileishmanial pipeline further indicates the slow pace of drug discovery in this field where resistance as a major barrier. Full understanding of the genetic and molecular basis of the parasite is lagging. Since leishmaniasis is a neglected disease and occurs predominantly in the developing world largely, therefore, it is unaddressed. The pharma industry argues that development of the new drug is too costly and risky to invest in low return neglected diseases is very high. Research is also needed to identify new and effective drug targets. The lack of drug research and development for neglected diseases will require some new strategies. We have discussed the various cause of slow pace of antileishmanial drug discovery in this review to pay attention of researchers and also take the public and private initiative to make the process fast for new antileishmanial drug development.
Collapse
|
14
|
Zhou X, Chen X, Wang Y, Feng X, Guang S. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol 2017. [PMID: 28640690 DOI: 10.1080/15476286.2017.1341034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ribosome biogenesis drives cell growth and proliferation, but mechanisms that modulate this process remain poorly understood. For a long time, small rRNA sequences have been widely treated as non-specific degradation products and neglected as garbage sequences. Recently, we identified a new class of antisense ribosomal siRNAs (risiRNAs) that downregulate pre-rRNA through the nuclear RNAi pathway in C. elegans. risiRNAs exhibit sequence characteristics similar to 22G RNA while complement to 18S and 26S rRNA. risiRNAs elicit the translocation of the nuclear Argonaute protein NRDE-3 from the cytoplasm to nucleus and nucleolus, in which the risiRNA/NRDE complex binds to pre-rRNA and silences rRNA expression. Interestingly, when C. elegans is exposed to environmental stimuli, such as cold shock and ultraviolet illumination, risiRNAs accumulate and further turn on the nuclear RNAi-mediated gene silencing pathway. risiRNA may act in a quality control mechanism of rRNA homeostasis. When the exoribonuclease SUSI-1(ceDis3L2) is mutated, risiRNAs are dramatically increased. In this Point of View article, we will summarize our understanding of the small antisense ribosomal siRNAs in a variety of organisms, especially C. elegans, and their possible roles in the quality control mechanism of rRNA homeostasis.
Collapse
Affiliation(s)
- Xufei Zhou
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Xiangyang Chen
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Yun Wang
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Xuezhu Feng
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Shouhong Guang
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| |
Collapse
|
15
|
Golstein P. Conserved nucleolar stress at the onset of cell death. FEBS J 2017; 284:3791-3800. [DOI: 10.1111/febs.14095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Pierre Golstein
- Centre d'Immunologie de Marseille‐Luminy Aix Marseille Université Inserm, CNRS France
| |
Collapse
|
16
|
Plemel JR, Caprariello AV, Keough MB, Henry TJ, Tsutsui S, Chu TH, Schenk GJ, Klaver R, Yong VW, Stys PK. Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. J Cell Biol 2017; 216:1163-1181. [PMID: 28264914 PMCID: PMC5379938 DOI: 10.1083/jcb.201602028] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 10/24/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
Cellular injury and death are ubiquitous features of disease, yet tools to detect them are limited and insensitive to subtle pathological changes. Acridine orange (AO), a nucleic acid dye with unique spectral properties, enables real-time measurement of RNA and DNA as proxies for cell viability during exposure to various noxious stimuli. This tool illuminates spectral signatures unique to various modes of cell death, such as cells undergoing apoptosis versus necrosis/necroptosis. This new approach also shows that cellular RNA decreases during necrotic, necroptotic, and apoptotic cell death caused by demyelinating, ischemic, and traumatic injuries, implying its involvement in a wide spectrum of tissue pathologies. Furthermore, cells with pathologically low levels of cytoplasmic RNA are detected earlier and in higher numbers than with standard markers including TdT-mediated dUTP biotin nick-end labeling and cleaved caspase 3 immunofluorescence. Our technique highlights AO-labeled cytoplasmic RNA as an important early marker of cellular injury and a sensitive indicator of various modes of cell death in a range of experimental models.
Collapse
Affiliation(s)
- Jason R Plemel
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael B Keough
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tyler J Henry
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tak H Chu
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Geert J Schenk
- Department of Anatomy and Neurosciences, VU University Medical Center, 1081 HV Amsterdam, Netherlands
| | - Roel Klaver
- Department of Anatomy and Neurosciences, VU University Medical Center, 1081 HV Amsterdam, Netherlands
| | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
17
|
Developmental differentiation in Leishmania lifecycle progression: post-transcriptional control conducts the orchestra. Curr Opin Microbiol 2016; 34:82-89. [PMID: 27565628 DOI: 10.1016/j.mib.2016.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The successful progression of Leishmania spp. through their lifecycle entails a series of differentiation processes; the proliferative procyclic promastigote forms become quiescent, human-infective metacyclic promastigotes during metacyclogenesis in the sandfly vector, which then differentiate into amastigotes during amastigogenesis in the mammalian host. The progression to these infective forms requires two components: environmental cues and a coordinated cellular response. Recent studies have shown that the Leishmania cellular transformation into mammalian-infective stages is triggered by broad changes in the absolute and relative RNA and protein levels. In this review, we will discuss the implications of Leishmania transcriptomic and proteomic fluctuations, which adapt the parasitic cell for survival.
Collapse
|
18
|
DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in Leishmania. Cell Death Dis 2016; 7:e2406. [PMID: 27735940 PMCID: PMC5133982 DOI: 10.1038/cddis.2016.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death. Importantly, this phenotype is exacerbated upon oxidative stress in parasites forced to use the mitochondrial oxidative respiratory machinery. Furthermore, we show that in the absence of DDX3, levels of major components of the unfolded protein response as well as of polyubiquitinated proteins increase in the parasite, particularly in the mitochondrion, as an indicator of mitochondrial protein damage. Consistent with these findings, immunoprecipitation and mass-spectrometry studies revealed potential interactions of DDX3 with key components of the cellular stress response, particularly the antioxidant response, the unfolded protein response, and the AAA-ATPase p97/VCP/Cdc48, which is essential in mitochondrial protein quality control by driving proteosomal degradation of polyubiquitinated proteins. Complementation studies using DDX3 deletion mutants lacking conserved motifs within the helicase core support that binding of DDX3 to ATP is essential for DDX3's function in mitochondrial proteostasis. As a result of the inability of DDX3-depleted Leishmania to recover from ROS damage and to survive various stresses in the host macrophage, parasite intracellular development was impaired. Collectively, these observations support a central role for the Leishmania DDX3 homolog in preventing ROS-mediated damage and in maintaining mitochondrial protein quality control.
Collapse
|
19
|
Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major. Parasitology 2016; 143:1917-1929. [PMID: 27707420 DOI: 10.1017/s0031182016001712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.
Collapse
|
20
|
de Melo Neto OP, da Costa Lima TDC, Xavier CC, Nascimento LM, Romão TP, Assis LA, Pereira MMC, Reis CRS, Papadopoulou B. The unique Leishmania EIF4E4 N-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation. RNA Biol 2015; 12:1209-21. [PMID: 26338184 DOI: 10.1080/15476286.2015.1086865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation. Here, we provide novel insights on the Leishmania infantum EIF4E4 function and regulation. We show that EIF4E4 is constitutively expressed throughout the parasite development but is preferentially phosphorylated in exponentially grown promastigote and amastigote life stages, hence correlating with high levels of translation. Phosphorylation targets multiple serine-proline or threonine-proline residues within the N-terminal extension of EIF4E4 but does not require binding to the EIF4E4's partner, EIF4G3, or to the cap structure. We also report that EIF4E4 interacts with PABP1 through 3 conserved boxes at the EIF4E4 N-terminus and that this interaction is a prerequisite for efficient EIF4E4 phosphorylation. EIF4E4 is essential for Leishmania growth and an EIF4E4 null mutant was only obtained in the presence of an ectopically provided wild type gene. Complementation for the loss of EIF4E4 with several EIF4E4 mutant proteins affecting either phosphorylation or binding to mRNA or to EIF4E4 protein partners revealed that, in contrast to other eukaryotes, only the EIF4E4-PABP1 interaction but neither the binding to EIF4G3 nor phosphorylation is essential for translation. These studies also demonstrated that the lack of both EIF4E4 phosphorylation and EIF4G3 binding leads to a non-functional protein. Altogether, these findings further highlight the unique features of the translation initiation process in trypanosomatid protozoa.
Collapse
Affiliation(s)
- Osvaldo P de Melo Neto
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Tamara D C da Costa Lima
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Camila C Xavier
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Larissa M Nascimento
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil.,b CHU de Quebec Research Center and Department of Microbiology ; Infectious Disease and Immunology; Laval University ; Quebec, QC , Canada
| | - Tatiany P Romão
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Ludmila A Assis
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Mariana M C Pereira
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Christian R S Reis
- a Departamento de Microbiologia ; Centro de Pesquisas Aggeu Magalhães-FIOCRUZ ; Recife , PE , Brazil
| | - Barbara Papadopoulou
- b CHU de Quebec Research Center and Department of Microbiology ; Infectious Disease and Immunology; Laval University ; Quebec, QC , Canada
| |
Collapse
|
21
|
Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS One 2015; 10:e0137243. [PMID: 26334886 PMCID: PMC4559404 DOI: 10.1371/journal.pone.0137243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in the flagellum composition between these two parasite lifestages. Shuttling of Alba-domain proteins between the cytoplasm and the nucleolus or the flagellum throughout the parasite life cycle suggests that these RNA-binding proteins participate in several distinct regulatory pathways controlling developmental gene expression in Leishmania.
Collapse
|
22
|
Afonso-Lehmann RN, Thomas MC, Santana-Morales MA, Déniz D, López MC, Valladares B, Martínez-Carretero E. A DEVH-box RNA Helicase from Leishmania braziliensis is Associated to mRNA Cytoplasmic Granules. Protist 2015; 166:457-67. [PMID: 26284493 DOI: 10.1016/j.protis.2015.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022]
Abstract
RNA helicases are ubiquitous enzymes that participate in almost all aspects of RNA processing, including RNA and RNA-protein complex remodelling. In trypanosomatids, which post-transcriptionally regulate gene expression, the formation of different kinds of ribonucleoprotein granules under stress conditions modulates the parasite's RNA metabolism. This paper describes the isolation of a putative DEVH-box RNA helicase produced by promastigotes of Leishmania braziliensis. Using a Cy3-labelled dT30 oligo, FISH showed the localization of this protein to mRNA granules under starvation stress conditions. The central region of the protein was shown to be responsible for this behaviour.
Collapse
Affiliation(s)
- Raquel N Afonso-Lehmann
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain; Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Maria C Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Maria A Santana-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain
| | - Daniel Déniz
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain
| | - Manuel C López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain
| | - Enrique Martínez-Carretero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s/n, 38207 Tenerife, Spain.
| |
Collapse
|
23
|
Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 2015; 6:e1609. [PMID: 25611384 PMCID: PMC4669768 DOI: 10.1038/cddis.2014.570] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Programmed cell death is a process known to have a crucial role in many aspects of eukaryotes physiology and is clearly essential to their life. As a consequence, the underlying molecular mechanisms have been extensively studied in eukaryotes and we now know that different signalling pathways leading to functionally and morphologically different forms of death exist in these organisms. Similarly, mono-cellular organism can activate signalling pathways leading to death of a number of cells within a colony. The reason why a single-cell organism would activate a program leading to its death is apparently counterintuitive and probably for this reason cell death in prokaryotes has received a lot less attention in the past years. However, as summarized in this review there are many reasons leading to prokaryotic cell death, for the benefit of the colony. Indeed, single-celled organism can greatly benefit from multicellular organization. Within this forms of organization, regulation of death becomes an important issue, contributing to important processes such as: stress response, development, genetic transformation, and biofilm formation.
Collapse
|
24
|
Ferreira TR, Alves-Ferreira EVC, Defina TPA, Walrad P, Papadopoulou B, Cruz AK. Altered expression of an RBP-associated arginine methyltransferase 7 in Leishmania major affects parasite infection. Mol Microbiol 2014; 94:1085-1102. [PMID: 25294169 DOI: 10.1111/mmi.12819] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Protein arginine methylation is a widely conserved post-translational modification performed by arginine methyltransferases (PRMTs). However, its functional role in parasitic protozoa is still under-explored. The Leishmania major genome encodes five PRMT homologs, including PRMT7. Here we show that LmjPRMT7 expression and arginine monomethylation are tightly regulated in a lifecycle stage-dependent manner. LmjPRMT7 levels are higher during the early promastigote logarithmic phase, negligible at stationary and late-stationary phases and rise once more post-differentiation to intracellular amastigotes. Immunofluorescence and co-immunoprecipitation studies demonstrate that LmjPRMT7 is a cytosolic protein associated with several RNA-binding proteins (RBPs) from which Alba20 is monomethylated only in LmjPRMT7-expressing promastigote stages. In addition, Alba20 protein levels are significantly altered in stationary promastigotes of the LmjPRMT7 knockout mutant. Considering RBPs are well-known mammalian PRMT substrates, our data suggest that arginine methylation via LmjPRMT7 may modulate RBP function during Leishmania spp. lifecycle progression. Importantly, genomic deletion of the LmjPRMT7 gene leads to an increase in parasite infectivity both in vitro and in vivo, while lesion progression is significantly reduced in LmjPRMT7-overexpressing parasites. This study is the first to describe a role of Leishmania protein arginine methylation in host-parasite interactions.
Collapse
Affiliation(s)
- Tiago R Ferreira
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Padmanabhan PK, Dumas C, Samant M, Rochette A, Simard MJ, Papadopoulou B. Novel features of a PIWI-like protein homolog in the parasitic protozoan Leishmania. PLoS One 2012; 7:e52612. [PMID: 23285111 PMCID: PMC3528672 DOI: 10.1371/journal.pone.0052612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022] Open
Abstract
In contrast to nearly all eukaryotes, the Old World Leishmania species L. infantum and L. major lack the bona fide RNAi machinery genes. Interestingly, both Leishmania genomes code for an atypical Argonaute-like protein that possesses a PIWI domain but lacks the PAZ domain found in Argonautes from RNAi proficient organisms. Using sub-cellular fractionation and confocal fluorescence microscopy, we show that unlike other eukaryotes, the PIWI-like protein is mainly localized in the single mitochondrion in Leishmania. To predict PIWI function, we generated a knockout mutant for the PIWI gene in both L. infantum (Lin) and L. major species by double-targeted gene replacement. Depletion of PIWI has no effect on the viability of insect promastigote forms but leads to an important growth defect of the mammalian amastigote lifestage in vitro and significantly delays disease pathology in mice, consistent with a higher expression of the PIWI transcript in amastigotes. Moreover, amastigotes lacking PIWI display a higher sensitivity to apoptosis inducing agents than wild type parasites, suggesting that PIWI may be a sensor for apoptotic stimuli. Furthermore, a whole-genome DNA microarray analysis revealed that loss of LinPIWI in Leishmania amastigotes affects mostly the expression of specific subsets of developmentally regulated genes. Several transcripts encoding surface and membrane-bound proteins were found downregulated in the LinPIWI(−/−) mutant whereas all histone transcripts were upregulated in the null mutant, supporting the possibility that PIWI plays a direct or indirect role in the stability of these transcripts. Although our data suggest that PIWI is not involved in the biogenesis or the stability of small noncoding RNAs, additional studies are required to gain further insights into the role of this protein on RNA regulation and amastigote development in Leishmania.
Collapse
Affiliation(s)
- Prasad K. Padmanabhan
- Research Centre in Infectious Diseases, CHUL Research Centre (CHUQ) and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Carole Dumas
- Research Centre in Infectious Diseases, CHUL Research Centre (CHUQ) and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Mukesh Samant
- Research Centre in Infectious Diseases, CHUL Research Centre (CHUQ) and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | - Martin J. Simard
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec, Canada
| | - Barbara Papadopoulou
- Research Centre in Infectious Diseases, CHUL Research Centre (CHUQ) and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
- * E-mail:
| |
Collapse
|
26
|
Gene duplication in trypanosomatids - two DED1 paralogs are functionally redundant and differentially expressed during the life cycle. Mol Biochem Parasitol 2012; 185:127-36. [PMID: 22910033 DOI: 10.1016/j.molbiopara.2012.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 01/20/2023]
Abstract
DED1/VAS belong to the DEAD-box family of RNA helicases that are associated with translation initiation in higher eukaryotes. Here we report on two DED1/VAS homologs that were identified in the genome of Leishmania. The two paralogs include all the domains that are typical of DEAD-box proteins and a phylogenetic analysis suggests that their duplication predates the branching of DED1 and VAS, which took place along with the appearance of early metazoans. The two Leishmania DED1 paralogs complement a yeast strain that fails to express the endogenous DED1, suggesting that they are responsible for a similar function. This is also supported by RNAi-mediated silencing experiments performed in Trypanosoma brucei. The two proteins are functionally redundant, since defects in protein synthesis and cell growth arrest were observed only when both paralogs were eliminated. A partial stage-specific specialization is observed, as LeishDED1-2 is more abundant in promastigotes, whereas expression of LeishDED1-1 increases in amastigotes. Duplication of an essential gene usually offers a safety net against mutations but in this case it also generated two proteins with stage specific expression.
Collapse
|