1
|
Shehwar D, Barki S, Aliotta A, Calderara DB, Veuthey L, Portela CP, Alberio L, Alam MR. Platelets and mitochondria: the calcium connection. Mol Biol Rep 2025; 52:276. [PMID: 40029418 DOI: 10.1007/s11033-025-10389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Calcium signaling has a fundamental importance in maintaining various platelet functions, such as those involved in hemostasis and thrombosis. Agonist-induced mobilization of calcium (Ca2+) from intracellular stores coupled with activation of store-operated calcium entry (SOCE) and non-SOCE or receptor-operated calcium entry (ROCE) regulates platelet degranulation, integrin activation, shape change, generation of thromboxane A2, and aggregation or procoagulant function. Platelet mitochondria also take up a small amount of cytosolic Ca2+ that contributes to bioenergetics, cytosolic Ca2+ buffering, cell signaling and death. Voltage-dependent anion channels (VDAC) in the outer mitochondrial membrane and mitochondrial Ca2+ uniporter complex (MCUC) in the inner mitochondrial membrane (IMM) are pivotal for transporting Ca2+ into the mitochondrial matrix. On the other hand, matrix Ca2+ efflux is dependent on the IMM localized sodium/calcium exchanger (NCLX). Despite the well-established role of cytosolic Ca2+, the participation of mitochondrial Ca2+ homeostasis in platelet physiology remains unknown. This mini-review summarizes the recent developments in the field of mitochondrial Ca2+ transport in platelet physiology.
Collapse
Affiliation(s)
- Durre Shehwar
- Department of Biochemistry Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Barki
- Department of Biochemistry Quaid-i-Azam University, Islamabad, Pakistan
| | - Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Lucas Veuthey
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Cindy Pereira Portela
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, CH‑1010, Switzerland
| | | |
Collapse
|
2
|
Schaffer AM, Fiala GJ, Hils M, Natali E, Babrak L, Herr LA, Romero-Mulero MC, Cabezas-Wallscheid N, Rizzi M, Miho E, Schamel WWA, Minguet S. Kidins220 regulates the development of B cells bearing the λ light chain. eLife 2024; 13:e83943. [PMID: 38271217 PMCID: PMC10810608 DOI: 10.7554/elife.83943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
The ratio between κ and λ light chain (LC)-expressing B cells varies considerably between species. We recently identified Kinase D-interacting substrate of 220 kDa (Kidins220) as an interaction partner of the BCR. In vivo ablation of Kidins220 in B cells resulted in a marked reduction of λLC-expressing B cells. Kidins220 knockout B cells fail to open and recombine the genes of the Igl locus, even in genetic scenarios where the Igk genes cannot be rearranged or where the κLC confers autoreactivity. Igk gene recombination and expression in Kidins220-deficient B cells is normal. Kidins220 regulates the development of λLC B cells by enhancing the survival of developing B cells and thereby extending the time-window in which the Igl locus opens and the genes are rearranged and transcribed. Further, our data suggest that Kidins220 guarantees optimal pre-BCR and BCR signaling to induce Igl locus opening and gene recombination during B cell development and receptor editing.
Collapse
Affiliation(s)
- Anna-Maria Schaffer
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Gina Jasmin Fiala
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Miriam Hils
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of MunichMunichGermany
| | - Eriberto Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Lmar Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Laurenz Alexander Herr
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Mari Carmen Romero-Mulero
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Marta Rizzi
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- aiNET GmbHBaselSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Wolfgang WA Schamel
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Susana Minguet
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| |
Collapse
|
3
|
Josefsson EC. Platelet intrinsic apoptosis. Thromb Res 2023; 231:206-213. [PMID: 36739256 DOI: 10.1016/j.thromres.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
In a healthy individual, the lifespan of most platelets is tightly regulated by intrinsic, or mitochondrial, apoptosis. This is a special form of programmed cell death governed by the BCL-2 family of proteins, where the prosurvival protein BCL-XL maintains platelet viability by restraining the prodeath proteins BAK and BAX. Restriction of platelet lifespan by activation of BAK and BAX mediated intrinsic apoptosis is essential to maintain a functional, haemostatically reactive platelet population. This review focuses on the molecular regulation of intrinsic apoptosis in platelets, reviews conditions linked to enhanced platelet death, discusses ex vivo storage of platelets and describes caveats associated with the assessment of platelet apoptosis.
Collapse
Affiliation(s)
- Emma C Josefsson
- Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden; The University of Gothenburg, Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg, Sweden; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, VIC 3052, Australia; The University of Melbourne, Department of Medical Biology, 1G Royal Parade, VIC 3052, Australia.
| |
Collapse
|
4
|
Zehnle PMA, Wu Y, Pommerening H, Erlacher M. Stayin‘ alive: BCL-2 proteins in the hematopoietic system. Exp Hematol 2022; 110:1-12. [PMID: 35315320 DOI: 10.1016/j.exphem.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
|
5
|
Josefsson EC, Vainchenker W, James C. Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases. Int J Mol Sci 2020; 21:ijms21207591. [PMID: 33066573 PMCID: PMC7589436 DOI: 10.3390/ijms21207591] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/14/2023] Open
Abstract
Blood platelets have important roles in haemostasis, where they quickly stop bleeding in response to vascular damage. They have also recognised functions in thrombosis, immunity, antimicrobal defense, cancer growth and metastasis, tumour angiogenesis, lymphangiogenesis, inflammatory diseases, wound healing, liver regeneration and neurodegeneration. Their brief life span in circulation is strictly controlled by intrinsic apoptosis, where the prosurvival Bcl-2 family protein, Bcl-xL, has a major role. Blood platelets are produced by large polyploid precursor cells, megakaryocytes, residing mainly in the bone marrow. Together with Mcl-1, Bcl-xL regulates megakaryocyte survival. This review describes megakaryocyte maturation and survival, platelet production, platelet life span and diseases of abnormal platelet number with a focus on the role of Bcl-xL during these processes.
Collapse
Affiliation(s)
- Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - William Vainchenker
- University Paris-Saclay, INSERM UMR 1270, Gustave Roussy, 94800 Villejuif, France
| | - Chloe James
- University of Bordeaux, INSERM U1034, Biology of Cardiovascular Diseases, 33600 Pessac, France
- Laboratory of Hematology, Bordeaux University Hospital Center, Haut-Leveque Hospital, 33604 Pessac, France
| |
Collapse
|
6
|
Melchinger H, Jain K, Tyagi T, Hwa J. Role of Platelet Mitochondria: Life in a Nucleus-Free Zone. Front Cardiovasc Med 2019; 6:153. [PMID: 31737646 PMCID: PMC6828734 DOI: 10.3389/fcvm.2019.00153] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
Platelets are abundant, small, anucleate circulating cells, serving many emerging pathophysiological roles beyond hemostasis; including active critical roles in thrombosis, injury response, and immunoregulation. In the absence of genomic DNA transcriptional regulation (no nucleus), platelets require strategic prepackaging of all the needed RNA and organelles from megakaryocytes, to sense stress (e.g., hyperglycemia), to protect themselves from stress (e.g., mitophagy), and to communicate a stress response to other cells (e.g., granule and microparticle release). Distinct from avian thrombocytes that have a nucleus, the absence of a nucleus allows the mammalian platelet to maintain its small size, permits morphological flexibility, and may improve speed and efficiency of protein expression in response to stress. In the absence of a nucleus, platelet lifespan of 7–10 days, is largely determined by the mitochondria. The packaging of 5–8 mitochondria is critical in aerobic respiration and yielding metabolic substrates needed for function and survival. Mitochondria damage or dysfunction, as observed with several disease processes, results in greatly attenuated platelet survival and increased risk for thrombovascular events. Here we provide insights into the emerging roles of platelets despite the lack of a nucleus, and the key role played by mitochondria in platelet function and survival both in health and disease.
Collapse
Affiliation(s)
- Hannah Melchinger
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Kanika Jain
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Tarun Tyagi
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - John Hwa
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Afreen S, Weiss JM, Strahm B, Erlacher M. Concise Review: Cheating Death for a Better Transplant. Stem Cells 2018; 36:1646-1654. [DOI: 10.1002/stem.2901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/05/2018] [Accepted: 07/15/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Sehar Afreen
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Julia Miriam Weiss
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg; University of Freiburg; Freiburg Germany
- German Cancer Consortium (DKTK); Freiburg Germany
- German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
8
|
Intrinsic apoptosis circumvents the functional decline of circulating platelets but does not cause the storage lesion. Blood 2018; 132:197-209. [DOI: 10.1182/blood-2017-11-816355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/07/2018] [Indexed: 01/21/2023] Open
Abstract
Key Points
BAK/BAX depletion in murine platelets reveals that intrinsic apoptosis is not required for the development of the platelet storage lesion. Restriction of platelet life span by intrinsic apoptosis is pivotal to maintain a functional, hemostatically reactive platelet population.
Collapse
|
9
|
Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423:95-104. [DOI: 10.1016/j.canlet.2018.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
|
10
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Lebois M, Dowling MR, Gangatirkar P, Hodgkin PD, Kile BT, Alexander WS, Josefsson EC. Regulation of platelet lifespan in the presence and absence of thrombopoietin signaling. J Thromb Haemost 2016; 14:1882-7. [PMID: 27344013 DOI: 10.1111/jth.13397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Essentials We examined platelet survival in models of absent or enhanced thrombopoietin (TPO) signaling. Platelet lifespan is normal in transgenic mice with chronically enhanced TPO signaling. Mpl deficiency does not negatively affect platelet lifespan in the absence of thrombocytopenia. We conclude that TPO and its receptor Mpl are dispensable for platelet survival in adult mice. SUMMARY Background It is well established that thrombopoietin (TPO), acting via its receptor Mpl, is the major cytokine regulator of platelet biogenesis. The primary mechanism by which TPO signaling stimulates thrombopoiesis is via stimulation of Mpl-expressing hematopoietic progenitors; Mpl on megakaryocytes and platelets acts to control the amount of TPO available. TPO could potentially reduce platelet and/or megakaryocyte apoptosis, and therefore increase the platelet count. However, the effect of TPO receptor signaling on platelet survival is unresolved. Methods and results Here, we investigated platelet survival in mouse models of absent or enhanced TPO signaling. In the absence of thrombocytopenia, Mpl deficiency did not negatively influence platelet lifespan, and nor was platelet survival affected in transgenic mice with chronically increased TPO signaling. Conclusions We conclude that TPO and its receptor Mpl are dispensable for platelet survival in adult mice.
Collapse
Affiliation(s)
- M Lebois
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - M R Dowling
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - P Gangatirkar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - P D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - B T Kile
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - W S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - E C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Abstract
The lifespan of platelets in circulation is brief, close to 10 days in humans and 5 days in mice. Bone marrow residing megakaryocytes produce around 100 billion platelets per day. In a healthy individual, the majority of platelets are not consumed by hemostatic processes, but rather their lifespan is controlled by programmed cell death, a canonical intrinsic apoptosis program. In the last decade, insights from genetically manipulated mouse models and pharmacological developments have helped to define the components of the intrinsic, or mitochondrial, apoptosis pathway that controls platelet lifespan. This review focuses on the molecular regulation of apoptosis in platelet survival, reviews thrombocytopenic conditions linked to enhanced platelet death, examines implications of chemotherapy-induced thrombocytopenia through apoptosis-inducing drugs in cancer therapy as well as discusses ex vivo aging of platelets.
Collapse
Affiliation(s)
- Marion Lebois
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Emma C Josefsson
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
13
|
Kollek M, Müller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J 2016; 283:2779-810. [DOI: 10.1111/febs.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
- Faculty of Biology; University of Freiburg; Germany
| | - Alexandra Müller
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research; 3rd Medical Department for Hematology; Paracelsus Private Medical University Hospital; Salzburg Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| |
Collapse
|
14
|
Debrincat MA, Pleines I, Lebois M, Lane RM, Holmes ML, Corbin J, Vandenberg CJ, Alexander WS, Ng AP, Strasser A, Bouillet P, Sola-Visner M, Kile BT, Josefsson EC. BCL-2 is dispensable for thrombopoiesis and platelet survival. Cell Death Dis 2015; 6:e1721. [PMID: 25880088 PMCID: PMC4650559 DOI: 10.1038/cddis.2015.97] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/28/2023]
Abstract
Navitoclax (ABT-263), an inhibitor of the pro-survival BCL-2 family proteins BCL-2, BCL-XL and BCL-W, has shown clinical efficacy in certain BCL-2-dependent haematological cancers, but causes dose-limiting thrombocytopaenia. The latter effect is caused by Navitoclax directly inducing the apoptotic death of platelets, which are dependent on BCL-XL for survival. Recently, ABT-199, a selective BCL-2 antagonist, was developed. It has shown promising anti-leukaemia activity in patients whilst sparing platelets, suggesting that the megakaryocyte lineage does not require BCL-2. In order to elucidate the role of BCL-2 in megakaryocyte and platelet survival, we generated mice with a lineage-specific deletion of Bcl2, alone or in combination with loss of Mcl1 or Bclx. Platelet production and platelet survival were analysed. Additionally, we made use of BH3 mimetics that selectively inhibit BCL-2 or BCL-XL. We show that the deletion of BCL-2, on its own or in concert with MCL-1, does not affect platelet production or platelet lifespan. Thrombocytopaenia in Bclx-deficient mice was not affected by additional genetic loss or pharmacological inhibition of BCL-2. Thus, BCL-2 is dispensable for thrombopoiesis and platelet survival in mice.
Collapse
Affiliation(s)
- M A Debrincat
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - I Pleines
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - M Lebois
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
| | - R M Lane
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
| | - M L Holmes
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
| | - J Corbin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
| | - C J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - W S Alexander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - A P Ng
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - A Strasser
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - P Bouillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - M Sola-Visner
- Boston Children's Hospital, Division of Newborn Medicine, Boston, MA, USA
| | - B T Kile
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| | - E C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC, Australia
| |
Collapse
|
15
|
Mitchell WB, Pinheiro MP, Boulad N, Kaplan D, Edison MN, Psaila B, Karpoff M, White MJ, Josefsson EC, Kile BT, Bussel JB. Effect of thrombopoietin receptor agonists on the apoptotic profile of platelets in patients with chronic immune thrombocytopenia. Am J Hematol 2014; 89:E228-34. [PMID: 25132654 DOI: 10.1002/ajh.23832] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/11/2022]
Abstract
Platelet survival depends upon mediators of apoptosis e.g., Bcl-xL, Bax, and Bak, which are regulated by thrombopoietin (TPO)-mediated AKT signaling. Thrombopoietin receptor (TPO-R) signaling might decrease platelet and/or megakaryocyte apoptosis and increase the platelet count. This study therefore explored anti-apoptotic effects of TPO-R-agonists in vivo on platelets of patients with immune thrombocytopenia. Patients received eltrombopag or romiplostim for two weeks. Total, immature, and large platelet counts were assessed as were Bcl-xL inhibitor assay; Bcl-xL Western blot; and flow cytometric (FACS) analysis of the AKT-signaling pathway. Eight/ten patients had platelet responses to eltrombopag and all three to romiplostim. Platelet sensitivity to apoptosis by Bcl-xL inhibition was greater in pretreatment patients than controls. This sensitivity normalized after one week of therapy, but surprisingly returned to pretreatment levels at week two. FACS analysis revealed increased AKT-pathway signaling after one week, followed by a decrease at week two. Platelet counts correlated with the Bcl-xL /Bak ratio. Platelet survival may be enhanced by TPO-R-agonists as a transient decrease in platelet sensitivity to apoptosis was accompanied by transient activation of AKT. However, this mechanism has only a short-lived effect. Megakaryocytes and platelets already present at the start of TPO-R-agonist treatment appear to respond differently than those generated de novo.
Collapse
Affiliation(s)
- William Beau Mitchell
- Division of Pediatric Hematology/Oncology; Weill Cornell Medical College; New York New York
- Laboratory of Platelet Biology; New York Blood Center; New York New York
| | - Mariana P. Pinheiro
- Division of Pediatric Hematology/Oncology; Weill Cornell Medical College; New York New York
| | - Nayla Boulad
- Division of Pediatric Hematology/Oncology; Weill Cornell Medical College; New York New York
| | | | - Michele N. Edison
- Division of Pediatric Hematology/Oncology; Weill Cornell Medical College; New York New York
| | - Bethan Psaila
- Division of Pediatric Hematology/Oncology; Weill Cornell Medical College; New York New York
- Department of Haematology; Hammersmith Hospital, Imperial College London; London United Kingdom
| | - Marissa Karpoff
- Division of Pediatric Hematology/Oncology; Weill Cornell Medical College; New York New York
| | - Michael J. White
- The Walter and Eliza Hall Institute of Medical Research; Parkville Australia
| | - Emma C. Josefsson
- The Walter and Eliza Hall Institute of Medical Research; Parkville Australia
| | - Benjamin T. Kile
- The Walter and Eliza Hall Institute of Medical Research; Parkville Australia
| | - James B. Bussel
- Division of Pediatric Hematology/Oncology; Weill Cornell Medical College; New York New York
| |
Collapse
|