1
|
Lai Y, Lin X, Lin C, Lin X, Chen Z, Zhang L. Identification of endoplasmic reticulum stress-associated genes and subtypes for prediction of Alzheimer’s disease based on interpretable machine learning. Front Pharmacol 2022; 13:975774. [PMID: 36059957 PMCID: PMC9438901 DOI: 10.3389/fphar.2022.975774] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alzheimer’s disease (AD) is a severe dementia with clinical and pathological heterogeneity. Our study was aim to explore the roles of endoplasmic reticulum (ER) stress-related genes in AD patients based on interpretable machine learning. Methods: Microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We performed nine machine learning algorithms including AdaBoost, Logistic Regression, Light Gradient Boosting (LightGBM), Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), Random Forest, K-nearest neighbors (KNN), Naïve Bayes, and support vector machines (SVM) to screen ER stress-related feature genes and estimate their efficiency of these genes for early diagnosis of AD. ROC curves were performed to evaluate model performance. Shapley additive explanation (SHAP) was applied for interpreting the results of these models. AD patients were classified using a consensus clustering algorithm. Immune infiltration and functional enrichment analysis were performed via CIBERSORT and GSVA, respectively. CMap analysis was utilized to identify subtype-specific small-molecule compounds. Results: Higher levels of immune infiltration were found in AD individuals and were markedly linked to deregulated ER stress-related genes. The SVM model exhibited the highest AUC (0.879), accuracy (0.808), recall (0.773), and precision (0.809). Six characteristic genes (RNF5, UBAC2, DNAJC10, RNF103, DDX3X, and NGLY1) were determined, which enable to precisely predict AD progression. The SHAP plots illustrated how a feature gene influence the output of the SVM prediction model. Patients with AD could obtain clinical benefits from the feature gene-based nomogram. Two ER stress-related subtypes were defined in AD, subtype2 exhibited elevated immune infiltration levels and immune score, as well as higher expression of immune checkpoint. We finally identified several subtype-specific small-molecule compounds. Conclusion: Our study provides new insights into the role of ER stress in AD heterogeneity and the development of novel targets for individualized treatment in patients with AD.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Xueyan Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Xing Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhihan Chen
- Department of Rheumatology and Immunology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Li Zhang, ; Zhihan Chen,
| | - Li Zhang
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Li Zhang, ; Zhihan Chen,
| |
Collapse
|
2
|
Potential to Eradicate Cancer Stemness by Targeting Cell Surface GRP78. Biomolecules 2022; 12:biom12070941. [PMID: 35883497 PMCID: PMC9313351 DOI: 10.3390/biom12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells. This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
Collapse
|
3
|
Fu X, Liu H, Liu J, DiSanto ME, Zhang X. The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022; 11:cells11132052. [PMID: 35805135 PMCID: PMC9266107 DOI: 10.3390/cells11132052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in men, which is characterized by a noncancerous enlargement of the prostate. BPH troubles the vast majority of aging men worldwide; however, the pathogenetic factors of BPH have not been completely identified. The heat shock protein 70 (HSP70) subfamily, which mainly includes HSP70, glucose-regulated protein 78 (GRP78) and GRP75, plays a crucial role in maintaining cellular homeostasis. HSP70s are overexpressed in the course of BPH and involved in a variety of biological processes, such as cell survival and proliferation, cell apoptosis, epithelial/mesenchymal transition (EMT) and fibrosis, contributing to the development and progress of prostate diseases. These chaperone proteins also participate in oxidative stress, a cellular stress response that takes place under stress conditions. In addition, HSP70s can bind to the androgen receptor (AR) and act as a regulator of AR activity. This interaction of HSP70s with AR provides insight into the importance of the HSP70 chaperone family in BPH pathogenesis. In this review, we discuss the function of the HSP70 family in prostate glands and the role of HSP70s in the course of BPH. We also review the potential applications of HSP70s as biomarkers of prostate diseases for targeted therapies.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA;
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
- Correspondence:
| |
Collapse
|
4
|
Pachikov AN, Gough RR, Christy CE, Morris ME, Casey CA, LaGrange CA, Bhat G, Kubyshkin AV, Fomochkina II, Zyablitskaya EY, Makalish TP, Golubinskaya EP, Davydenko KA, Eremenko SN, Riethoven JJM, Maroli AS, Payne TS, Powers R, Lushnikov AY, Macke AJ, Petrosyan A. The non-canonical mechanism of ER stress-mediated progression of prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:289. [PMID: 34521429 PMCID: PMC8439065 DOI: 10.1186/s13046-021-02066-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/08/2021] [Indexed: 01/12/2023]
Abstract
Background The development of persistent endoplasmic reticulum (ER) stress is one of the cornerstones of prostate carcinogenesis; however, the mechanism is missing. Also, alcohol is a physiological ER stress inducer, and the link between alcoholism and progression of prostate cancer (PCa) is well documented but not well characterized. According to the canonical model, the mediator of ER stress, ATF6, is cleaved sequentially in the Golgi by S1P and S2P proteases; thereafter, the genes responsible for unfolded protein response (UPR) undergo transactivation. Methods Cell lines used were non-malignant prostate epithelial RWPE-1 cells, androgen-responsive LNCaP, and 22RV1 cells, as well as androgen-refractory PC-3 cells. We also utilized PCa tissue sections from patients with different Gleason scores and alcohol consumption backgrounds. Several sophisticated approaches were employed, including Structured illumination superresolution microscopy, Proximity ligation assay, Atomic force microscopy, and Nuclear magnetic resonance spectroscopy. Results Herein, we identified the trans-Golgi matrix dimeric protein GCC185 as a Golgi retention partner for both S1P and S2P, and in cells lacking GCC185, these enzymes lose intra-Golgi situation. Progression of prostate cancer (PCa) is associated with overproduction of S1P and S2P but monomerization of GCC185 and its downregulation. Utilizing different ER stress models, including ethanol administration, we found that PCa cells employ an elegant mechanism that auto-activates ER stress by fragmentation of Golgi, translocation of S1P and S2P from Golgi to ER, followed by intra-ER cleavage of ATF6, accelerated UPR, and cell proliferation. The segregation of S1P and S2P from Golgi and activation of ATF6 are positively correlated with androgen receptor signaling, different disease stages, and alcohol consumption. Finally, depletion of ATF6 significantly retarded the growth of xenograft prostate tumors and blocks production of pro-metastatic metabolites. Conclusions We found that progression of PCa associates with translocation of S1P and S2P proteases to the ER and subsequent ATF6 cleavage. This obviates the need for ATF6 transport to the Golgi and enhances UPR and cell proliferation. Thus, we provide the novel mechanistic model of ATF6 activation and ER stress implication in the progression of PCa, suggesting ATF6 is a novel promising target for prostate cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02066-7.
Collapse
Affiliation(s)
- Artem N Pachikov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE, 68198, USA
| | - Ryan R Gough
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE, 68198, USA.,Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, 68105, USA
| | - Caroline E Christy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mary E Morris
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Carol A Casey
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, 68105, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ganapati Bhat
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, 560078, India
| | - Anatoly V Kubyshkin
- Department of Pathological Physiology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Iryna I Fomochkina
- Department of Pathological Physiology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Evgeniya Y Zyablitskaya
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Tatiana P Makalish
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Elena P Golubinskaya
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Kateryna A Davydenko
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Sergey N Eremenko
- Saint Luc's Clinique, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Jean-Jack M Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amith S Maroli
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Thomas S Payne
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert Powers
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Alexander Y Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Amanda J Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,The Fred and Pamela Buffett Cancer Center, Omaha, NE, 68198, USA. .,Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, 68105, USA.
| |
Collapse
|
5
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020; 12:191. [PMID: 32792938 PMCID: PMC7385251 DOI: 10.3389/fnagi.2020.00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Barbara Tedesco
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Azhary JMK, Harada M, Takahashi N, Nose E, Kunitomi C, Koike H, Hirata T, Hirota Y, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. Endoplasmic Reticulum Stress Activated by Androgen Enhances Apoptosis of Granulosa Cells via Induction of Death Receptor 5 in PCOS. Endocrinology 2019; 160:119-132. [PMID: 30423122 DOI: 10.1210/en.2018-00675] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism and growth arrest of antral follicles. Previously, we found that endoplasmic reticulum (ER) stress is activated in granulosa cells of antral follicles in PCOS, evidenced by activation of unfolded protein response (UPR) genes. Based on this observation, we hypothesized that ER stress is activated by androgens in granulosa cells of antral follicles, and that activated ER stress promotes apoptosis via induction of the UPR transcription factor C/EBP homologous protein (CHOP) and subsequent activation of death receptor (DR) 5. In this study, we found that testosterone induced expression of various UPR genes, including CHOP, as well as DR5, in cultured human granulosa-lutein cells (GLCs). Pretreatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) inhibited testosterone-induced apoptosis and expression of DR5 and CHOP. Knockdown of CHOP inhibited testosterone-induced DR5 expression and apoptosis, and knockdown of DR5 inhibited testosterone-induced apoptosis. Pretreatment with flutamide, as well as knockdown of androgen receptor, decreased testosterone-induced DR5 and CHOP expression, as well as apoptosis. Expression of DR5 and CHOP was upregulated in GLCs obtained from patients with PCOS, as well as in granulosa cells of antral follicles in ovarian sections obtained from patients with PCOS and dehydroepiandrosterone-induced PCOS mice. Treatment of PCOS mice with TUDCA decreased apoptosis and DR5 expression in granulosa cells of antral follicles, with a concomitant reduction in CHOP expression. Taken together, our findings indicate that ER stress activated by hyperandrogenism in PCOS promotes apoptosis of granulosa cells of antral follicles via induction of DR5.
Collapse
Affiliation(s)
- Jerilee M K Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Emi Nose
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Li X, Meng L, Wang F, Hu X, Yu Y. Sodium fluoride induces apoptosis and autophagy via the endoplasmic reticulum stress pathway in MC3T3-E1 osteoblastic cells. Mol Cell Biochem 2018; 454:77-85. [PMID: 30519783 DOI: 10.1007/s11010-018-3454-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Fluorosis and bone pathologies can be caused by chronic and/or excessive fluoride intake. Despite this, few studies have been conducted on the cellular mechanisms underlying osteoblast toxicity in the presence of NaF. Here, we investigated the effects of fluoride on MC3T3-E1 cells. We showed that the proliferation of MC3T3-E1 cells was inhibited by exposure to NaF. In addition, apoptosis was induced by NaF, as caspase-associated proteins showed a higher level of expression and apoptotic bodies were formed. Furthermore, endoplasmic reticulum (ER) stress induced by NaF activated the unfolded protein response (UPR) and upregulated the expression of the glucose-regulated proteins 94 (GRP94) and 78 (BiP). Therefore, ER stress plays a vital role in NaF-induced autophagy and apoptosis. Furthermore, apoptosis is promoted following the inhibition of NaF-induced autophagy. In conclusion, under NaF treatment, the ER stress-signaling pathway is activated, leading to apoptosis and autophagy and affecting the proliferation and survival of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Stomatology, Eye & Ent Hospital of Fudan University, Shanghai, 200031, China
| | - Li Meng
- Department of Pharmacy, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Feng Wang
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaojie Hu
- Plastic and Reconstructive Department, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
9
|
ETS Related Gene mediated Androgen Receptor Aggregation and Endoplasmic Reticulum Stress in Prostate Cancer Development. Sci Rep 2017; 7:1109. [PMID: 28439080 PMCID: PMC5430720 DOI: 10.1038/s41598-017-01187-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/22/2017] [Indexed: 12/02/2022] Open
Abstract
Mechanistic studies of deregulated ERG in prostate cancer and other cancers continue to enhance its role in cancer biology and its utility as a biomarker and therapeutic target. Here, we show that ERG, through its physical interaction with androgen receptor, induces AR aggregation and endoplasmic reticulum stress in the prostate glands of ERG transgenic mice. Histomorphological alterations and the expression of ER stress sensors Atf6, Ire1α, Perk, their downstream effectors Grp78/BiP and eIF2α in ERG transgenic mouse prostate glands indicate the presence of chronic ER stress. Transient activation of apoptotic cell death during early age correlated well with the differential regulation of ER stress sensors, in particular Perk. Epithelial cells derived from ERG transgenic mouse prostates have increased prostasphere formation with resistance to radiation induced cell death. Continued activation of cell survival factors, Atf6 and Ire1α during chronic ER stress due to presence of ERG in prostate epithelium induces survival pathways and provides a selection pressure in the continuum of ERG dependent neoplastic process. These novel insights will enhance the understanding of the mechanistic functions of ERG in prostate tumor biology and towards development of early targeted therapeutic strategies for prostate cancer.
Collapse
|
10
|
Petiwala SM, Li G, Bosland MC, Lantvit DD, Petukhov PA, Johnson JJ. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathwayin vitroandin vivo. Carcinogenesis 2016; 37:827-838. [DOI: 10.1093/carcin/bgw052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
|
11
|
Li G, Petiwala SM, Yan M, Won JH, Petukhov PA, Johnson JJ. Gartanin, an isoprenylated xanthone from the mangosteen fruit (Garcinia mangostana), is an androgen receptor degradation enhancer. Mol Nutr Food Res 2016; 60:1458-69. [DOI: 10.1002/mnfr.201600037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Gongbo Li
- Department of Pharmacy Practice; University of Illinois at Chicago College of Pharmacy; Chicago USA
| | - Sakina M. Petiwala
- Department of Pharmacy Practice; University of Illinois at Chicago College of Pharmacy; Chicago USA
| | - Miao Yan
- Department of Pharmacy Practice; University of Illinois at Chicago College of Pharmacy; Chicago USA
- Institute of Clinical Pharmacy, The Second Xiangya Hospital; Central South University; Changsha Hunan Province China
| | - Jong Hoon Won
- Department of Pharmacy Practice; University of Illinois at Chicago College of Pharmacy; Chicago USA
| | - Pavel A. Petukhov
- Department of Medicinal Chemistry and Pharmacognosy; University of Illinois at Chicago College of Pharmacy; Chicago USA
- University of Illinois Cancer Center; Chicago USA
| | - Jeremy J. Johnson
- Department of Pharmacy Practice; University of Illinois at Chicago College of Pharmacy; Chicago USA
- Department of Medicinal Chemistry and Pharmacognosy; University of Illinois at Chicago College of Pharmacy; Chicago USA
- University of Illinois Cancer Center; Chicago USA
| |
Collapse
|
12
|
Jia W, Jian Z, Li J, Luo L, Zhao L, Zhou Y, Tang F, Xiao Y. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury. Int J Mol Med 2016; 37:1199-208. [PMID: 27035093 PMCID: PMC4829135 DOI: 10.3892/ijmm.2016.2535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 03/07/2016] [Indexed: 12/04/2022] Open
Abstract
In the present study, we investigated the role of activating transcription factor 6 (ATF6) in the mechanism by which chronic intermittent hypoxia (CIH) increases tolerance to myocardial ischemia/reperfusion (I/R). Experiments were conducted using a rat model of I/R injury in vivo and isolated Langendorff-perfused rat hearts ex vivo. The role of Akt in this process was also investigated in vitro using rat myoblast H9c2 cells. Cell viability was measured using a cell counting kit-8 assay. Lactate dehydrogenase (LDH) and creatine kinase cardiac isoenzyme activity were also measured as markers of cellular damage. ATF6, Akt and phosphorylated (p)-Akt expression was analyzed by western blot analysis. RNA interference (RNAi) was used to suppress ATF6 expression. We noted that ATF6 expression in the ventricular myocardium was significantly increased in rats exposed to CIH. Furthermore, we noted that CIH preserved cardiac function after I/R in vivo and improved post-ischemic recovery of myocardial performance in isolated rat hearts. ATF6 and p-Akt expression was upregulated in cultured H9c2 cells exposed to chronic mild hypoxia compared with those cultured under normoxic conditions. Chronic mild hypoxia attenuated subsequent simulated I/R injury in H9c2 cells (48 h), as evidenced by increased cell viability and decreased LDH activity. By contrast, decreased cell viability and increased LDH activity were observed in siRNA-ATF6-transfected H9c2 cells, with a concomitant reduction in p-Akt levels. These results indicated that ATF6 upregulation is involved in the mechanism by which CIH attenuates myocardial I/R injury, possibly through upregulation of p-Akt, which is a key regulator of cardiomyocyte survival.
Collapse
Affiliation(s)
- Weikun Jia
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Zhao Jian
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jingwei Li
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Lin Luo
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Liang Zhao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yang Zhou
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Fuqin Tang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
13
|
The Role of the Protein Quality Control System in SBMA. J Mol Neurosci 2015; 58:348-64. [PMID: 26572535 DOI: 10.1007/s12031-015-0675-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/01/2015] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) or Kennedy's disease is an X-linked disease associated with the expansion of the CAG triplet repeat present in exon 1 of the androgen receptor (AR) gene. This results in the production of a mutant AR containing an elongated polyglutamine tract (polyQ) in its N-terminus. Interestingly, the ARpolyQ becomes toxic only after its activation by the natural androgenic ligands, possibly because of aberrant androgen-induced conformational changes of the ARpolyQ, which generate misfolded species. These misfolded ARpolyQ species must be cleared from motoneurons and muscle cells, and this process is mediated by the protein quality control (PQC) system. Experimental evidence suggested that failure of the PQC pathways occurs in disease, leading to ARpolyQ accumulation and toxicity in the target cells. In this review, we summarized the overall impact of mutant and misfolded ARpolyQ on the PQC system and described how molecular chaperones and the degradative pathways (ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and the unfolded protein response (UPR), which activates the endoplasmic reticulum-associated degradation (ERAD)) are differentially affected in SBMA. We also extensively and critically reviewed several molecular and pharmacological approaches proposed to restore a global intracellular activity of the PQC system. Collectively, these data suggest that the fine and delicate equilibrium existing among the different players of the PQC system could be restored in a therapeutic perspective by the synergic/additive activities of compounds designed to tackle sequential or alternative steps of the intracellular defense mechanisms triggered against proteotoxic misfolded species.
Collapse
|
14
|
Kanda T, Yokosuka O. The androgen receptor as an emerging target in hepatocellular carcinoma. J Hepatocell Carcinoma 2015; 2:91-9. [PMID: 27508198 PMCID: PMC4918288 DOI: 10.2147/jhc.s48956] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the male-dominant liver diseases with poor prognosis, although treatments for HCC have been progressing in the past decades. Androgen receptor (AR) is a member of the nuclear receptor superfamily. Previous studies reported that AR was expressed in human HCC and non-HCC tissues. AR is activated both ligand-dependently and ligand-independently. The latter is associated with a mitogen-activated protein kinase–, v-akt murine thymoma viral oncogene homolog 1–, or signal-transducer and activator of transcription–signaling pathway, which has been implicated in the development of HCC. It has been reported that more than 200 RNA expression levels are altered by androgen treatment. In the liver, androgen-responsive genes are cytochrome P450s, transforming growth factor β, vascular endothelial growth factor, and glucose-regulated protein 78 kDa, which are also associated with human hepatocarcinogenesis. Recent studies also revealed that AR plays a role in cell migration and metastasis. It is possible that cross-talk among AR-signaling, endoplasmic reticulum stress, and innate immune response is important for human hepatocarcinogenesis and HCC development. This review shows that AR could play a potential role in human HCC and represent one of the important target molecules for the treatment of HCC.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
15
|
Yang YH, Li B, Zheng XF, Chen JW, Chen K, Jiang SD, Jiang LS. Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway--implications for the treatment of osteoporosis. Free Radic Biol Med 2014; 77:10-20. [PMID: 25224042 DOI: 10.1016/j.freeradbiomed.2014.08.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022]
Abstract
Oxidative stress can damage various cellular components of osteoblasts, and is regarded as a pivotal pathogenic factor for bone loss. Increasing evidence indicates a significant role of cell autophagy in response to oxidative stress. However, the role of autophagy in the osteoblasts under oxidative stress remains to be clarified. In this study, we verified that hydrogen peroxide induced autophagy and apoptosis in a dose- and time-dependent manner in osteoblastic Mc3T3-E1 cells. Both 3-methyladenine (the early steps of autophagy inhibitor) and bafilomycin A1 (the last steps of autophagy inhibitor) enhanced the cell apoptosis and reactive oxygen species level in the osteoblasts insulted by hydrogen peroxide. However, promotion of autophagy with either a pharmacologic inducer (rapamycin) or the Beclin-1 overexpressing technique rescued the cell apoptosis and reduced the reactive oxygen species level in the cells. Treatment with H2O2 significantly increased the levels of carbonylated proteins, malondialdehyde and 8-hydroxy-2'-deoxyguanosine, decreased the mitochondrial membrane potential, and increased the mitochondria-mediated apoptosis markers. The damaged mitochondria were cleared by autophagy. Furthermore, the molecular levels of the endoplasmic reticula stress signaling pathway changed in hydrogen peroxide-treated Mc3T3-E1 cells, and blocking this stress signaling pathway by RNA interference against candidates of glucose-regulated protein 78 and protein kinase-like endoplasmic reticulum kinase decreased autophagy while increasing apoptosis in the cells. In conclusion, oxidative damage to osteoblasts could be alleviated by early autophagy through the endoplasmic reticulum stress pathway. Our findings suggested that modulation of osteoblast autophagy could have a potentially therapeutic value for osteoporosis.
Collapse
Affiliation(s)
- Yue-Hua Yang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Bo Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xin-Feng Zheng
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jiang-Wei Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ke Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Sheng-Dan Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Sheng Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
16
|
Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology 2014; 155:4881-94. [PMID: 25247470 PMCID: PMC4239422 DOI: 10.1210/en.2014-1486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Pharmacology (J.M.B., M.P.-P., C.R.R., M.M.M.), University of Maryland School of Medicine and Programs in Neuroscience (M.M.M.) and Medicine (T.E.R.), University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
17
|
Jiang X, Kanda T, Nakamoto S, Miyamura T, Wu S, Yokosuka O. Involvement of androgen receptor and glucose-regulated protein 78 kDa in human hepatocarcinogenesis. Exp Cell Res 2014; 323:326-336. [PMID: 24583399 DOI: 10.1016/j.yexcr.2014.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 02/07/2023]
Abstract
Previous studies demonstrated that androgen receptor (AR) is expressed in human hepatocellular carcinoma (HCC), one of the male-dominant diseases. Glucose-regulated protein 78 kDa (GRP78/Bip), which has a role in cancer development, is one of the androgen response genes in prostate cell lines. The aim of this study was to investigate the impact of AR on endoplasmic reticulum (ER)-stress signaling in human hepatoma. AR and GRP78 expressions were examined in human liver tissue panels. Human hepatoma cells stably expressing short hairpin RNA targeting AR and cells over-expressing AR were generated. The expressions of ER-stress molecules and AR were measured by real-time RT-PCR and Western blotting. The effect of AR on ER-stress responsive gene expression was examined by reporter assay. Strong positive correlation between AR mRNA and GRP78 mRNA was observed in stage I/II-HCCs. AR enhanced ER-stress responsive element activities and GRP78 expression, and regulated ER-stress response in hepatocytes. Sorafenib strongly induced significant apoptosis in HepG2 cells by the inhibition of AR and inhibition of the downstream GRP78. AR seems a co-regulator of GRP78 especially in earlier-stage HCC. AR plays a critical role in controlling ER-stress, providing new therapeutic options against HCC.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Molecular Virology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tatsuo Miyamura
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
18
|
Feng C, He K, Zhang C, Su S, Li B, Li Y, Duan CY, Chen S, Chen R, Liu Y, Li H, Wei M, Xia X, Dai R. JNK contributes to the tumorigenic potential of human cholangiocarcinoma cells through the mTOR pathway regulated GRP78 induction. PLoS One 2014; 9:e90388. [PMID: 24587347 PMCID: PMC3938720 DOI: 10.1371/journal.pone.0090388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Less is known about the roles of c-Jun N-terminal kinase (JNK) in cholangiocarcinoma (CCA). Here, we report that JNK exerts its oncogenic action in human CCA cells, partially due to the mammalian target of rapamycin (mTOR) pathway regulated glucose-regulated protein 78 (GRP78) induction. In human CCA cells, the phosphorylation of eukaryotic initiation factor alpha (eIF2α) results in the accumulation of activating transcription factor 4 (ATF4) and GRP78 independent of unfolded protein response (UPR). Suppression of GRP78 expression decreases the proliferation and invasion of human CCA cells. It's notable that mTOR is required for eIF2α phosphorylation-induced ATF4 and GRP78 expression. Importantly, JNK promotes eIF2α/ATF4-mediated GRP78 induction through regulating the activity of mTOR. Thus, our study implicates JNK/mTOR signaling plays an important role in cholangiocarcinogenesis, partially through promoting the eIF2α/ATF4/GRP78 pathway.
Collapse
Affiliation(s)
- Chunhong Feng
- Department of Hepatobiliary Surgery of the Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan, China
| | - Kai He
- Department of Hepatobiliary Surgery of the Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan, China
| | - Chunyan Zhang
- Department of Biochemistry and Molecular Biology, Luzhou Medical College, Luzhou, Sichuan, China
| | - Song Su
- Department of Hepatobiliary Surgery of the Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan, China
| | - Bo Li
- Department of Hepatobiliary Surgery of the Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan, China
| | - Yuxiao Li
- Department of Biochemistry and Molecular Biology, Luzhou Medical College, Luzhou, Sichuan, China
| | - Chun-Yan Duan
- Department of Biochemistry and Molecular Biology, Luzhou Medical College, Luzhou, Sichuan, China
| | - Shaokun Chen
- Department of Biochemistry and Molecular Biology, Luzhou Medical College, Luzhou, Sichuan, China
| | - Run Chen
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan, China
| | - Youping Liu
- Department of Biochemistry and Molecular Biology, Luzhou Medical College, Luzhou, Sichuan, China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Luzhou Medical College, Luzhou, Sichuan, China
| | - Mei Wei
- Affiliated Hospital of Chinese Traditional Medicine, Luzhou Medical College, Luzhou, Sichuan, China
| | - Xianming Xia
- Department of Hepatobiliary Surgery of the Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan, China
| | - Rongyang Dai
- Department of Hepatobiliary Surgery of the Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan, China
- Department of Biochemistry and Molecular Biology, Luzhou Medical College, Luzhou, Sichuan, China
| |
Collapse
|