1
|
Edo A, Hirooka K, Onoe H, Kiuchi Y. The relationship between aldosterone-induced retinal ganglion cell loss, blood pressure, and intraocular pressure. Jpn J Ophthalmol 2025:10.1007/s10384-025-01201-7. [PMID: 40377799 DOI: 10.1007/s10384-025-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/25/2025] [Indexed: 05/18/2025]
Abstract
PURPOSE To elucidate whether systemic blood pressure affects retinal ganglion cell (RGC) survival in rats administered systemic aldosterone STUDY DESIGN: Experimental study design METHODS: Rats were continuously administered aldosterone or vehicle via a subcutaneous osmotic mini-pump. Hypertension was induced by the provision of saline as their drinking water. Systolic and diastolic blood pressures and intraocular pressure (IOP) were measured at the baseline and at 1-6 weeks after administration of aldosterone-water, aldosterone-saline, vehicle-water, or vehicle-saline. The number of retrogradely labelled RGCs in retinal flat mounts were counted after 6 weeks of treatment. Aldosterone-treated rats also received eplerenone (a mineralocorticoid receptor antagonist) or hydralazine (a vasodilator), and changes in systolic and diastolic blood pressures, IOP, and the number of RGCs were examined. RESULTS The number of RGCs was significantly reduced in rats treated with aldosterone, regardless of whether they drank water or saline (aldosterone/saline group vs vehicle/saline group: 1464.8 ± 29.7 vs 1763.3 ± 106.5, respectively, P = 0.01; aldosterone/water group vs vehicle/water group: 1433.3 ± 30.2 vs 1815.0 ± 193.9, respectively, P <0.01). No change in IOP with aldosterone or saline administration was observed (P >0.05). Although eplerenone or hydralazine treatment in animals receiving aldosterone and saline reduced the systolic and diastolic blood pressures as compared with in the controls, the number of RGCs was only preserved in the eplerenone-treated group (eplerenone group vs control group: 1868.5 ± 177.7 vs 1464.8 ± 29.7, respectively, P <0.01; hydralazine group vs control group 1554.5 ± 34.9 vs 1464.8 ± 29.7, respectively, P = 0.48). No change in IOP after eplerenone or hydralazine treatment was observed (P >0.05). CONCLUSION Aldosterone-induced RGC loss is not affected by systemic blood pressure or IOP.
Collapse
Affiliation(s)
- Ayaka Edo
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Hiromitsu Onoe
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
2
|
Hirooka K, Higashide T, Sakaguchi K, Udagawa S, Sugiyama K, Oki K, Kometani M, Yoneda T, Fukunaga K, Akita T, Baba T, Kiuchi Y. Prevalence of Normal-Tension Glaucoma in Patients With Primary Aldosteronism. Am J Ophthalmol 2025; 269:339-345. [PMID: 39284484 DOI: 10.1016/j.ajo.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE To investigate patients with primary aldosteronism (PA) and the prevalence of normal-tension glaucoma (NTG). DESIGN Cross-sectional study. METHODS Newly diagnosed PA patients were evaluated in this cross-sectional study, with ophthalmic examinations such as intraocular pressure measurements by a Goldmann applanation tonometer, central corneal thickness, slit-lamp biomicroscopic examination, gonioscopy, ophthalmoscopy, fundus photography, visual field test with a Humphrey Field Analyzer 24-2 SITA Standard program, and optical coherence tomography of the peripapillary retinal nerve fiber layer, performed in each of the subjects. Optic disc appearance, perimetric results, optical coherence tomography results, and other ocular findings were all used for determining the glaucoma diagnosis. The primary outcome was shown the prevalence of NTG in patients with PA. RESULTS NTG prevalence in the 212 PA patients was 11.8% (95% confidence interval [CI], 4.7%-20.7%). As compared to the hypertensive patients without PA, the hypertensive patients with PA exhibited a significantly increased NTG prevalence (odds ratio; 4.019, 95% CI, 1.223-13.205; P = .022). Increased NTG prevalence was associated with age, ranging from 8.8% (95% CI, 2.1%-15.6%) for those aged 40 to 49 years, to 37.5% (95% CI, 13.8%-61.2%) for those aged 70 years and older. In 72 hypertensive patients without PA, who were used as the controls, NTG prevalence was 5.2%, with a 95% CI ranging from 0.5% to 14.4%. CONCLUSIONS There was an 11.8% prevalence of NTG in PA patients, with these patients at an elevated risk of NTG, which was not mediated by blood pressure.
Collapse
Affiliation(s)
- Kazuyuki Hirooka
- From the Department of Ophthalmology and Visual Science, (K.H., T.B., Y.K.), Hiroshima University, Hiroshima, Japan.
| | - Tomomi Higashide
- Department of Ophthalmology (T.H., K.S., S.U., K.S.), Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kimikazu Sakaguchi
- Department of Ophthalmology (T.H., K.S., S.U., K.S.), Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Sachiko Udagawa
- Department of Ophthalmology (T.H., K.S., S.U., K.S.), Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuhisa Sugiyama
- Department of Ophthalmology (T.H., K.S., S.U., K.S.), Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kenji Oki
- Department of Molecular and Internal Medicine, (K.O.), Hiroshima University, Hiroshima, Japan
| | - Mitsuhiro Kometani
- Department of Health Promotion and Medicine of the Future (M.K., T.Y.), Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takashi Yoneda
- Department of Health Promotion and Medicine of the Future (M.K., T.Y.), Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism (K.F.), Kagawa University, Kagawa, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Diseases Control and Prevention (T.A.), Hiroshima University, Hiroshima, Japan
| | - Taro Baba
- From the Department of Ophthalmology and Visual Science, (K.H., T.B., Y.K.), Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- From the Department of Ophthalmology and Visual Science, (K.H., T.B., Y.K.), Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Buonfiglio F, Pfeiffer N, Gericke A. Glaucoma and the ocular renin-angiotensin-aldosterone system: Update on molecular signalling and treatment perspectives. Cell Signal 2024; 122:111343. [PMID: 39127136 DOI: 10.1016/j.cellsig.2024.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Glaucoma, a leading cause of blindness worldwide, encompasses a group of pathological conditions affecting the optic nerve and is characterized by progressive retinal ganglion cell loss, cupping of the optic nerve head, and distinct visual field defects. While elevated intraocular pressure (IOP) is the main risk factor for glaucoma, many patients do not have elevated IOP. Consequently, other risk factors, such as ocular blood flow abnormalities and immunological factors, have been implicated in its pathophysiology. Traditional therapeutic strategies primarily aim to reduce IOP, but there is growing interest in developing novel treatment approaches to improve disease management and reduce the high rates of severe visual impairment. In this context, targeting the ocular renin-angiotensin-aldosterone system (RAAS) has been found as a potential curative strategy. The RAAS contributes to glaucoma development through key effectors such as prorenin, angiotensin II, and aldosterone. Recent evidence has highlighted the potential of using RAAS modulators to combat glaucoma, yielding encouraging results. Our study aims to explore the molecular pathways linking the ocular RAAS and glaucoma, summarizing recent advances that elucidate the role of the RAAS in triggering oxidative stress, inflammation, and remodelling in the pathogenesis of glaucoma. Additionally, we will present emerging therapeutic approaches that utilize RAAS modulators and antioxidants to slow the progression of glaucoma.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Adrian Gericke
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| |
Collapse
|
4
|
Mogi M, Ikegawa Y, Haga S, Hoshide S, Kario K. Hypertension facilitates age-related diseases. ~ Is hypertension associated with a wide variety of diseases?~. Hypertens Res 2024; 47:1246-1259. [PMID: 38491107 DOI: 10.1038/s41440-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Hypertension, a disease whose prevalence increases with age, induces pathological conditions of ischemic vascular disorders such as cerebral infarction and myocardial infarction due to accelerated arteriosclerosis and circulatory insufficiency of small arteries and sometimes causes hemorrhagic conditions such as cerebral hemorrhage and ruptured aortic aneurysm. On the other hand, as it is said that aging starts with the blood vessels, impaired blood flow associated with vascular aging is the basis for the development of many pathological conditions, and ischemic changes in target organs associated with vascular disorders result in tissue dysfunction and degeneration, inducing organ hypofunction and dysfunction. Therefore, we hypothesized that hypertension is associated with all age-related vascular diseases, and attempted to review the relationship between hypertension and diseases for which a relationship has not been previously well reported. Following our review, we hope that a collaborative effort to unravel age-related diseases from the perspective of hypertension will be undertaken together with experts in various specialties regarding the relationship of hypertension to all pathological conditions.
Collapse
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Japan.
| | - Yasuhito Ikegawa
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Japan
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Shunsuke Haga
- Department of Pharmacology, Ehime University Graduate School of Medicine, Matsuyama, Japan
- Department of Urology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| |
Collapse
|
5
|
Razavi SMS, Daneshvar R. Possible dose-dependent effect of eplerenone on intraocular pressure. Indian J Ophthalmol 2023; 71:3357-3360. [PMID: 37787235 PMCID: PMC10683679 DOI: 10.4103/ijo.ijo_175_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 10/04/2023] Open
Abstract
Purpose Intraocular pressure (IOP) is the main modifiable risk factor for glaucoma. Current therapies target the anterior outflow of aqueous humor or its production. This study aims to demonstrate eplerenone could reduce IOP through a possible posterior outflow path via retinal pigment epithelium (RPE). Methods In this retrospective study, IOP changes in patients undergoing eplerenone treatment were investigated. Inclusion criteria were IOP data immediately before and during treatment. Exclusion criteria included ophthalmic procedures, changes in topical glaucoma treatment, or taking systemic medications affecting IOP. After reviewing 162 charts, 41 subjects were eligible. Pearson correlation test was used to investigate the correlation between continuous IOP and eplerenone dosage. Results The mean ± SD IOP before eplerenone treatment was 14.31 ± 3.73 mmHg and decreased to 13.50 ± 4.04 mmHg; however, this was not statistically significant (P = 0.39). In subset of patients with eplerenone dose of more than 25 mg/day and baseline IOP equal to or less than 15 mmHg, the mean IOP before eplerenone treatment was 12.33 ± 2.59 mmHg and decreased to 10.33 ± 2.99, which is a trend toward IOP reduction with a 16% reduction in IOP (P = 0.055). Conclusion A possible dose-dependent decrease in IOP with eplerenone provides indirect evidence for the posterior flow model and suggests the mineralocorticoid receptors (MRs) in RPE play a role in the posterior flow of aqueous humor. It can be deduced that the RPE pumps responsible for the posterior flow of aqueous humor are MR-regulated and their function can be enhanced with MR antagonists.
Collapse
Affiliation(s)
| | - Ramin Daneshvar
- Department of Ophthalmology, University of Florida College of Medicine, Florida, USA
| |
Collapse
|
6
|
Higashide T, Hirooka K, Kometani M, Sugiyama K. Aldosterone as a Possible Contributor to Eye Diseases. Endocrinology 2022; 164:6868238. [PMID: 36461718 DOI: 10.1210/endocr/bqac201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Aldosterone, an effector molecule of the renin-angiotensin-aldosterone system (RAAS), has been receiving more attention in the field of ophthalmology because of its possible role in the pathogenesis of various eye diseases or abnormalities; it may even become a target for their treatment. Primary aldosteronism, a typical model of a systemic aldosterone excess, may cause vision loss due to various ocular diseases, such as retinal vein occlusion, central serous chorioretinopathy, and, possibly glaucoma. RAAS components are present in various parts and types of cells present in the eye. Investigations of the local RAAS in various animal models of diabetic macular edema, retinal vein occlusion, retinopathy of prematurity, central serous chorioretinopathy, and glaucoma have found evidence that aldosterone or mineralocorticoid receptors may exacerbate the pathology of these disorders. Further studies are needed to elucidate whether the modulation of aldosterone or mineralocorticoid receptors is an effective treatment for preventing vision loss in patients with eye diseases.
Collapse
Affiliation(s)
- Tomomi Higashide
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuyuki Hirooka
- Ophthalmology and Visual Science, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Mitsuhiro Kometani
- Department of Health Promotion and Medicine of the Future, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuhisa Sugiyama
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
7
|
Yu S, Cui K, Wu P, Wu B, Lu X, Huang R, Tang X, Lin J, Yang B, Zhao J, He Q, Liang X, Xu Y. Melatonin prevents experimental central serous chorioretinopathy in rats. J Pineal Res 2022; 73:e12802. [PMID: 35436360 DOI: 10.1111/jpi.12802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Central serous chorioretinopathy (CSC) is a vision-threatening disease with no validated treatment and unclear pathogenesis. It is characterized by dilation and leakage of choroidal vasculature, resulting in the accumulation of subretinal fluid, and serous detachment of the neurosensory retina. Numerous studies have demonstrated that melatonin had multiple protective effects against endothelial dysfunction, vascular inflammation, and blood-retinal barrier (BRB) breakdown. However, the effect of melatonin on CSC, and its exact pathogenesis, is not well understood thus far. In this study, an experimental model was established by intravitreal injection of aldosterone in rats, which mimicked the features of CSC. Our results found that melatonin administration in advance significantly inhibited aldosterone-induced choroidal thickening and vasodilation by reducing the expression of calcium-activated potassium channel KCa2.3, and attenuated tortuosity of choroid vessels. Moreover, melatonin protected the BRB integrity and prevented the decrease in tight junction protein (ZO-1, occludin, and claudin-1) levels in the rat model induced by aldosterone. Additionally, the data also showed that intraperitoneal injection of melatonin in advance inhibited aldosterone-induced macrophage/microglia infiltration, and remarkably diminished the levels of inflammatory cytokines (interleukin-6 [IL-6], IL-1β, and cyclooxygenase-2), chemokines (chemokine C-C motif ligand 3, and C-X-C motif ligand 1), and matrix metalloproteinases (MMP-2 and MMP-9). Luzindole, as the nonselective MT1 and MT2 antagonist, and 4-phenyl-2-propionamidotetraline, as the selective MT2 antagonist, neutralized the melatonin-induced inhibition of choroidal thickening and choroidal vasodilation, indicating that melatonin might exert the effects via binding to its receptors. Furthermore, the IL-17A/nuclear factor-κB signaling pathway was activated by intravitreal administration of aldosterone, while it was suppressed in melatonin-treated in advance rat eyes. This study indicates that melatonin could serve as a promising safe therapeutic strategy for CSC patients.
Collapse
Affiliation(s)
- Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Benjuan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianqiang Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinfeng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjing He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
8
|
Behar-Cohen F, Jaisser F, Zhao M. Letter to the Editor From Behar-Cohen et al.: "The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy". J Clin Endocrinol Metab 2022; 107:e2204-e2205. [PMID: 34922389 DOI: 10.1210/clinem/dgab908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin Ophthalmopole, 75014 Paris, France
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, 75006 Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, 75006 Paris, France
| |
Collapse
|
9
|
Hirooka K, Kiuchi Y. The Retinal Renin-Angiotensin-Aldosterone System: Implications for Glaucoma. Antioxidants (Basel) 2022; 11:antiox11040610. [PMID: 35453295 PMCID: PMC9029628 DOI: 10.3390/antiox11040610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022] Open
Abstract
Aldosterone is one of the main effectors of the renin-angiotensin-aldosterone system (RAAS) along with having roles in hypertension, and cardiovascular and renal diseases. Recent evidence has also shown the presence of an active local RAAS within the human eye. It has been shown that at 12 h after a retinal ischemia-reperfusion injury, there is an upregulation of the protein levels of angiotensin II type 1 receptor (AT1-R) in the retina. Furthermore, at 12 h after reperfusion, there is an increase in reactive oxygen species (ROS) production in the retina that is mediated via an NADPH oxidase pathway. This ischemia-reperfusion injury-induced increase of retinal ROS levels and NADPH oxidase expression can be prevented by the administration of an AT1-R antagonist. This suggests that one of the main retinal ischemic injury pathways is via the local RAAS. It has also been reported that progressive retinal ganglion cell loss and glaucomatous optic nerve degeneration without elevated intraocular pressure occur after administration of local or systemic aldosterone. Elucidation of glaucoma pathogenesis, especially normal-tension glaucoma (NTG) subtype by our current animal model can be used for identifying potential therapeutic targets. Based on these results, we are further evaluating NTG prevalence among primary aldosteronism patients.
Collapse
|
10
|
Wada Y, Higashide T, Sakaguchi K, Nagata A, Hirooka K, Sugiyama K. Compromised blood flow in the optic nerve head after systemic administration of 2 aldosterone in rats: A possible rat model of retinal ganglion cell loss. Curr Eye Res 2022; 47:777-785. [PMID: 35179420 DOI: 10.1080/02713683.2022.2029907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the optic nerve head (ONH) blood flow, retinal vessel diameters, and retinal ganglion cell (RGC) loss after systemic administration of aldosterone in rats. METHODS Aldosterone (80 μg/kg/day) or vehicle was administered using an osmotic minipump in Brown Norway rats. The mean blur rate in the vessel (MV) and tissue (MT) regions and retinal vessel diameters in the ONH were measured by laser speckle flowgraphy before and 1, 2, and 4 weeks after administration of aldosterone or vehicle. Intraocular pressure (IOP), blood pressure, and heart rate were recorded. The retrogradely labeled RGCs were counted in the retinal flatmounts prepared 5 weeks after treatment. RESULTS The MV and MT in the aldosterone group significantly decreased at 2 and 4 weeks (MV: 2 weeks, P = 0.001, 4 weeks, P < 0.001; MT: 2 weeks, P = 0.02, 4 weeks, P = 0.03). The artery and vein diameters significantly decreased at 1, 2, and 4 weeks in the aldosterone group (all P < 0.001). The MV, MT, and vessel diameters remained unchanged in the vehicle group. Other parameters did not change over time in either group. RGC counts were significantly lower in the aldosterone group than in the vehicle group (P < 0.001). CONCLUSIONS ONH blood flow decreased following retinal vessel constriction without changes in IOP or blood pressure in a possible rat model of RGC loss by systemic administration of aldosterone.
Collapse
Affiliation(s)
- Yasushi Wada
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Ophthalmology, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Tomomi Higashide
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kimikazu Sakaguchi
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Nagata
- Ophthalmology, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Kazuyuki Hirooka
- Ophthalmology and Visual Science, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Kazuhisa Sugiyama
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
11
|
Liu K, Fan H, Hu H, Cheng Y, Liu J, You Z. Genetic variation reveals the influence of steroid hormones on the risk of retinal neurodegenerative diseases. Front Endocrinol (Lausanne) 2022; 13:1088557. [PMID: 36704044 PMCID: PMC9871487 DOI: 10.3389/fendo.2022.1088557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023] Open
Abstract
It is difficult to get evidence from randomized trials of a causal relationship between steroid hormones produced by the adrenal gland and gonad and retinal neurodegenerative disorders (RND). In this study, genetic variations of aldosterone (Aldo), androstenedione (A4), progesterone (P4), hydroxyprogesterone (17-OHP), and testosterone/17β-estradiol (T/E2) were obtained from genome-wide association studies as instrumental variables. Mendelian randomization (MR) analysis was used to assess the impact on the risk of RND, including glaucoma (8,591 cases and 210,201 controls), diabetic retinopathy (DR, 14,584 cases and 202,082 controls) and age-related macular degeneration (AMD, 14,034 cases and 91,214 controls). As the main method, inverse variance weighted results suggest that the increased glaucoma risk was affected by T/E2 (OR = 1.11, 95% CI, 1.01-1.22, P = 0.03), which was further validated by other methods (PWM = 0.03, PMLE = 0.03, PMR-RAPS = 0.03). In the replicated stage, the causal relationship between T/E2 and glaucoma was verified based on the MRC-IEU consortium (P = 0.04). No impact of Aldo, A4, P4, 17-OHP, and T/E2 was observed for the risk of DR (P > 0.05) and AMD (P > 0.05). The heterogeneity test (P > 0.05) and pleiotropy test (P > 0.05) verified the robustness of the results. Our results suggest that T/E2 has a suggestive effect on the glaucoma risk. However, the genetic evidence based on a large sample does not support the effect of steroid hormones on DR and AMD risk. Further studies are vital to assess the possibility of steroid hormones as targets for prevention and treatment.
Collapse
|
12
|
Behar-Cohen F, Zhao M. Mineralocorticoid pathway in retinal health and diseases. Br J Pharmacol 2021; 179:3190-3204. [PMID: 34877649 DOI: 10.1111/bph.15770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
In the retina, the mineralocorticoid receptor (MR) is expressed in retinal and choroidal vessels and in cells from neural and glial origins. Like in the brain, the major ligand of the MR is cortisol and the MR/glucocorticoid receptor (GR) balance regulates the activation of the MR pathway. Experimental MR pathway activation using either pharmacological agents or transgenic manipulation favors retinal and choroidal pathology. In various models of retinal diseases, such as glaucomatous neuropathy, retinopathy of prematurity, ischemic retinopathies, diabetic retinopathy and choroidal neovascularization, MR antagonism exerts beneficial effects, demonstrating its potential in the treatment of major blinding retinal diseases. But specific formulations are required to optimize the bioavailability of MR antagonists in various compartments of the eye and molecular biomarkers of MR pathway activation remain to be identify in humans to select patients amenable to clinical trials.
Collapse
Affiliation(s)
- Francine Behar-Cohen
- Assistance Publique - Hôpitaux de Paris, Hôpital Cochin Ophtalmopole, Paris, France.,Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From physiopathology of retinal diseases to clinical advances, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From physiopathology of retinal diseases to clinical advances, Paris, France
| |
Collapse
|
13
|
Comparison of Medical Comorbidity between Patients with Normal-Tension Glaucoma and Primary Open-Angle Glaucoma: A Population-Based Study in Taiwan. Healthcare (Basel) 2021; 9:healthcare9111509. [PMID: 34828558 PMCID: PMC8624536 DOI: 10.3390/healthcare9111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The objective was to investigate different comorbidities developed in normal-tension glaucoma (NTG) and primary open-angle glaucoma (POAG) patients. This was a case-control study, with 1489 people in the NTG group and 5120 people in the POAG group. Patient data were obtained from the Longitudinal Health Insurance Database 2010 (LHID2010) of Taiwan for the 2008-2013 period. The chi-square test was used to compare categorical variables, such as gender, income and urbanisation level, between NTG and POAG patients, and the two-tailed t test was used to compare continuity between the two groups. We use a multivariate logic regression model to assess the risk of each participant. The results are expressed in terms of odds ratio (OR) and 95% confidence intervals (CI). Patients with NTG had significantly higher proportions of hypotension (adjusted OR, 1.984; 95% CI, 1.128-3.490), sleep disturbances (adjusted OR, 1.323; 95% CI, 1.146-1.528), peptic ulcers (adjusted OR, 1.383; 95% CI, 1.188-1.609) and allergic rhinitis (adjusted OR, 1.484; 95% CI, 1.290-1.707) than those with POAG. Conversely, arterial hypertension (adjusted OR, 0.767; 95% CI, 0.660-0.893), diabetes (adjusted OR, 0.850; 95% CI, 0.728-0.993) and atopic dermatitis (adjusted OR, 0.869; 95% CI, 0.763-0.990) had a lower risk in the NTG group than in the POAG group. We found that comorbidities such a hypotension, sleep disturbances and peptic ulcer and allergic rhinitis are more highly associated to NTG than POAG.
Collapse
|
14
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Pablo LE, Polo V, Aragon-Navas A, Garcia-Herranz D, Feijoo JG, Osuna IB, Herrero-Vanrell R, Garcia-Martin E. Influence of Sex on Neuroretinal Degeneration: Six-Month Follow-Up in Rats With Chronic Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34643665 PMCID: PMC8525827 DOI: 10.1167/iovs.62.13.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To evaluate differences by sex in the neuroretina of rats with chronic glaucoma over 24 weeks of follow-up, and to assess by sex the influence on neurodegeneration of different methods of inducing ocular hypertension. Methods Forty-six Long-Evans rats-18 males and 28 females-with induced chronic glaucoma were analyzed. Glaucoma was achieved via 2 models: repeatedly sclerosing the episcleral veins (9 male/14 female) or by injecting poly(lactic-co-glycolic acid) microspheres measuring 20 to 10 µm (Ms20/10) into the anterior chamber (9 male/14 female). The IOP was measured weekly by tonometer; neuroretinal function was recorded by dark/light-adapted electroretinography at baseline and weeks 12 and 24; and structure was analyzed by optical coherence tomography using the retina posterior pole, retinal nerve fiber layer and ganglion cell layer protocols at baseline and weeks 8, 12, 18, and 24. Results Males showed statistically significant (P < 0.05) higher IOP in both chronic glaucoma models, and greater differences were found in the episcleral model at earlier stages. Males with episclerally induced glaucoma showed a statistically higher increase in retinal thickness in optical coherence tomography recordings than females and also when comparing Ms20/10 at 12 weeks. Males showed a higher percentage of retinal nerve fiber layer thickness loss in both models. Ganglion cell layer thickness loss was only detected in the Ms20/10 model. Males exhibited worse dark/light-adapted functionality in chronic glaucoma models, which worsened in the episcleral sclerosis model at 12 weeks, than females. Conclusions Female rats with chronic glaucoma experienced lower IOP and structural loss and better neuroretinal functionality than males. Sex and the ocular hypertension-inducing method influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- Maria J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Luis E Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Vicente Polo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Alba Aragon-Navas
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Julian García Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, UCM, Madrid, Spain
| | - Irene Bravo Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,https://orcid.org/0000-0001-6258-2489
| |
Collapse
|
15
|
The association of primary aldosteronism with glaucoma-related fundus abnormalities. PLoS One 2020; 15:e0242090. [PMID: 33156869 PMCID: PMC7647098 DOI: 10.1371/journal.pone.0242090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose To elucidate glaucoma-related fundus abnormalities in patients with primary aldosteronism (PA). Methods The study compared 272 eyes from 137 PA patients and 352 eyes from 177 control subjects selected randomly from 1173 participants of a public glaucoma screening. The presence of glaucomatous optic disc appearance (rim thinning and cup enlargement) and retinal nerve fiber layer defects (RNFLDs) was determined independently from fundus photographs. The results were compared between the PA and control groups. Results There were 9 patients (6.6%) with glaucomatous optic disc abnormalities in the PA group and 10 cases (5.6%) identified in the control group (p = 0.92). RNFLDs were detected more frequently in the PA group (55 eyes, 20.2%) than in the control group (26 eyes, 7.4%; p<0.001). The two types of RNFLDs were classified as either having their central ends at the disc margin (D) or away from the disc margin and around the retinal vessels (V). Type D and V RNFLDs were detected in 35 (12.9%) and 26 (9.6%) eyes in the PA group and in 25 (7.1%) and 4 (1.1%) eyes in the control group, respectively. Both types of RNFLDs were more frequent in the PA group than in the control group (Type D and V, p = 0.03, <0.001, respectively). Conclusion Although the prevalence of glaucomatous optic disc appearance did not differ between the two groups, RNFLDs were more frequent in PA patients than in the control group. Moreover, RNFLDs with their central ends located around retinal vessels were characteristic of PA patients.
Collapse
|
16
|
Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med 2020; 52:191-206. [PMID: 32308046 PMCID: PMC7877937 DOI: 10.1080/07853890.2020.1758341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
The renin-angiotensin system (RAS) is one of the oldest and most extensively studied human peptide cascades, well-known for its role in regulating blood pressure. When aldosterone is included, RAAS is involved also in fluid and electrolyte homeostasis. There are two main axes of RAAS: (1) Angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (ACE2-Ang(1-7)-MasR), (2) Angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (ACE1-AngII-AT1R). In its entirety, RAAS comprises dozens of angiotensin peptides, peptidases and seven receptors. The first mentioned axis is known to counterbalance the deleterious effects of the latter axis. In addition to the systemic RAAS, tissue-specific regulatory systems have been described in various organs, evidence that RAAS is both an endocrine and an autocrine system. These local regulatory systems, such as the one present in the vascular endothelium, are responsible for long-term regional changes. A local RAAS and its components have been detected in many structures of the human eye. This review focuses on the local ocular RAAS in the anterior part of the eye, its possible role in aqueous humour dynamics and intraocular pressure as well as RAAS as a potential target for anti-glaucomatous drugs.KEY MESSAGESComponents of renin-angiotensin-aldosterone system have been detected in different structures of the human eye, introducing the concept of a local intraocular renin-angiotensin-aldosterone system (RAAS).Evidence is accumulating that the local ocular RAAS is involved in aqueous humour dynamics, regulation of intraocular pressure, neuroprotection and ocular pathology making components of RAAS attractive candidates when developing new effective ways to treat glaucoma.
Collapse
Affiliation(s)
- Mervi Holappa
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Allingham MJ, Mettu PS, Cousins SW. Aldosterone as a mediator of severity in retinal vascular disease: Evidence and potential mechanisms. Exp Eye Res 2019; 188:107788. [PMID: 31479654 PMCID: PMC6802292 DOI: 10.1016/j.exer.2019.107788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) and retinal vein occlusion (RVO) are the two most common retinal vascular diseases and are major causes of vision loss and blindness worldwide. Recent and ongoing development of medical therapies including anti-vascular endothelial growth factor and corticosteroid drugs for treatment of these diseases have greatly improved the care of afflicted patients. However, severe manifestations of retinal vascular disease result in persistent macular edema, progressive retinal ischemia and incomplete visual recovery. Additionally, choroidal vascular diseases including neovascular age-related macular degeneration (NVAMD) and central serous chorioretinopathy (CSCR) cause vision loss for which current treatments are incompletely effective in some cases and highly burdensome in others. In recent years, aldosterone has gained attention as a contributor to the various deleterious effects of retinal and choroidal vascular diseases via a variety of mechanisms in several retinal cell types. The following is a review of the role of aldosterone in retinal and choroidal vascular diseases as well as our current understanding of the mechanisms by which aldosterone mediates these effects.
Collapse
Affiliation(s)
- Michael J Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States.
| | - Priyatham S Mettu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Scott W Cousins
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
18
|
Wilkinson-Berka JL, Suphapimol V, Jerome JR, Deliyanti D, Allingham MJ. Angiotensin II and aldosterone in retinal vasculopathy and inflammation. Exp Eye Res 2019; 187:107766. [PMID: 31425690 DOI: 10.1016/j.exer.2019.107766] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Angiotensin II and aldosterone are the main effectors of the renin-angiotensin aldosterone system (RAAS) and have a central role in hypertension as well as cardiovascular and renal disease. The localization of RAAS components within the retina has led to studies investigating the roles of angiotensin II, aldosterone and the counter regulatory arm of the pathway in vision-threatening retinopathies. This review will provide a brief overview of RAAS components as well as the vascular pathology that develops in the retinal diseases, retinopathy of prematurity, diabetic retinopathy and neovascular age-related macular degeneration. The review will discuss pre-clinical and clinical evidence that modulation of the RAAS alters the development of vasculopathy and inflammation in the aforementioned retinopathies, as well as the emerging role of aldosterone and the mineralocorticoid receptor in central serous chorioretinopathy.
Collapse
Affiliation(s)
- Jennifer L Wilkinson-Berka
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Varaporn Suphapimol
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jack R Jerome
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devy Deliyanti
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
19
|
Takasago Y, Hirooka K, Nakano Y, Kobayashi M, Ono A. Elevated plasma aldosterone levels are associated with a reduction in retinal ganglion cell survival. J Renin Angiotensin Aldosterone Syst 2019; 19:1470320318795001. [PMID: 30129805 PMCID: PMC6104211 DOI: 10.1177/1470320318795001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: The purpose of this article is to investigate the relationship between the plasma concentration of aldosterone and changes in the number of retinal ganglion cells (RGCs) after systemic administration of aldosterone. Methods: An osmotic minipump that was subcutaneously implanted into the midscapular region of rats administered 40, 80 or 160 μg/kg/day aldosterone or vehicle. Enzyme immunoassay kits were used to measure the plasma aldosterone concentrations two weeks after the systemic administration of aldosterone or vehicle. Six weeks after these systemic administrations, the number of RGCs was measured. Results: The plasma aldosterone concentrations at two weeks after systemic administration of vehicle or 160 μg/kg/day aldosterone were 238 ± 17 pg/ml and 1750 ± 151 pg/ml (748.5% ± 183.2%), respectively. There was a significant decrease in the number of RGCs in the central retina of the rats after the administration of either 80 or 160 μg/kg/day aldosterone. In the peripheral retina, however, there was a significant decrease in the number of RGCs in 40, 80 or 160 μg/kg/day aldosterone. There was a significant correlation between the number of RGCs and plasma aldosterone concentration. Conclusions: After systemic administration of aldosterone, there was a negative correlation between the plasma aldosterone concentration and the number of RGCs.
Collapse
Affiliation(s)
- Yukari Takasago
- Department of Ophthalmology, Kagawa University Faculty of Medicine, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology, Kagawa University Faculty of Medicine, Japan
| | - Yuki Nakano
- Department of Ophthalmology, Kagawa University Faculty of Medicine, Japan
| | - Mamoru Kobayashi
- Department of Ophthalmology, Kagawa University Faculty of Medicine, Japan
| | - Aoi Ono
- Department of Ophthalmology, Kagawa University Faculty of Medicine, Japan
| |
Collapse
|
20
|
Gene expression changes in the retina after systemic administration of aldosterone. Jpn J Ophthalmol 2018; 62:499-507. [PMID: 29713904 DOI: 10.1007/s10384-018-0595-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 04/02/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Retinal ganglion cell (RGC) loss associated with thinning of the retinal nerve fiber layer without elevated intraocular pressure (IOP) occurs after the systemic administration of aldosterone. Since it is important to determine the mechanism of cell death independent of the IOP, we examined gene expression changes in the retina after the systemic administration of aldosterone. METHODS Following subcutaneous implantation of an osmotic minipump into the mid-scapular region of rats, we administered an 80 μg/kg/day dose of aldosterone. Differences in the gene expression in the retina between normal rats and aldosterone-treated rats were investigated using microarrays. Real-time PCR was used to confirm the differential expression. RESULTS Analysis of the microarray data sets revealed the upregulation of 24 genes and the downregulation of 24 genes of key apoptosis-specific genes. Real-time PCR revealed 4 genes (Cdkn1a, Tbox5, Pf4, Vdr) were upregulated while 12 genes (Acvr1c, Asns, Bard1, Card9, Crh, Fcgr1a, Inhba, Kcnh8, Lck, Phlda1, Ptprc, Sh3rf1) were downregulated. CONCLUSIONS Significant increases and decreases were noted in several genes after the systemic administration of aldosterone. Further studies will need to be undertaken in order to definitively clarify the role of these genes in the eyes of animals with normal-tension glaucoma.
Collapse
|
21
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
22
|
Prayitnaningsih S, Sujuti H, Effendi M, Abdullah A, Anandita NW, Yohana F, Permatasari N, Widodo MA. Neuropathy optic glaucomatosa induced by systemic hypertension through activation endothelin-1 signaling pathway in central retinal artery in rats. Int J Ophthalmol 2016; 9:1568-1577. [PMID: 27990358 DOI: 10.18240/ijo.2016.11.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022] Open
Abstract
AIM To evaluate effect of hypertension on retinal ganglion cell (RGC) apoptosis, intraocular pressure (IOP), and the activation of endothelin-1 (ET-1) signaling pathway in central retinal artery (CRA) in rats. METHODS The experimental study was performed on 20 male Sprague Dawley rats that were divided into control group, and hypertension groups. The hypertension was induced by subcutaneous deoxycorticoacetate (DOCA) 10 mg/kg twice a week and administered 0.9% NaCl solution daily for 2, 6, and 10wk. Blood pressure (BP) was measured using animal BP analyzer. IOP was measured by handheld tonometry. Retinal tissue preparations by paraffin blocks were made after enucleation. The expression of ET-1, eNOS, ET-1 receptor A (ETRA), ET-1 receptor B (ETRB), and phosphorylated myosin light chain kinase (MLCK), and caldesmon (CaD) in CRA and RGC apoptosis were evaluated through immunofluorescent staining method then observed using laser scanning confocal microscopy. RESULTS BP significantly increased in all of the hypertension groups compared to control (P=0.001). Peak IOP elevation (7.78±4.14 mm Hg) and RGC apoptosis (576.15±33.28 Au) occurred on 2wk of hypertension. ET-1 expression (1238.6±55.1 Au) and eNOS expression (2814.2±70.7 Au) were found highest in 2wk of hypertension, although the ratio of ET-1/eNOS decreased since 2wk. ETRA reached peak expression in 10wk of hypertension (1219.4±6.3 Au), while ETRB significantly increased only in 2 weeks group (1069.2±9.6 Au). The highest MLCK expression (1190.09±58.32 Au), CaD (1670.28±18.36 Au) were also found in 2wk of hypertension. CONCLUSION Hypertension effects to activation of ET-1 signaling pathway significantly in CRA, elevation of IOP, and RGC apoptosis. The highest value was achieved at 2wk, which is the development phase of hypertension.
Collapse
Affiliation(s)
| | - Hidayat Sujuti
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Maksum Effendi
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Aulia Abdullah
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Nanda Wahyu Anandita
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Febriani Yohana
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Nur Permatasari
- Pharmacology Laboratory, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Mohamad Aris Widodo
- Pharmacology Laboratory, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| |
Collapse
|
23
|
Baser H, Cuhaci N, Topaloglu O, Yulek F, Ugurlu N, Ersoy R, Cagil N, Cakir B. Is there any association between primary hyperparathyroidism and ocular changes, such as central corneal thickness, retinal thickness, and intraocular pressure? Endocrine 2016; 51:545-50. [PMID: 26318316 DOI: 10.1007/s12020-015-0724-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Ocular changes are commonly encountered in various endocrine disorders. However, only a few studies have reported ocular changes in patients with primary hyperparathyroidism (PHPT). Here, we examined the central corneal thickness (CCT), retinal thickness (RT), and intraocular pressure (IOP), and their relationships with serum intact parathyroid hormone (iPTH), calcium (Ca), and phosphorus (P) levels in patients with PHPT. Thirty-seven eyes of 37 PHPT patients were compared with 43 eyes of 43 age- and sex-matched normal subjects. A detailed ophthalmologic examination, including CCT, RT, and IOP, was performed. CCT and IOP in PHPT patients were significantly higher than controls (p = 0.024 and p = 0.038, respectively). No statistically significant difference was detected in RT between the two groups (p = 0.730). iPTH levels were positively correlated with CCT and IOP (r = 0.304, p = 0.006 and r = 0.249, p = 0.026, respectively). No significant correlation was found between iPTH levels and RT (p > 0.05), and between serum Ca levels, and RT, CCT, and IOP (all, p > 0.05). While there was a negative correlation between serum P levels and CCT (r = -0.264, p = 0.018), no correlation was observed between serum P levels, and RT and IOP (both, p > 0.05). Using multiple regression analyses, iPTH, serum Ca, and serum P levels were found to have no significant associations with CCT, IOP, and RT (all, p > 0.05). There was no significant association between PHPT, and CCT, RT, and IOP. We postulate that the identification of ocular aspects of PHPT is significant, and further studies related to this condition are required.
Collapse
Affiliation(s)
- Husniye Baser
- Department of Endocrinology and Metabolism, Ataturk Education and Research Hospital, Ankara, Turkey.
- , Ovecler, 1297 Sokak, No. 1/22, 06460, Ankara, Turkey.
| | - Neslihan Cuhaci
- Department of Endocrinology and Metabolism, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Oya Topaloglu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Fatma Yulek
- Department of Ophthalmology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Nagihan Ugurlu
- Department of Ophthalmology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Reyhan Ersoy
- Department of Endocrinology and Metabolism, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Bekir Cakir
- Department of Endocrinology and Metabolism, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
24
|
Yilmaz N, Coban DT, Bayindir A, Erol MK, Ellidag HY, Giray O, Sayrac S, Tekeli SO, Eren E. Higher serum lipids and oxidative stress in patients with normal tension glaucoma, but not pseudoexfoliative glaucoma. Bosn J Basic Med Sci 2016; 16:21-7. [PMID: 26773174 DOI: 10.17305/bjbms.2016.830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 12/31/2022] Open
Abstract
This study entailed a cross-examination of oxidant/antioxidant balance, high-density lipoprotein (HDL)-linked paraoxonase 1 (PON1) phenotypes, and levels of serum routine lipids among patients with normal tension glaucoma (NTG) or pseudoexfoliative glaucoma (PEXG) compared with healthy control groups. We aimed to investigate the links between oxidative stress (OS), HDL-related antioxidant enzyme activities and dyslipidemia in distinct subtypes of glaucoma. The study included 32 patients with NTG, 31 patients with PEXG, and 40 control subjects. Levels of PON1 and arylesterase enzymatic activity, total oxidant status (TOS), and total antioxidant status were measured by spectrophotometry and OS indexes (OSI) were calculated. The phenotype distribution of PON1 was determined using the dual substrate method. Blood serum levels of HDL, low-density lipoprotein, total cholesterol (TC), and triglyceride (TG) were measured. The TOS and OSI values in the NTG group were significantly higher compared with the other groups (both p < 0.01). The phenotype distribution found in the glaucoma and control groups were NTG: QQ, 59.4%; QR, 37.5%; RR, 3.1%; PEXG: QQ, 45.1%; QR, 48.4%; RR, 6.5%; and in the control group: QQ, 42.5%; QR, 50.0%; RR, 7.5%. Serum TC levels were significantly higher than the control in both NTG and PEXG groups, whereas TG was significantly higher in NTG only (p < 0.01 and p < 0.02, respectively). Hyperlipidemia, OS and variations in phenotype distribution of PON1 may play a role in the pathogenesis of different types of glaucoma.
Collapse
Affiliation(s)
- Necat Yilmaz
- Department of Clinical Biochemistry, Central Laboratories of Antalya Training and Research Hospital, Antalya, Turkey,.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
26
|
Mastropasqua R, Fasanella V, Agnifili L, Fresina M, Di Staso S, Di Gregorio A, Marchini G, Ciancaglini M. Advance in the pathogenesis and treatment of normal-tension glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 221:213-32. [PMID: 26518080 DOI: 10.1016/bs.pbr.2015.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Normal-tension glaucoma (NTG) is a multifactorial disease where mechanical stresses and vascular alterations to the optic nerve head probably represent the key pathogenic moments. Although intraocular pressure (IOP) plays a crucial role in the retinal ganglion cell loss, the IOP reduction does not necessarily reduces the disease progression. Therefore, several IOP-independent factors such as glutamate toxicity, oxidative stress, autoimmunity, and vascular dysregulation have been considered in the pathogenesis of NTG. Numerous evidences documented an impairment of the ocular blood flow, involved both in the onset and progression of the disease. The IOP reduction remains the main strategy to reduce the damage progression in NTG. Recently, new treatment strategies have been proposed to improve the control of the disease. Neuroprotection is a rapidly expanding area of research, which represents a promising tool. In the present review, we summarize the recent scientific advancements in the pathogenesis and treatment of NTG.
Collapse
Affiliation(s)
- Rodolfo Mastropasqua
- Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Fasanella
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Luca Agnifili
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Michela Fresina
- Department of Specialist, Diagnostics and Experimental Medicine (DIMES), Ophthalmology Service, University of Bologna, Bologna, Italy
| | - Silvio Di Staso
- Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L'Aquila, L'Aquila, Italy
| | - Angela Di Gregorio
- Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L'Aquila, L'Aquila, Italy
| | - Giorgio Marchini
- Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Ciancaglini
- Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
27
|
Tan C, Hu T, Peng MC, Liu SL, Tong JB, Ouyang W, Le Y. Age of Rats Seriously Affects the Degree of Retinal Damage Induced by Acute High Intraocular Pressure. Curr Eye Res 2014; 40:300-6. [DOI: 10.3109/02713683.2014.922194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|