1
|
Bhattarai G, Sim HJ, So HS, Lee JC, Kook SH. Exposure of newborns to atmospherically relevant artificial particulate matter induces hematopoietic stem cell senescence. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131293. [PMID: 37002998 DOI: 10.1016/j.jhazmat.2023.131293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Research on the negative impacts of PM2.5 have been focused on lung, brain, immune, and metabolism-related diseases. However, little is known about the mechanism underlying the effects of PM2.5 on the modulation of hematopoietic stem cell (HSC) fate. Maturation of the hematopoietic system and differentiation of hematopoietic stem progenitor cells (HSPCs) occurs soon after birth when infants are susceptible to external stresses. We investigated how exposure to atmospherically relevant artificial particulate matter of diameter < 2.5 µm (termed, PM2.5) affects HSPCs in newborns. The lungs of newborn mice exposed to PM2.5 exhibited higher levels of oxidative stress and inflammasome activation, which continued during aging. PM2.5 also stimulated oxidative stress and inflammasome activation in bone marrow (BM). PM2.5-exposed infant mice at 12 months but not at 6 months displayed progressive senescence of HSCs accompanied by preferential impairment of the BM microenvironment with age-related phenotypes, as evidenced by colony-forming assay and serial transplantation and animal survival experiments. Further, PM2.5-exposed middle-aged mice did not exhibit radioprotective potential. Collectively, exposure of newborns to PM2.5 causes progressive senescence of HSCs. These findings revealed a novel mechanism by which PM2.5 affects the fate of HSCs, highlighting the crucial role of early life exposure to air pollution in determining human health outcomes.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea; Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea; Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
2
|
Zhou M, Wang W, Wang Z, Wang Y, Zhu Y, Lin Z, Tian S, Huang Y, Hu Q, Li H. Discovery and computational studies of 2-phenyl-benzoxazole acetamide derivatives as promising P2Y 14R antagonists with anti-gout potential. Eur J Med Chem 2022; 227:113933. [PMID: 34689072 DOI: 10.1016/j.ejmech.2021.113933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/04/2022]
Abstract
The P2Y14 nucleotide receptor, a subtype of P2Y receptors, is implicated in many human inflammatory diseases. Based on the identification of favorable residues of two screening hits in the almost symmetrical P2Y14 binding domain, we describe the structural optimization of previously identified virtual screening hits 6 and 7 that result in the development of P2Y14R antagonists with a novel 2-phenyl-benzoxazole acetamide chemical scaffold. Notably, compound 52 showed potent P2Y14R antagonistic activity (IC50 = 2 nM), and a stronger inhibitory effect on MSU-induced inflammatory in vitro, better than a previously described P2Y14R antagonist PPTN. In vivo evaluation demonstrated that compound 52 also had satisfactory inhibitory activity on the inflammatory response of gout flares in mice. Moreover, P2Y14R antagonist 52 decreased paw swelling and inflammatory cell infiltration through cAMP/NLRP3/GSDMD signaling pathways in MSU-induced acute gouty arthritis mice. The discussions on the binding mechanism that employ MM/GBSA free energy calculations/decompositions also provide some useful clues for further structural designing of compound 52. Taken together, 2-phenyl-benzoxazole acetamide derivative 52 with potent P2Y14R antagonistic activity and in vivo potency could be a promising strategy for gout therapy and deserves further optimization.
Collapse
Affiliation(s)
- Mengze Zhou
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhongkui Wang
- Department of Neurology, Hebei Yanda Hospital, NO.6 Sipulan Road, Sanhe, Hebei, 065201, China
| | - Yilin Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yifan Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhiqian Lin
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Sheng Tian
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Yuan Huang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| | - Huanqiu Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Lazarowski ER, Harden TK. UDP-Sugars as Extracellular Signaling Molecules: Cellular and Physiologic Consequences of P2Y14 Receptor Activation. Mol Pharmacol 2015; 88:151-60. [PMID: 25829059 PMCID: PMC4468635 DOI: 10.1124/mol.115.098756] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
UDP-sugars, which are indispensable for protein glycosylation reactions in cellular secretory pathways, also act as important extracellular signaling molecules. We discuss here the broadly expressed P2Y14 receptor, a G-protein-coupled receptor targeted by UDP sugars, and the increasingly diverse set of physiologic responses discovered recently functioning downstream of this receptor in many epithelia as well as in immune, inflammatory, and other cells.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Departments of Medicine (E.R.L.) and Pharmacology (T.K.H.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - T Kendall Harden
- Departments of Medicine (E.R.L.) and Pharmacology (T.K.H.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Meister J, Le Duc D, Ricken A, Burkhardt R, Thiery J, Pfannkuche H, Polte T, Grosse J, Schöneberg T, Schulz A. The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. J Biol Chem 2014; 289:23353-66. [PMID: 24993824 DOI: 10.1074/jbc.m114.580803] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion.
Collapse
Affiliation(s)
- Jaroslawna Meister
- From the Institute of Biochemistry, Integrated Research and Treatment Center for Adiposity Diseases
| | | | | | - Ralph Burkhardt
- Institute of Laboratory Medicine, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Helga Pfannkuche
- the Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, 04109 Leipzig, Germany
| | - Tobias Polte
- the Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany, the Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04109 Leipzig, Germany, and
| | | | | | - Angela Schulz
- From the Institute of Biochemistry, Integrated Research and Treatment Center for Adiposity Diseases
| |
Collapse
|
6
|
Cho J, Yusuf R, Kook S, Attar E, Lee D, Park B, Cheng T, Scadden DT, Lee BC. Purinergic P2Y₁₄ receptor modulates stress-induced hematopoietic stem/progenitor cell senescence. J Clin Invest 2014; 124:3159-71. [PMID: 24937426 DOI: 10.1172/jci61636] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022] Open
Abstract
Purinergic receptors of the P2Y family are G protein-coupled surface receptors that respond to extracellular nucleotides and can mediate responses to local cell damage. P2Y-dependent signaling contributes to thrombotic and/or inflammatory consequences of tissue injury by altering platelet and endothelial activation and immune cell phagocytosis. Here, we have demonstrated that P2Y14 modifies cell senescence and cell death in response to tissue stress, thereby enabling preservation of hematopoietic stem/progenitor cell function. In mice, P2Y14 deficiency had no demonstrable effect under homeostatic conditions; however, radiation stress, aging, sequential exposure to chemotherapy, and serial bone marrow transplantation increased senescence in animals lacking P2Y14. Enhanced senescence coincided with increased ROS, elevated p16(INK4a) expression, and hypophosphorylated Rb and was inhibited by treatment with a ROS scavenger or inhibition of p38/MAPK and JNK. Treatment of WT cells with pertussis toxin recapitulated the P2Y14 phenotype, suggesting that P2Y14 mediates antisenescence effects through Gi/o protein-dependent pathways. Primitive hematopoietic cells lacking P2Y14 were compromised in their ability to restore hematopoiesis in irradiated mice. Together, these data indicate that P2Y14 on stem/progenitor cells of the hematopoietic system inhibits cell senescence by monitoring and responding to the extracellular manifestations of tissue stress and suggest that P2Y14-mediated responses prevent the premature decline of regenerative capacity after injury.
Collapse
|