1
|
Ribeiro MO, Oliveira M, Nogueira V, Costa V, Teixeira V. N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis. Cell Commun Signal 2025; 23:10. [PMID: 39773523 PMCID: PMC11706183 DOI: 10.1186/s12964-024-02007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions. METHODS Quantitative untargeted mass spectrometric proteomic and lipidomic analyses were conducted to examine changes in protein and lipid abundance in wild-type (WT) versus N88S seipin-expressing mutant cells. Differentially expressed proteins were categorized into functional networks to highlight altered protein functions and signaling pathways. Statistical comparisons were made using unpaired Student's t-tests or two-way ANOVA followed by Tukey´s / Šídák's multiple comparisons tests. P-values < 0.05 are considered significant. RESULTS In a well-established yeast model of N88S seipinopathy, misfolded N88S seipin forms IBs and exhibits higher levels of ER stress, leading to decreased cell viability due to increased reactive oxygen species (ROS), oxidative damage, lipid peroxidation, and reduced antioxidant activity. Proteomic and lipidomic analyses revealed alterations in phosphatidic acid (PA) levels, associated with disrupted inositol metabolism and decreased flux towards phospholipid biosynthesis. Importantly, deregulation of lipid metabolism contributed to ER stress beyond N88S seipin misfolding and IB formation. Additionally, the model exhibited deregulated iron (Fe) homeostasis during lifespan. N88S seipin-expressing cells showed impaired ability to cope with iron deficiency. This was linked to changes in the expression of Aft1p-controlled iron regulon genes, including the mRNA-binding protein CTH2 and the high-affinity iron transport system member FET3, in a p38/Hog1p- and Msn2p/Msn4p-dependent manner. Importantly, we unraveled a novel link between inositol metabolism and activation of the iron regulon in cells expressing the N88S seipin mutation. Despite iron accumulation, this was not associated with oxidative stress. CONCLUSIONS The study highlights that the effects of N88S seipin mutation extend beyond protein misfolding, with significant disruptions in lipid metabolism and iron homeostasis. This research marks a substantial advance in understanding and defining the roles of proteins and signaling pathways that contribute to human seipinopathy. Altered cellular processes, as well as potential therapeutic targets and biomarkers, were identified and can be explored in translational studies using human cell models.
Collapse
Affiliation(s)
- Mariana O Ribeiro
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Mafalda Oliveira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Verónica Nogueira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
| | - Vítor Costa
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal
- Department of Molecular Biology, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, School of Medicine and Biomedical Sciences, Universidade Do Porto, Porto, Portugal
| | - Vitor Teixeira
- IBMC - Instituto de Biologia Molecular E Celular, University of Porto, Porto, Portugal.
- Yeast Signalling Networks (YSN), i3S - Instituto de Investigação E Inovação Em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Romer SH, Miller KM, Sonner MJ, Ethridge VT, Gargas NM, Rohan JG. Changes in motor behavior and lumbar motoneuron morphology following repeated chlorpyrifos exposure in rats. PLoS One 2024; 19:e0305173. [PMID: 38875300 PMCID: PMC11178230 DOI: 10.1371/journal.pone.0305173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024] Open
Abstract
Chlorpyrifos is an organophosphate pesticide associated with numerous health effects including motor performance decrements. While many studies have focused on the health effects following acute chlorpyrifos poisonings, almost no studies have examined the effects on motoneurons following occupational-like exposures. The main objective of this study was to examine the broad effects of repeated occupational-like chlorpyrifos exposures on spinal motoneuron soma size relative to motor activity. To execute our objective, adult rats were exposed to chlorpyrifos via oral gavage once a day, five days a week for two weeks. Chlorpyrifos exposure effects were assessed either three days or two months following the last exposure. Three days following the last repeated chlorpyrifos exposure, there were transient effects in open-field motor activity and plasma cholinesterase activity levels. Two months following the chlorpyrifos exposures, there were delayed effects in sensorimotor gating, pro-inflammatory cytokines and spinal lumbar motoneuron soma morphology. Overall, these results offer support that subacute repeated occupational-like chlorpyrifos exposures have both short-term and longer-term effects in motor activity, inflammation, and central nervous system mechanisms.
Collapse
Affiliation(s)
- Shannon H Romer
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Leidos, Reston, VA, United States of America
| | - Kaitlyn M Miller
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, United States of America
| | - Martha J Sonner
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Leidos, Reston, VA, United States of America
| | - Victoria T Ethridge
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
- Leidos, Reston, VA, United States of America
| | - Nathan M Gargas
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
| | - Joyce G Rohan
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Dayton, OH, United States of America
| |
Collapse
|
3
|
Weterman MAJ, Bronk M, Jongejan A, Hoogendijk JE, Krudde J, Karjosukarso D, Goebel HH, Aronica E, Jöbsis GJ, van Ruissen F, van Spaendonck-Zwarts KY, de Visser M, Baas F. Pathogenic variants in three families with distal muscle involvement. Neuromuscul Disord 2023; 33:58-64. [PMID: 36539320 DOI: 10.1016/j.nmd.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Three families suspected of distal hereditary motor neuropathy underwent genetic screening with the aim to identify the molecular defect underlying the disease. The description of the identification reflects the shift in molecular diagnostics that was made during the last decades. Our candidate gene approach yielded a known pathogenic variant in BSCL2 (p.Asn88Ser) in one family, and via a CMT-capture, in HSPB1 (p.Arg127Trp), in addition to five other variations in Charcot-Marie-Tooth-related genes in the proband of the second family. In the third family, using whole exome sequencing, followed by linkage-by-location, a three base pair deletion in exon 33 of MYH7 (p.Glu1508del) was found, a reported pathogenic allele albeit for a myopathy. After identification of the causative molecular defect, cardiac examination was performed for patients of the third family and this demonstrated abnormalities in three out of five affected family members. Heterogeneity and expansion of clinical phenotypes beyond known characteristics requires a wider set of genes to be screened. Whole exome/genome analysis with limited prior clinical information may therefore be used to precede a detailed clinical evaluation in cases of large families, preventing screening of a too narrow set of genes, and enabling the identification of novel disease-associated genes. In our cases, the variants had been reported, and co-segregation analysis confirmed the molecular diagnosis.
Collapse
Affiliation(s)
- Marian A J Weterman
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands.
| | - Marieke Bronk
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Bio-informatics, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Jessica E Hoogendijk
- Department of Neurology, UMC Brain Center, University Medical Center, Utrecht, the Netherlands
| | - Judith Krudde
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Dyah Karjosukarso
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hans H Goebel
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Pathology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - G Joost Jöbsis
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Fred van Ruissen
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Marianne de Visser
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Frank Baas
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands
| |
Collapse
|
4
|
Pellegrini F, Padovano V, Biscarini S, Santini T, Setti A, Galfrè SG, Silenzi V, Vitiello E, Mariani D, Nicoletti C, Torromino G, De Leonibus E, Martone J, Bozzoni I. A KO mouse model for the lncRNA Lhx1os produces motor neuron alterations and locomotor impairment. iScience 2022; 26:105891. [PMID: 36647387 PMCID: PMC9840152 DOI: 10.1016/j.isci.2022.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Here, we describe a conserved motor neuron-specific long non-coding RNA, Lhx1os, whose knockout in mice produces motor impairment and postnatal reduction of mature motor neurons (MNs). The ER stress-response pathway result specifically altered with the downregulation of factors involved in the unfolded protein response (UPR). Lhx1os was found to bind the ER-associated PDIA3 disulfide isomerase and to affect the expression of the same set of genes controlled by this protein, indicating that the two factors act in conjunction to modulate the UPR. Altogether, the observed phenotype and function of Lhx1os indicate its important role in the control of MN homeostasis and function.
Collapse
Affiliation(s)
- Flaminia Pellegrini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Vittorio Padovano
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Biscarini
- Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Giulia Galfrè
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Silenzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Erika Vitiello
- Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Davide Mariani
- Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Carmine Nicoletti
- DAHFMO - Section of Histology and Medical Embryology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Torromino
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Monterotondo, 00015 Rome, Italy
| | - Elvira De Leonibus
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Monterotondo, 00015 Rome, Italy,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Julie Martone
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy,Corresponding author
| | - Irene Bozzoni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy,Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy,Corresponding author
| |
Collapse
|
5
|
Li Y, Yang X, Peng L, Xia Q, Zhang Y, Huang W, Liu T, Jia D. Role of Seipin in Human Diseases and Experimental Animal Models. Biomolecules 2022; 12:biom12060840. [PMID: 35740965 PMCID: PMC9221541 DOI: 10.3390/biom12060840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Seipin, a protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene, is famous for its key role in the biogenesis of lipid droplets and type 2 congenital generalised lipodystrophy (CGL2). BSCL2 gene mutations result in genetic diseases including CGL2, progressive encephalopathy with or without lipodystrophy (also called Celia’s encephalopathy), and BSCL2-associated motor neuron diseases. Abnormal expression of seipin has also been found in hepatic steatosis, neurodegenerative diseases, glioblastoma stroke, cardiac hypertrophy, and other diseases. In the current study, we comprehensively summarise phenotypes, underlying mechanisms, and treatment of human diseases caused by BSCL2 gene mutations, paralleled by animal studies including systemic or specific Bscl2 gene knockout, or Bscl2 gene overexpression. In various animal models representing diseases that are not related to Bscl2 mutations, differential expression patterns and functional roles of seipin are also described. Furthermore, we highlight the potential therapeutic approaches by targeting seipin or its upstream and downstream signalling pathways. Taken together, restoring adipose tissue function and targeting seipin-related pathways are effective strategies for CGL2 treatment. Meanwhile, seipin-related pathways are also considered to have potential therapeutic value in diseases that are not caused by BSCL2 gene mutations.
Collapse
Affiliation(s)
- Yuying Li
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Xinmin Yang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Linrui Peng
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Qing Xia
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Wei Huang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (W.H.); (T.L.)
| | - Tingting Liu
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Correspondence: (W.H.); (T.L.)
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
6
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
7
|
Singh R, Bartok A, Paillard M, Tyburski A, Elliott M, Hajnóczky G. Uncontrolled mitochondrial calcium uptake underlies the pathogenesis of neurodegeneration in MICU1-deficient mice and patients. SCIENCE ADVANCES 2022; 8:eabj4716. [PMID: 35302860 PMCID: PMC8932652 DOI: 10.1126/sciadv.abj4716] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/26/2022] [Indexed: 06/01/2023]
Abstract
Dysregulation of mitochondrial Ca2+ homeostasis has been linked to neurodegenerative diseases. Mitochondrial Ca2+ uptake is mediated via the calcium uniporter complex that is primarily regulated by MICU1, a Ca2+-sensing gatekeeper. Recently, human patients with MICU1 loss-of-function mutations were diagnosed with neuromuscular and cognitive impairments. While studies in patient-derived cells revealed altered mitochondrial calcium signaling, the neuronal pathogenesis was difficult to study. To fill this void, we created a neuron-specific MICU1-KO mouse model. These animals show progressive, abnormal motor and cognitive phenotypes likely caused by the degeneration of motor neurons in the spinal cord and the cortex. We found increased susceptibility to mitochondrial Ca2+ overload-induced excitotoxic insults and cell death in MICU1-KO neurons and MICU1-deficient patient-derived cells, which can be blunted by inhibiting the mitochondrial permeability transition pore. Thus, our study identifies altered neuronal mitochondrial Ca2+ homeostasis as causative in the clinical symptoms of MICU1-deficient patients and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Raghavendra Singh
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Bartok
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Departent of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Melanie Paillard
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ashley Tyburski
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Melanie Elliott
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Nakai H, Fujita Y, Masuda S, Komatsu M, Tani A, Okita Y, Okada K, Kawamoto A. Intravenous injection of adult human bone marrow mesenchymal stromal cells attenuates spinal cord ischemia/reperfusion injury in a murine aortic arch crossclamping model. JTCVS OPEN 2021; 7:23-40. [PMID: 36003746 PMCID: PMC9390396 DOI: 10.1016/j.xjon.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/04/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE We sought to investigate the efficacy of human bone marrow mesenchymal stem/stromal cell (hBM-MSC) in a murine spinal cord ischemia/reperfusion (SCIR) model. METHODS C57BL/6J mice were subjected to SCIR by crossclamping the aortic arch and left subclavian artery for 5.5 minutes. Two hours after reperfusion, hBM-MSCs (hBM-MSC group) or phosphate-buffered saline (control group) were intravenously injected without immunosuppressant. Hindlimb motor function was assessed until day 28 after reperfusion using the Basso Mouse Scale (BMS). The lumbar spinal cord was harvested at hour 24 and day 28, and the histologic number of NeuN-positive motor neurons in 3 cross-sections of each lumbar spinal cord and the gene expression were evaluated. RESULTS BMS score was 0 throughout the study period in all control mice. BMS score was significantly greater in the hBM-MSC group than the control group from hour 8 (P < .05) to day 28 (P < .01). The numbers of motor neurons at hour 24 (P < .01) and day 28 (P < .05) were significantly preserved in the hBM-MSC group than the control group. mRNA expression levels of proinflammatory cytokines were significantly lower (P < .05), and those of insulin-like growth factor-1 (P < .01) and proangiogenic factors (P < .05) were significantly greater in the hBM-MSC group than the control group at hour 24. CONCLUSIONS hBM-MSC therapy may attenuate SCIR injury by preserving motor neurons, at least in part, through inhibition of proinflammatory cytokines and upregulation of proangiogenic factors in the reperfusion-injured spinal cord.
Collapse
Key Words
- BM, bone marrow
- BMS, Basso Mouse Scale
- EV, extracellular vesicle
- IGF-1, insulin-like growth factor-1
- IL-10, interleukin-10
- LSA, left subclavian artery
- PBS, phosphate-buffered saline
- SCI, spinal cord ischemia
- SCIR, spinal cord ischemia/reperfusion
- hBM-MSC, human bone marrow mesenchymal stem/stromal cell
- human bone marrow mesenchymal stromal cells
- mRNA, messenger RNA
- paraplegia
- spinal cord ischemia
- spinal cord reperfusion injury
- thoracic aortic surgery
Collapse
Affiliation(s)
- Hidekazu Nakai
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Fujita
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Satoru Masuda
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Miki Komatsu
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Ayumi Tani
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yutaka Okita
- Cardiovascular Center, Takatsuki General Hospital, Takatsuki, Japan
| | - Kenji Okada
- Division of Cardiovascular Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsuhiko Kawamoto
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
9
|
Mutations and Protein Interaction Landscape Reveal Key Cellular Events Perturbed in Upper Motor Neurons with HSP and PLS. Brain Sci 2021; 11:brainsci11050578. [PMID: 33947096 PMCID: PMC8146506 DOI: 10.3390/brainsci11050578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on protein-protein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.
Collapse
|
10
|
De Paola E, Forcina L, Pelosi L, Pisu S, La Rosa P, Cesari E, Nicoletti C, Madaro L, Mercatelli N, Biamonte F, Nobili A, D'Amelio M, De Bardi M, Volpe E, Caporossi D, Sette C, Musarò A, Paronetto MP. Sam68 splicing regulation contributes to motor unit establishment in the postnatal skeletal muscle. Life Sci Alliance 2020; 3:3/10/e201900637. [PMID: 32753528 PMCID: PMC7409371 DOI: 10.26508/lsa.201900637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Sam68 ensures the establishment of neuromuscular junctions (NMJs) and motor unit integrity by orchestrating a neuronal splicing program. RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68−/− mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68−/− mice correlate with defects in muscle and motor unit integrity. Sam68−/− muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68−/− mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants.
Collapse
Affiliation(s)
- Elisa De Paola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Laura Forcina
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Laura Pelosi
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Simona Pisu
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Piergiorgio La Rosa
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Eleonora Cesari
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmine Nicoletti
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Luca Madaro
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Filippo Biamonte
- Institute of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annalisa Nobili
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marcello D'Amelio
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marco De Bardi
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Elisabetta Volpe
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Claudio Sette
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy .,Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Musarò
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy .,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
11
|
Presynaptic Homeostasis Opposes Disease Progression in Mouse Models of ALS-Like Degeneration: Evidence for Homeostatic Neuroprotection. Neuron 2020; 107:95-111.e6. [PMID: 32380032 DOI: 10.1016/j.neuron.2020.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Progressive synapse loss is an inevitable and insidious part of age-related neurodegenerative disease. Typically, synapse loss precedes symptoms of cognitive and motor decline. This suggests the existence of compensatory mechanisms that can temporarily counteract the effects of ongoing neurodegeneration. Here, we demonstrate that presynaptic homeostatic plasticity (PHP) is induced at degenerating neuromuscular junctions, mediated by an evolutionarily conserved activity of presynaptic ENaC channels in both Drosophila and mouse. To assess the consequence of eliminating PHP in a mouse model of ALS-like degeneration, we generated a motoneuron-specific deletion of Scnn1a, encoding the ENaC channel alpha subunit. We show that Scnn1a is essential for PHP without adversely affecting baseline neural function or lifespan. However, Scnn1a knockout in a degeneration-causing mutant background accelerated motoneuron loss and disease progression to twice the rate observed in littermate controls with intact PHP. We propose a model of neuroprotective homeostatic plasticity, extending organismal lifespan and health span.
Collapse
|
12
|
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. Int J Mol Sci 2019; 20:ijms20163848. [PMID: 31394733 PMCID: PMC6720674 DOI: 10.3390/ijms20163848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
Collapse
|
13
|
Exploring Seipin: From Biochemistry to Bioinformatics Predictions. Int J Cell Biol 2018; 2018:5207608. [PMID: 30402103 PMCID: PMC6192094 DOI: 10.1155/2018/5207608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 01/30/2023] Open
Abstract
Seipin is a nonenzymatic protein encoded by the BSCL2 gene. It is involved in lipodystrophy and seipinopathy diseases. Named in 2001, all seipin functions are still far from being understood. Therefore, we reviewed much of the research, trying to find a pattern that could explain commonly observed features of seipin expression disorders. Likewise, this review shows how this protein seems to have tissue-specific functions. In an integrative view, we conclude by proposing a theoretical model to explain how seipin might be involved in the triacylglycerol synthesis pathway.
Collapse
|
14
|
Zowalaty AEE, Ye X. Seipin deficiency leads to defective parturition in mice. Biol Reprod 2018; 97:378-386. [PMID: 29088395 DOI: 10.1093/biolre/iox088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/10/2017] [Indexed: 01/28/2023] Open
Abstract
Seipin is an integral endoplasmic reticulum membrane protein encoded by Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2/Bscl2) gene. Seipin deficiency results in lipodystrophy, diabetes, muscle hypertrophy, and male infertility in both human and mouse. Seipin function in female reproduction is unknown. Bscl2-/- dams had normal embryo implantation and body weight gain during pregnancy but reduced delivery rates from 2nd to 4th pregnancies and reduced numbers of pups delivered from 1st to 4th pregnancies. Characterization of first pregnancy revealed increased gestation period and parturition problems, including uterine prolapse, difficulty in delivery, undelivered fetuses, and undelivered tissues in Bscl2-/- females. Bscl2-/- uterine weight was comparable to control at 3 weeks old but significantly increased with myometrial hypertrophy at 10 months old. In situ hybridization revealed relatively low level of Bscl2 mRNA expression in myometrium throughout pregnancy and postpartum but high level of expression in uterine luminal epithelium, suggesting that systemic effect (e.g. elevated glucose and insulin levels) rather than local seipin-deficiency in myometrium might be a main contributing factor to myometrial hypertrophy. On near-term gestation day 18.5 (D18.5), Bscl2-/- females had normal levels of serum progesterone and 17β-estradiol, indicating functional ovary and placenta. Proliferating Cell Nuclear Antigen (PCNA) staining showed minimal myometrial cell proliferation in both D18.5 Bscl2+/+ and Bscl2-/- uteri. There was strong LC3 immunostaining in Bscl2+/+ and Bscl2-/- peripartum myometrium and increased LC3 staining in Bscl2-/- peripartum uterine luminal epithelium, suggesting a potential role of seipin in regulating autophagy in uterine luminal epithelium but not myometrium. This study demonstrates an association of seipin with myometrium and parturition.
Collapse
Affiliation(s)
- Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States of America
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.,Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
15
|
Buonvicino D, Felici R, Ranieri G, Caramelli R, Lapucci A, Cavone L, Muzzi M, Di Pietro L, Bernardini C, Zwergel C, Valente S, Mai A, Chiarugi A. Effects of Class II-Selective Histone Deacetylase Inhibitor on Neuromuscular Function and Disease Progression in SOD1-ALS Mice. Neuroscience 2018; 379:228-238. [PMID: 29588251 DOI: 10.1016/j.neuroscience.2018.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that transcriptome alterations due to epigenetic deregulation concur to ALS pathogenesis. Accordingly, pan-histone deacetylase (HDAC) inhibitors delay ALS development in mice, but these compounds failed when tested in ALS patients. Possibly, lack of selectivity toward specific classes of HDACs weakens the therapeutic effects of pan-HDAC inhibitors. Here, we tested the effects of the HDAC Class II selective inhibitor MC1568 on disease evolution, motor neuron survival as well as skeletal muscle function in SOD1G93A mice. We report that HDACs did not undergo expression changes during disease evolution in isolated motor neurons of adult mice. Conversely, increase in specific Class II HDACs (-4, -5 and -6) occurs in skeletal muscle of mice with severe neuromuscular impairment. Importantly, treatment with MC1568 causes early improvement of motor performances that vanishes at later stages of disease. Notably, motor improvement is not paralleled by reduced motor neuron degeneration but by increased skeletal muscle electrical potentials, reduced activation of mir206/FGFBP1-dependent muscle reinnervation signaling, and increased muscle expression of myogenic genes.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | - Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Riccardo Caramelli
- Neurophysiology Unit, Department of Neurology and Psychiatry, Azienda Ospedaliera Careggi, Florence, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Camilla Bernardini
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Clemens Zwergel
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Sergio Valente
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
16
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
17
|
What is "Hyper" in the ALS Hypermetabolism? Mediators Inflamm 2017; 2017:7821672. [PMID: 29081604 PMCID: PMC5610793 DOI: 10.1155/2017/7821672] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
The progressive and fatal loss of upper (brain) and lower (spinal cord) motor neurons and muscle denervation concisely condenses the clinical picture of amyotrophic lateral sclerosis (ALS). Despite the multiple mechanisms believed to underlie the selective loss of motor neurons, ALS aetiology remains elusive and obscure. Likewise, there is also a cluster of alterations in ALS patients in which muscle wasting, body weight loss, eating dysfunction, and abnormal energy dissipation coexist. Defective energy metabolism characterizes the ALS progression, and such paradox of energy balance stands as a challenge for the understanding of ALS pathogenesis. The hypermetabolism in ALS will be examined from tissue-specific energy imbalance (e.g., skeletal muscle) to major energetic pathways (e.g., AMP-activated protein kinase) and whole-body energy alterations including glucose and lipid metabolism, nutrition, and potential involvement of interorgan communication. From the point of view here expressed, the hypermetabolism in ALS should be evaluated as a magnifying glass through which looking at the ALS pathogenesis is from a different perspective in which defective metabolism can disclose novel mechanistic interpretations and lines of intervention.
Collapse
|
18
|
Zhang Y, Long H, Zhou F, Zhu W, Ruan J, Zhao Y, Lu Y. Echinacoside's nigrostriatal dopaminergic protection against 6-OHDA-Induced endoplasmic reticulum stress through reducing the accumulation of Seipin. J Cell Mol Med 2017; 21:3761-3775. [PMID: 28767194 PMCID: PMC5706584 DOI: 10.1111/jcmm.13285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that echinacoside (ECH), a phenylethanoid glycoside found in Cistanche deserticola, has a protective effect against the development of PD. However, the detailed mechanisms of how ECH suppresses neuronal death have not been fully elucidated. In this study, we confirmed that ECH protects nigrostriatal neurons against 6‐hydroxydopamine (6‐OHDA)‐induced endoplasmic reticulum stress (ERS) in vivo and in vitro. ECH rescued cell viability in damaged cells and decreased 6‐OHDA‐induced reactive oxygen species accumulation in vitro. It also rescued tyrosine hydroxylase and dopamine transporter expression in the striatum, and decreased α‐synuclein aggregation following 6‐OHDA treatment in vivo. The validated mechanism of ECH activity was the reduction in the 6‐OHDA‐induced accumulation of seipin (Berardinelli–Seip congenital lipodystrophy 2). Seipin has been shown to be a key molecule related to motor neuron disease and was tightly associated with ERS in a series of in vivo studies. ECH attenuated seipinopathy by promoting seipin degradation via ubiquitination. ERS was relieved by ECH through the Grp94/Bip‐ATF4‐CHOP signal pathway.
Collapse
Affiliation(s)
- Yajie Zhang
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongyan Long
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Pediatrics, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fuqiong Zhou
- Institute of T.C.M., The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weina Zhu
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Ruan
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Zhao
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lu
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Haidar M, Timmerman V. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Front Mol Neurosci 2017; 10:143. [PMID: 28553203 PMCID: PMC5425483 DOI: 10.3389/fnmol.2017.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer's, Parkinson's, and Huntington's diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.
Collapse
Affiliation(s)
- Mansour Haidar
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| |
Collapse
|
20
|
Winter AN, Ross EK, Wilkins HM, Stankiewicz TR, Wallace T, Miller K, Linseman DA. An anthocyanin-enriched extract from strawberries delays disease onset and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutr Neurosci 2017; 21:414-426. [DOI: 10.1080/1028415x.2017.1297023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Aimee N. Winter
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
| | - Erika K. Ross
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
| | - Heather M. Wilkins
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
| | - Trisha R. Stankiewicz
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
| | - Tyler Wallace
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
| | - Keith Miller
- Department of Chemistry and Biochemistry, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
| | - Daniel A. Linseman
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
- Knoebel Institute for Healthy Aging, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA
| |
Collapse
|
21
|
Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice. J Neurosci 2016; 36:1242-53. [PMID: 26818512 DOI: 10.1523/jneurosci.3280-15.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. SIGNIFICANCE STATEMENT Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin deficiency causes deficits in spatial memory and hippocampal LTP induction. Neuronal seipin deficiency selectively suppresses AMPA receptor expression, ERK-CREB phosphorylation with the decline of PPARγ. The PPARγ agonist rosiglitazone can ameliorate spatial cognitive deficits and rescue the LTP induction in seipin knock-out mice by restoring AMPA receptor expression and ERK-CREB activities.
Collapse
|
22
|
Liu X, Xie B, Qi Y, Du X, Wang S, Zhang Y, Paxinos G, Yang H, Liang H. The expression of SEIPIN in the mouse central nervous system. Brain Struct Funct 2015; 221:4111-4127. [PMID: 26621102 DOI: 10.1007/s00429-015-1151-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, NSW, Australia
| | - Beibei Xie
- Department of Gynecology and Obstetrics, Linyi Hospital, Linyi, Shangdong Province, China
| | - Yanfei Qi
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, NSW, Australia
| | - Shaoshi Wang
- Department of Neurology, Shanghai No. 1 People's Hospital, Shanghai, China
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - George Paxinos
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia.,School of Medical Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, NSW, Australia.
| | - Huazheng Liang
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia. .,School of Medical Sciences, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
23
|
|
24
|
Wee K, Yang W, Sugii S, Han W. Towards a mechanistic understanding of lipodystrophy and seipin functions. Biosci Rep 2014; 34:e00141. [PMID: 25195639 PMCID: PMC4182903 DOI: 10.1042/bsr20140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023] Open
Abstract
CGL (Congenital generalized lipodystrophy) is a genetic disorder characterized by near complete loss of adipose tissue along with increased ectopic fat storage in other organs including liver and muscle. Of the four CGL types, BSCL2 (Berardinelli-Seip Congenital lipodystrophy type 2), resulting from mutations in the BSCL2/seipin gene, exhibits the most severe lipodystrophic phenotype with loss of both metabolic and mechanical adipose depots. The majority of Seipin mutations cause C-terminal truncations, along with a handful of point mutations. Seipin localizes to the ER and is composed of a conserved region including a luminal loop and two transmembrane domains, plus cytosolic N- and C-termini. Animal models deficient in seipin recapitulate the human lipodystrophic phenotype. Cells isolated from seipin knockout mouse models also exhibit impaired adipogenesis. Mechanistically, seipin appears to function as a scaffolding protein to bring together interacting partners essential for lipid metabolism and LD (lipid droplet) formation during adipocyte development. Moreover, cell line and genetic studies indicate that seipin functions in a cell-autonomous manner. Here we will provide a brief overview of the genetic association of the CGLs, and focus on the current understanding of differential contributions of distinct seipin domains to lipid storage and adipogenesis. We will also discuss the roles of seipin-interacting partners, including lipin 1 and 14-3-3β, in mediating seipin-dependent regulation of cellular pathways such as actin cytoskeletal remodelling.
Collapse
Key Words
- adipocyte
- lipid droplet
- lipin
- lipolysis
- metabolism
- obesity
- agpat, 1-acylglycerol-3-phosphate-o-acyl-transferase
- bscl, berardinelli–seip congenital lipodystrophy
- c/ebp, ccaat/enhancer binding protein
- candle, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
- cav1, caveolin-1
- cgl, congenital generalized lipodystrophy
- er, endoplasmic reticulum
- hcv, hepatitis c virus
- il-6, interleukin-6
- ld, lipid droplet
- lpa, lysophosphatidic acid
- mef, mouse embryonic fibroblasts
- nfat, nuclear factor of activated t cells
- nsrebp1c, nuclear srebp1c
- pa, phosphatidic acid
- pio, pioglitazone
- pka, protein kinase a
- pparγ, peroxisome proliferator-activated receptor gamma
- ptrf, polymerase i and transcript release factor
- tag, triacylglycerol
- tmds, transmembrane domains
- tnfα, tumor necrosis factor alpha
- wat, white adipose tissue
Collapse
Affiliation(s)
- Kenneth Wee
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wulin Yang
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shigeki Sugii
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- ‡Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Weiping Han
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- †Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- ‡Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
25
|
Zhou L, Yin J, Wang C, Liao J, Liu G, Chen L. Lack of seipin in neurons results in anxiety- and depression-like behaviors via down regulation of PPARγ. Hum Mol Genet 2014; 23:4094-4102. [PMID: 24651066 DOI: 10.1093/hmg/ddu126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Seipin gene was originally found to be responsible for type 2 congenital lipodystrophy and involved in lipid droplet formation. Seipin is highly expressed in the central nervous system as well. Seipin mutations have been identified in motor neuron diseases such as Silver syndrome and spastic paraplegia. In this study, we generated neuron-specific seipin knockout mice (seipin-nKO) to investigate the influence of seipin deficiency on locomotion and affective behaviors. In comparison with control mice, 8-week-old male seipin-nKO mice, but not female mice, displayed anxiety- and depression-like behaviors as assessed by open-field, elevated plus-maze, forced swim and tail suspension tests. However, neither male nor female seipin-nKO mice showed locomotion deficits in swimming tank and rotarod tests. Interestingly, the mRNA and protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) in the hippocampus and cortex were lower in male seipin-nKO mice, but not female mice, than controls. In seipin-nKO mice, plasma levels of sex hormones including 17β-estradiol (E2) in females and testosterone in males as well as corticosterone were not altered compared with controls. The treatment of male seipin-nKO mice with E2 ameliorated the anxiety- and depression-like behaviors and remarkably increased PPARγ levels. The PPARγ agonist rosiglitazone alleviated affective disorders in male seipin-nKO mice. Notably, anxiety- and depression-like behaviors appeared in female seipin-nKO mice after ovariectomy, which was associated with low PPARγ expression. Collectively, these results indicate that neuronal seipin deficiency causing reduced PPARγ levels leads to affective disorders in male mice that are rescued by E2-increased PPARγ expression.
Collapse
Affiliation(s)
- Libin Zhou
- State Key Laboratory of Reproductive Medicine and Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Jun Yin
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Conghui Wang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Jiawei Liao
- Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Beijing 100191, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine and Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
26
|
Wei S, Soh SLY, Xia J, Ong WY, Pang ZP, Han W. Motor neuropathy-associated mutation impairs Seipin functions in neurotransmission. J Neurochem 2014; 129:328-38. [DOI: 10.1111/jnc.12638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Shunhui Wei
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
| | - Stephanie Li-Ying Soh
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
| | - Julia Xia
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
- Child Health Institute of New Jersey; Department of Neuroscience and Cell Biology; Rutgers Robert Wood Johnson Medical School; New Brunswick New Jersey USA
| | - Wei-Yi Ong
- Department of Anatomy; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Zhiping P. Pang
- Child Health Institute of New Jersey; Department of Neuroscience and Cell Biology; Rutgers Robert Wood Johnson Medical School; New Brunswick New Jersey USA
| | - Weiping Han
- Laboratory of Metabolic Medicine; Singapore Bioimaging Consortium, A*STAR; Singapore
- Institute of Molecular and Cell Biology; A*STAR; Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- Cardiovascular and Metabolic Disorders Program; Duke-NUS Graduate Medical School; Singapore
| |
Collapse
|