1
|
Sarji M, Ankawa R, Yampolsky M, Fuchs Y. A near death experience: The secret stem cell life of caspase-3. Semin Cell Dev Biol 2025; 171:103617. [PMID: 40344690 DOI: 10.1016/j.semcdb.2025.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Caspase-3 is known to play a pivotal role in mediating apoptosis, a key programmed cell death pathway. While extensive research has focused on understanding how caspase-3 is activated and functions during apoptosis, emerging evidence has revealed its significant non-apoptotic roles across various cell types, including stem cells. This review explores the critical involvement of caspase-3 in regulating stem cell properties, maintaining stem cell populations, and facilitating tissue regeneration. We also explore the potential pathological consequences of caspase-3 dysfunction in stem cells and cancer cells alongside the therapeutic opportunities of targeting caspase-3.
Collapse
Affiliation(s)
- Mahasen Sarji
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel
| | | | - Yaron Fuchs
- Augmanity, Rehovot, Israel; Elixr Bio, Rehovot, Israel.
| |
Collapse
|
2
|
Shin CH, Rossi M, Mazan-Mamczarz K, Martindale JL, Munk R, Pal A, Piao Y, Fan J, De S, Abdelmohsen K, Gorospe M. Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20. Mol Cell Biol 2025; 45:129-141. [PMID: 39804141 DOI: 10.1080/10985549.2024.2443590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 03/09/2025] Open
Abstract
Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, HNRNPK mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased. The ensuing loss of full-length HNRNPK enhanced cell cycle arrest along with increased DNA damage. Analysis of the RNAs enriched after HNRNPK ribonucleoprotein immunoprecipitation (RIP) revealed a prominent target of HNRNPK, CDC20 mRNA, encoding a protein critical for progression through the G2/M phase of the cell division cycle. Silencing HNRNPK markedly decreased the levels of CDC20 mRNA via reduced transcription and stability of CDC20 mRNA, leading to lower CDC20 protein levels; conversely, overexpressing HNRNPK increased CDC20 production. Depletion of either HNRNPK or CDC20 impaired cell proliferation, with a concomitant reduction in the levels of CDK1, a key kinase for progression through G2/M. Given that overexpressing CDC20 in HNRNPK-silenced cells partly alleviated growth arrest, we propose that the reduction in HNRNPK levels in senescent cells contributed to inhibiting proliferation at least in part by suppressing CDC20 production.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Hou P, Wang X, Wang H, Wang T, Yu Z, Xu C, Zhao Y, Wang W, Zhao Y, Chu F, Chang H, Zhu H, Lu J, Zhang F, Liang X, Li X, Wang S, Gao Y, He H. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy 2023; 19:551-569. [PMID: 35670302 PMCID: PMC9851267 DOI: 10.1080/15548627.2022.2084686] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is closely related to various cellular aspects associated with autophagy. However, how SARS-CoV-2 mediates the subversion of the macroautophagy/autophagy pathway remains largely unclear. In this study, we demonstrate that overexpression of the SARS-CoV-2 ORF7a protein activates LC3-II and leads to the accumulation of autophagosomes in multiple cell lines, while knockdown of the viral ORF7a gene via shRNAs targeting ORF7a sgRNA during SARS-CoV-2 infection decreased autophagy levels. Mechanistically, the ORF7a protein initiates autophagy via the AKT-MTOR-ULK1-mediated pathway, but ORF7a limits the progression of autophagic flux by activating CASP3 (caspase 3) to cleave the SNAP29 protein at aspartic acid residue 30 (D30), ultimately impairing complete autophagy. Importantly, SARS-CoV-2 infection-induced accumulated autophagosomes promote progeny virus production, whereby ORF7a downregulates SNAP29, ultimately resulting in failure of autophagosome fusion with lysosomes to promote viral replication. Taken together, our study reveals a mechanism by which SARS-CoV-2 utilizes the autophagic machinery to facilitate its own propagation via ORF7a.Abbreviations: 3-MA: 3-methyladenine; ACE2: angiotensin converting enzyme 2; ACTB/β-actin: actin beta; ATG7: autophagy related 7; Baf A1: bafilomycin A1; BECN1: beclin 1; CASP3: caspase 3; COVID-19: coronavirus disease 2019; GFP: green fluorescent protein; hpi: hour post-infection; hpt: hour post-transfection; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MERS: Middle East respiratory syndrome; MTOR: mechanistic target of rapamycin kinase; ORF: open reading frame; PARP: poly(ADP-ribose) polymerase; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; shRNAs: short hairpin RNAs; siRNA: small interfering RNA; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TCID50: tissue culture infectious dose; TEM: transmission electron microscopy; TUBB, tubulin, beta; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xuefeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China,CONTACT Hongmei Wang ;; Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong250014, China; Yuwei Gao Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin130122, China; Hongbin He Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan250014, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhangping Yu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunqing Xu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yudong Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenqi Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yong Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Fengyun Chu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huasong Chang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongchao Zhu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jiahui Lu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fuzhen Zhang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xue Liang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xingyu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Malaney P, Benitez O, Zhang X, Post SM. Assessing the role of intrinsic disorder in RNA-binding protein function: hnRNP K as a case study. Methods 2022; 208:59-65. [DOI: 10.1016/j.ymeth.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
|
5
|
Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 2022; 221:213213. [PMID: 35551578 PMCID: PMC9106709 DOI: 10.1083/jcb.202201159] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
Caspase-3 is a widely expressed member of a conserved family of proteins, generally recognized for their activated proteolytic roles in the execution of apoptosis in cells responding to specific extrinsic or intrinsic inducers of this mode of cell death. However, accumulating evidence indicates that caspase-3 also plays key roles in regulating the growth and homeostatic maintenance of both normal and malignant cells and tissues in multicellular organisms. Given that yeast possess an ancestral caspase-like gene suggests that the caspase-3 protein may have acquired different functions later during evolution to better meet the needs of more complex multicellular organisms, but without necessarily losing all of the functions of its ancestral yeast precursor. This review provides an update on what has been learned about these interesting dichotomous roles of caspase-3, their evolution, and their potential relevance to malignant as well as normal cell biology.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada,Correspondence to Connie J. Eaves:
| |
Collapse
|
6
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Naarmann-de Vries IS, Senatore R, Moritz B, Marx G, Urlaub H, Niessing D, Ostareck DH, Ostareck-Lederer A. Methylated HNRNPK acts on RPS19 to regulate ALOX15 synthesis in erythropoiesis. Nucleic Acids Res 2021; 49:3507-3523. [PMID: 33660773 PMCID: PMC8034617 DOI: 10.1093/nar/gkab116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control is essential to safeguard structural and metabolic changes in enucleated reticulocytes during their terminal maturation to functional erythrocytes. The timely synthesis of arachidonate 15-lipoxygenase (ALOX15), which initiates mitochondria degradation at the final stage of reticulocyte maturation is regulated by the multifunctional protein HNRNPK. It constitutes a silencing complex at the ALOX15 mRNA 3′ untranslated region that inhibits translation initiation at the AUG by impeding the joining of ribosomal 60S subunits to 40S subunits. To elucidate how HNRNPK interferes with 80S ribosome assembly, three independent screens were applied. They consistently demonstrated a differential interaction of HNRNPK with RPS19, which is localized at the head of the 40S subunit and extends into its functional center. During induced erythroid maturation of K562 cells, decreasing arginine dimethylation of HNRNPK is linked to a reduced interaction with RPS19 in vitro and in vivo. Dimethylation of residues R256, R258 and R268 in HNRNPK affects its interaction with RPS19. In noninduced K562 cells, RPS19 depletion results in the induction of ALOX15 synthesis and mitochondria degradation. Interestingly, residue W52 in RPS19, which is frequently mutated in Diamond-Blackfan Anemia (DBA), participates in specific HNRNPK binding and is an integral part of a putative aromatic cage.
Collapse
Affiliation(s)
| | - Roberta Senatore
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Bodo Moritz
- Institute of Pharmacy, Faculty of Natural Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| |
Collapse
|
8
|
Velázquez-Cruz A, Baños-Jaime B, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-translational Control of RNA-Binding Proteins and Disease-Related Dysregulation. Front Mol Biosci 2021; 8:658852. [PMID: 33987205 PMCID: PMC8111222 DOI: 10.3389/fmolb.2021.658852] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cell signaling mechanisms modulate gene expression in response to internal and external stimuli. Cellular adaptation requires a precise and coordinated regulation of the transcription and translation processes. The post-transcriptional control of mRNA metabolism is mediated by the so-called RNA-binding proteins (RBPs), which assemble with specific transcripts forming messenger ribonucleoprotein particles of highly dynamic composition. RBPs constitute a class of trans-acting regulatory proteins with affinity for certain consensus elements present in mRNA molecules. However, these regulators are subjected to post-translational modifications (PTMs) that constantly adjust their activity to maintain cell homeostasis. PTMs can dramatically change the subcellular localization, the binding affinity for RNA and protein partners, and the turnover rate of RBPs. Moreover, the ability of many RBPs to undergo phase transition and/or their recruitment to previously formed membrane-less organelles, such as stress granules, is also regulated by specific PTMs. Interestingly, the dysregulation of PTMs in RBPs has been associated with the pathophysiology of many different diseases. Abnormal PTM patterns can lead to the distortion of the physiological role of RBPs due to mislocalization, loss or gain of function, and/or accelerated or disrupted degradation. This Mini Review offers a broad overview of the post-translational regulation of selected RBPs and the involvement of their dysregulation in neurodegenerative disorders, cancer and other pathologies.
Collapse
Affiliation(s)
- Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
9
|
Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 2020; 9:180239. [PMID: 30836866 PMCID: PMC6451366 DOI: 10.1098/rsob.180239] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK), a ubiquitously occurring RNA-binding protein (RBP), can interact with numerous nucleic acids and various proteins and is involved in a number of cellular functions including transcription, translation, splicing, chromatin remodelling, etc. Through its abundant biological functions, hnRNPK has been implicated in cellular events including proliferation, differentiation, apoptosis, DNA damage repair and the stress and immune responses. Thus, it is critical to understand the mechanism of hnRNPK regulation and its downstream effects on cancer and other diseases. A number of recent studies have highlighted that several post-translational modifications (PTMs) possibly play an important role in modulating hnRNPK function. Phosphorylation is the most widely occurring PTM in hnRNPK. For example, in vivo analyses of sites such as S116 and S284 illustrate the purpose of PTM of hnRNPK in altering its subcellular localization and its ability to bind target nucleic acids or proteins. Other PTMs such as methylation, ubiquitination, sumoylation, glycosylation and proteolytic cleavage are increasingly implicated in the regulation of DNA repair, cellular stresses and tumour growth. In this review, we describe the PTMs that impact upon hnRNPK function on gene expression programmes and different disease states. This knowledge is key in allowing us to better understand the mechanism of hnRNPK regulation.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Wei Wu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Qiu Han
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Cencen Li
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| |
Collapse
|
10
|
Jiang H, Hou P, He H, Wang H. Cell apoptosis regulated by interaction between viral gene alpha 3 and host heterogeneous nuclear ribonucleoprotein K facilitates bovine ephemeral fever virus replication. Vet Microbiol 2020; 240:108510. [DOI: 10.1016/j.vetmic.2019.108510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
|
11
|
Ostareck DH, Ostareck-Lederer A. RNA-Binding Proteins in the Control of LPS-Induced Macrophage Response. Front Genet 2019; 10:31. [PMID: 30778370 PMCID: PMC6369361 DOI: 10.3389/fgene.2019.00031] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immune response is triggered by pathogen components, like lipopolysaccharides (LPS) of gram-negative bacteria. LPS initiates Toll-like receptor 4 (TLR4) signaling, which involves mitogen activated protein kinases (MAPK) and nuclear factor kappa B (NFκB) in different pathway branches and ultimately induces inflammatory cytokine and chemokine expression, macrophage migration and phagocytosis. Timely gene transcription and post-transcriptional control of gene expression confer the adequate synthesis of signaling molecules. As trans-acting factors RNA binding proteins (RBPs) contribute significantly to the surveillance of gene expression. RBPs are involved in the regulation of mRNA processing, localization, stability and translation. Thereby they enable rapid cellular responses to inflammatory mediators and facilitate a coordinated systemic immune response. Specific RBP binding to conserved sequence motifs in their target mRNAs is mediated by RNA binding domains, like Zink-finger domains, RNA recognition motifs (RRM), and hnRNP K homology domains (KH), often arranged in modular arrays. In this review, we focus on RBPs Tristetraprolin (TTP), human antigen R (HUR), T-cell intracellular antigen 1 related protein (TIAR), and heterogeneous ribonuclear protein K (hnRNP K) in LPS induced macrophages as primary responding immune cells. We discuss recent experiments employing RNA immunoprecipitation and microarray analysis (RIP-Chip) and newly developed individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP), photoactivatable ribonucleoside-enhanced crosslinking (PAR-iCLIP) and RNA sequencing techniques (RNA-Seq). The global mRNA interaction profile analysis of TTP, HUR, TIAR, and hnRNP K exhibited valuable information about the post-transcriptional control of inflammation related gene expression with a broad impact on intracellular signaling and temporal cytokine expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
12
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Gallardo M, Hornbaker MJ, Zhang X, Hu P, Bueso-Ramos C, Post SM. Aberrant hnRNP K expression: All roads lead to cancer. Cell Cycle 2017; 15:1552-7. [PMID: 27049467 DOI: 10.1080/15384101.2016.1164372] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The classification of a gene as an oncogene or a tumor suppressor has been a staple of cancer biology for decades. However, as we delve deeper into the biology of these genes, this simple classification has become increasingly difficult for some. In the case of heterogeneous nuclear ribonuclear protein K (hnRNP K), its role as a tumor suppressor has recently been described in acute myeloid leukemia and demonstrated in a haploinsufficient mouse model. In contrast, data from other clinical correlation studies suggest that hnRNP K may be more fittingly described as an oncogene, due to its increased levels in a variety of malignancies. hnRNP K is a multifunctional protein that can regulate both oncogenic and tumor suppressive pathways through a bevy of chromatin-, DNA-, RNA-, and protein-mediated activates, suggesting its aberrant expression may have broad-reaching cellular impacts. In this review, we highlight our current understanding of hnRNP K, with particular emphasis on its apparently dichotomous roles in tumorigenesis.
Collapse
Affiliation(s)
- Miguel Gallardo
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marisa J Hornbaker
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| | - Xiaorui Zhang
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Peter Hu
- c School of Health Professions, The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Carlos Bueso-Ramos
- d Department of Hematopathology , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Sean M Post
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
14
|
Solier S, Fontenay M, Vainchenker W, Droin N, Solary E. Non-apoptotic functions of caspases in myeloid cell differentiation. Cell Death Differ 2017; 24:1337-1347. [PMID: 28211870 DOI: 10.1038/cdd.2017.19] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/26/2022] Open
Abstract
Subtle caspase activation is associated with the differentiation of several myeloid lineages. A tightly orchestrated dance between caspase-3 activation and the chaperone HSP70 that migrates to the nucleus to protect the master regulator GATA-1 from cleavage transiently occurs in basophilic erythroblasts and may prepare nucleus and organelle expel that occurs at the terminal phase of erythroid differentiation. A spatially restricted activation of caspase-3 occurs in maturing megakaryocytes to promote proplatelet maturation and platelet shedding in the bloodstream. In a situation of acute platelet need, caspase-3 could be activated in response to IL-1α and promote megakaryocyte rupture. In peripheral blood monocytes, colony-stimulating factor-1 provokes the formation of a molecular platform in which caspase-8 is activated, which downregulates nuclear factor-kappa B (NF-κB) activity and activates downstream caspases whose target fragments such as those generated by nucleophosmin (NPM1) cleavage contribute to the generation of resting macrophages. Human monocytes secrete mature IL-1β in response to lipopolysaccharide through an alternative inflammasome activation that involves caspase-8, a pathway that does not lead to cell death. Finally, active caspase-3 is part of the proteases contained in secretory granules of mast cells. Many questions remain on how these proteases are activated in myeloid cell lineages, which target proteins are cleaved, whereas other are protected from proteolysis, the precise role of cleaved proteins in cell differentiation and functions, and the link between these non-apoptotic functions of caspases and the death of these diverse cell types. Better understanding of these functions may generate therapeutic strategies to control cytopenias or modulate myeloid cell functions in various pathological situations.
Collapse
Affiliation(s)
- Stéphanie Solier
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France
| | - Michaela Fontenay
- INSERM U1016, Institut Cochin, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre, Paris, France
| | - William Vainchenker
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France
| | - Eric Solary
- Inserm U1170, Université Paris-Sud, Faculté de Médecine Paris-Sud, Gustave Roussy, Villejuif, France.,Department of Hematology, Gustave Roussy, Villejuif, France
| |
Collapse
|
15
|
Pak V, Eifler TT, Jäger S, Krogan NJ, Fujinaga K, Peterlin BM. CDK11 in TREX/THOC Regulates HIV mRNA 3' End Processing. Cell Host Microbe 2016; 18:560-70. [PMID: 26567509 DOI: 10.1016/j.chom.2015.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Transcriptional cyclin-dependent kinases play important roles in eukaryotic gene expression. CDK7, CDK9 (P-TEFb), and CDK13 are also critical for HIV replication. However, the function of CDK11 remained enigmatic. In this report, we determined that CDK11 regulates the cleavage and polyadenylation (CPA) of all viral transcripts. CDK11 was found associated with the TREX/THOC, which recruited this kinase to DNA. Once at the viral genome, CDK11 phosphorylated serines at position 2 in the CTD of RNAPII, which increased levels of CPA factors at the HIV 3' end. In its absence, cleavage of viral transcripts was greatly attenuated. In contrast, higher levels of CDK11 increased the length of HIV poly(A) tails and the stability of mature viral transcripts. We conclude that CDK11 plays a critical role for the cotranscriptional processing of all HIV mRNA species.
Collapse
Affiliation(s)
- Vladimir Pak
- Departments of Medicine, Microbiology, and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Tristan T Eifler
- Departments of Medicine, Microbiology, and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Stefanie Jäger
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA, 94143, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA, 94143, USA
| | - Koh Fujinaga
- Departments of Medicine, Microbiology, and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology, and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Naarmann-de Vries IS, Brendle A, Bähr-Ivacevic T, Benes V, Ostareck DH, Ostareck-Lederer A. Translational control mediated by hnRNP K links NMHC IIA to erythroid enucleation. J Cell Sci 2016; 129:1141-54. [PMID: 26823606 DOI: 10.1242/jcs.174995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional regulation is crucial for structural and functional alterations in erythropoiesis. Enucleation of erythroid progenitors precedes reticulocyte release into circulation. In enucleated cells, reticulocyte 15-lipoxygenase (r15-LOX, also known as ALOX15) initiates mitochondria degradation. Regulation of r15-LOX mRNA translation by hnRNP K determines timely r15-LOX synthesis in terminal maturation. K562 cells induced for erythroid maturation recapitulate enucleation and mitochondria degradation. HnRNP K depletion from maturing K562 cells results in enhanced enucleation, which even occurs independently of maturation. We performed RIP-Chip analysis to identify hnRNP K-interacting RNAs comprehensively. Non-muscle myosin heavy chain (NMHC) IIA (also known as MYH9) mRNA co-purified with hnRNP K from non-induced K562 cells, but not from mature cells. NMHC IIA protein increase in erythroid maturation at constant NMHC IIA mRNA levels indicates post-transcriptional regulation. We demonstrate that binding of hnRNP K KH domain 3 to a specific sequence element in the NMHC IIA mRNA 3'UTR mediates translation regulation in vitro Importantly, elevated NMHC IIA expression results in erythroid-maturation-independent enucleation as shown for hnRNP K depletion. Our data provide evidence that hnRNP-K-mediated regulation of NMHC IIA mRNA translation contributes to the control of enucleation in erythropoiesis.
Collapse
Affiliation(s)
- Isabel S Naarmann-de Vries
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Annika Brendle
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Tomi Bähr-Ivacevic
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Dirk H Ostareck
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|
17
|
Maury JJP, EL Farran CA, Ng D, Loh YH, Bi X, Bardor M, Choo ABH. RING1B O-GlcNAcylation regulates gene targeting of polycomb repressive complex 1 in human embryonic stem cells. Stem Cell Res 2015; 15:182-9. [DOI: 10.1016/j.scr.2015.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/25/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022] Open
|
18
|
Moritz B, Lilie H, Naarmann-de Vries IS, Urlaub H, Wahle E, Ostareck-Lederer A, Ostareck DH. Biophysical and biochemical analysis of hnRNP K: arginine methylation, reversible aggregation and combinatorial binding to nucleic acids. Biol Chem 2015; 395:837-53. [PMID: 25003387 DOI: 10.1515/hsz-2014-0146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/20/2014] [Indexed: 12/17/2022]
Abstract
Abstract Analysis of arginine methylation, which affects specific protein interactions in eukaryotic cells, requires access to methylated protein for biophysical and biochemical studies. Methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon co-expression with protein arginine methyltransferase 1 in E. coli was monitored by mass spectrometry and found to be identical to the modification of hnRNP K purified from mammalian cells. Recombinant non-methylated and arginine-methylated hnRNP K (MethnRNP K) were used to characterize self-aggregation and nucleic acid binding. Analytical ultracentrifugation and static light scattering experiments revealed that hnRNP K methylation does not impact reversible self-aggregation, which can be prevented by high ionic strength and organic additives. Filter binding assays were used to compare the binding of non-methylated and MethnRNP K to the pyrimidine repeat-containing differentiation control element (DICE) of reticulocyte 15-lipoxygenase mRNA 3' UTR. No affinity differences were detected for both hnRNP K variants. A series of oligonucleotides carrying various numbers of C4 motifs at different positions was used in steady state competition assays with fluorescently-labeled functional differentiation control element (2R). Quantitative evaluation indicated that all hnRNP K homology domains of hnRNP K contribute differentially to RNA binding, with KH1-KH2 acting as a tandem domain and KH3 as an individual binding domain.
Collapse
|
19
|
Wang K, Yan R, Cooper KF, Strich R. Cyclin C mediates stress-induced mitochondrial fission and apoptosis. Mol Biol Cell 2015; 26:1030-43. [PMID: 25609094 PMCID: PMC4357504 DOI: 10.1091/mbc.e14-08-1315] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo constant fission and fusion cycles. In response to cellular damage, this balance is shifted dramatically toward fission. Cyclin C-Cdk8 kinase regulates transcription of diverse gene sets. Using knockout mouse embryonic fibroblasts (MEFs), we demonstrate that cyclin C directs the extensive mitochondrial scission induced by the anticancer drug cisplatin or oxidative stress. This activity is independent of transcriptional regulation, as Cdk8 is not required for this activity. Furthermore, adding purified cyclin C to unstressed permeabilized MEF cultures induced complete mitochondrial fragmentation that was dependent on the fission factors Drp1 and Mff. To regulate fission, a portion of cyclin C translocates from the nucleus to the cytoplasm, where it associates with Drp1 and is required for its enhanced mitochondrial activity in oxidatively stressed cells. In addition, although HeLa cells regulate cyclin C in a manner similar to MEF cells, U2OS osteosarcoma cultures display constitutively cytoplasmic cyclin C and semifragmented mitochondria. Finally, cyclin C, but not Cdk8, is required for loss of mitochondrial outer membrane permeability and apoptosis in cells treated with cisplatin. In conclusion, this study suggests that cyclin C connects stress-induced mitochondrial hyperfission and programmed cell death in mammalian cells.
Collapse
Affiliation(s)
- Kun Wang
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| | - Ruilan Yan
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| | - Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08055
| |
Collapse
|
20
|
Yang JH, Chiou YY, Fu SL, Shih IY, Weng TH, Lin WJ, Lin CH. Arginine methylation of hnRNPK negatively modulates apoptosis upon DNA damage through local regulation of phosphorylation. Nucleic Acids Res 2014; 42:9908-24. [PMID: 25104022 PMCID: PMC4150800 DOI: 10.1093/nar/gku705] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Yi-Ying Chiou
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Yun Shih
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Tsai-Hsuan Weng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan Proteomics Research Center, National Yang Ming University, Taipei 11221, Taiwan
| |
Collapse
|
21
|
Liepelt A, Mossanen JC, Denecke B, Heymann F, De Santis R, Tacke F, Marx G, Ostareck DH, Ostareck-Lederer A. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. RNA (NEW YORK, N.Y.) 2014; 20:899-911. [PMID: 24751651 PMCID: PMC4024643 DOI: 10.1261/rna.042788.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/14/2014] [Indexed: 05/22/2023]
Abstract
Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-β-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3' UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-α, IL-1β, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3' UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response.
Collapse
Affiliation(s)
- Anke Liepelt
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Jana C. Mossanen
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernd Denecke
- Chip Facility, IZKF Aachen, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix Heymann
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Rebecca De Santis
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Dirk H. Ostareck
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| |
Collapse
|
22
|
Wang H, Hu H, Zhang Q, Yang Y, Li Y, Hu Y, Ruan X, Yang Y, Zhang Z, Shu C, Yan J, Wakeland EK, Li Q, Hu S, Fang X. Dynamic transcriptomes of human myeloid leukemia cells. Genomics 2013; 102:250-6. [DOI: 10.1016/j.ygeno.2013.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
|
23
|
Functions of heterogeneous nuclear ribonucleoproteins in stem cell potency and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:623978. [PMID: 23984388 PMCID: PMC3745930 DOI: 10.1155/2013/623978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022]
Abstract
Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.
Collapse
|