1
|
Suh HN, Choi GE. Wnt signaling in the tumor microenvironment: A driver of brain tumor dynamics. Life Sci 2024; 358:123174. [PMID: 39471897 DOI: 10.1016/j.lfs.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The Wnt signaling pathway is important for cell growth and development in the central nervous system and its associated vasculature. Thus, it is an interesting factor for establishing anti-brain cancer therapy. However, simply inhibiting the Wnt signaling pathway in patients with brain tumors is not an effective anti-cancer therapy. Due to their complex microenvironment, which comprises various cell types and signaling molecules, brain tumors pose significant challenges. It is important to understand the interplay between tumor cells and the microenvironment for developing effective therapeutic strategies for both benign and malignant brain tumors. Thus, this research focused on the role of the tumor microenvironment (TME) in brain tumor progression, particularly the involvement of Wnt-dependent signaling pathways. The brain parenchyma comprises neurons, glia, endothelial cells, and other extracellular matrix elements that can contribute to the TME. The TME components can secrete Wnt ligands or associated molecules, resulting in the aberrant activation of the Wnt signaling pathway, followed by tumor progression and therapeutic resistance. Therefore, it is essential to understand the intricate crosstalk between the Wnt signaling pathway and the TME in developing targeted therapies. This review aimed to elucidate the complexities of the brain TME and its interactions with the Wnt signaling pathways to improve treatment outcomes and our understanding of brain tumor biology.
Collapse
Affiliation(s)
- Han Na Suh
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeonbukdo 56212, Republic of Korea.
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
2
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
3
|
Kimura TDC, Scarini JF, Lavareze L, Kowalski LP, Coutinho-Camillo CM, Krepischi ACV, Egal ESA, Altemani A, Mariano FV. MicroRNA copy number alterations in the malignant transformation of pleomorphic adenoma to carcinoma ex pleomorphic adenoma. Head Neck 2024; 46:985-1000. [PMID: 38482546 DOI: 10.1002/hed.27717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE This study used array comparative genomic hybridization to assess copy number alterations (CNAs) involving miRNA genes in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA), residual PA, and carcinoma ex pleomorphic adenoma (CXPA). MATERIALS AND METHODS We analyzed 13 PA, 4 RPA, 29 CXPA, and 14 residual PA using Nexus Copy Number Discovery software. The miRNAs genes affected by CNAs were evaluated based on their expression patterns and subjected to pathway enrichment analysis. RESULTS Across the groups, we found 216 CNAs affecting 2261 miRNA genes, with 117 in PA, 59 in RPA, 846 in residual PA, and 2555 in CXPA. The chromosome 8 showed higher involvement in altered miRNAs in PAs and CXPA patients. Six miRNA genes were shared among all groups. Additionally, miR-21, miR-455-3p, miR-140, miR-320a, miR-383, miR-598, and miR-486 were prominent CNAs found and is implicated in carcinogenesis of several malignant tumors. These miRNAs regulate critical signaling pathways such as aerobic glycolysis, fatty acid biosynthesis, and cancer-related pathways. CONCLUSION This study was the first to explore CNAs in miRNA-encoding genes in the PA-CXPA sequence. The findings suggest the involvement of numerous miRNA genes in CXPA development and progression by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Kimura TDC, de Lima-Souza RA, Maciel TF, Kowalski LP, Coutinho-Camillo CM, Egal ESA, Altemani A, Mariano FV. Dynamic Role of miRNAs in Salivary Gland Carcinomas: From Biomarkers to Therapeutic Targets. Head Neck Pathol 2024; 18:12. [PMID: 38393615 PMCID: PMC10891027 DOI: 10.1007/s12105-023-01603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Salivary gland carcinomas (SGCs) are a rare group of malignant neoplasms of the head and neck region. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been associated with the control biological process and oncogenic mechanism by the regulation of gene expression at the post-transcriptional level. Recent evidence has suggested that miRNA expression may play a role in the tumorigenesis and carcinogenesis process in SGCs. METHODS This review provides a comprehensive literature review of the role of miRNAs expression in SGCs focusing on the diagnostic, prognostic, and therapeutic applications. RESULTS In this review, numerous dysregulated miRNAs have demonstrated an oncogenic and suppressor role in SGCs. CONCLUSION In the future, these miRNAs may eventually constitute useful diagnostic and prognostic biomarkers that may lead to a better understanding of SGCs oncogenesis. Additionally, the development of therapeutic agents based on miRNAs may be a promising target in SGC treatment.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Tayná Figueiredo Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
5
|
Sen P, Roy Acharyya S, Arora A, Ghosh SS. An in-silico approach to understand the potential role of Wnt inhibitory factor-1 (WIF-1) in the inhibition of the Wnt signalling pathway. J Biomol Struct Dyn 2024; 42:326-345. [PMID: 36995086 DOI: 10.1080/07391102.2023.2192810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/12/2023] [Indexed: 03/31/2023]
Abstract
WIF1 (Wnt inhibitory factor 1) is a potent tumour suppressor gene which is epigenetically silenced in numerous malignancies. The associations of WIF1 protein with the Wnt pathway molecules have not been fully explored, despite their involvement in the downregulation of several malignancies. In the present study, a computational approach encompassing the expression, gene ontology analysis and pathway analysis is employed to obtain an insight into the role of the WIF1 protein. Moreover, the interaction of the WIF1 domain with the Wnt pathway molecules was carried out to ascertain the tumour-suppressive role of the domain, along with the determination of their plausible interactions. Initially, the protein-protein interaction network analysis endowed us with the Wnt ligands (such as Wnt1, Wnt3a, Wnt4, Wnt5a, Wnt8a and Wnt9a), along with the Frizzled receptors (Fzd1 and Fzd2) and the low-density lipoprotein complex (Lrp5/6) as the foremost interactors of the protein. Further, the expression analysis of the aforementioned genes and proteins was determined using The Cancer Genome Atlas to comprehend the significance of the signalling molecules in the major cancer subtypes. Moreover, the associations of the aforementioned macromolecular entities with the WIF1 domain were explored using the molecular docking studies, whereas the dynamics and stability of the assemblage were investigated using 100 ns molecular dynamics simulations. Therefore, providing us insights into the plausible roles of WIF1 in inhibiting the Wnt pathways in various malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Suchandra Roy Acharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
6
|
Pećina-Šlaus N, Aničić S, Bukovac A, Kafka A. Wnt Signaling Inhibitors and Their Promising Role in Tumor Treatment. Int J Mol Sci 2023; 24:ijms24076733. [PMID: 37047705 PMCID: PMC10095594 DOI: 10.3390/ijms24076733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In a continuous search for the improvement of antitumor therapies, the inhibition of the Wnt signaling pathway has been recognized as a promising target. The altered functioning of the Wnt signaling in human tumors points to the strategy of the inhibition of its activity that would impact the clinical outcomes and survival of patients. Because the Wnt pathway is often mutated or epigenetically altered in tumors, which promotes its activation, inhibitors of Wnt signaling are being intensively investigated. It has been shown that knocking down specific components of the Wnt pathway has inhibitory effects on tumor growth in vivo and in vitro. Thus, similar effects are expected from the application of Wnt inhibitors. In the last decades, molecules acting as inhibitors on the pathway’s specific molecular levels have been identified and characterized. This review will discuss the inhibitors of the canonical Wnt pathway, summarize knowledge on their effectiveness as therapeutics, and debate their side effects. The role of the components frequently mutated in various tumors that are principal targets for Wnt inhibitors is also going to be brought to the reader’s attention. Some of the molecules identified as Wnt pathway inhibitors have reached early stages of clinical trials, and some have only just been discovered. All things considered, inhibition of the Wnt signaling pathway shows potential for the development of future therapies.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anja Bukovac
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
8
|
Gor R, Ramachandran I, Ramalingam S. Targeting the Cancer Stem Cells in Endocrine Cancers with Phytochemicals. Curr Top Med Chem 2022; 22:2589-2597. [PMID: 36380414 DOI: 10.2174/1567205020666221114112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Endocrine cancer is an uncontrolled growth of cells in the hormone-producing glands. Endocrine cancers include the adrenal, thyroid, parathyroid, pancreas, pituitary, and ovary malignancy. Recently, there is an increase in the incidence of the most common endocrine cancer types, namely pancreatic and thyroid cancers. Cancer stem cells (CSCs) of endocrine tumors have received more attention due to their role in cancer progression, therapeutic resistance, and cancer relapse. Phytochemicals provide several health benefits and are effective in the treatment of various diseases including cancer. Therefore, finding the natural phytochemicals that target the CSCs will help to improve cancer patients' prognosis and life expectancy. Phytochemicals have been shown to have anticancer properties and are very effective in treating various cancer types. Curcumin is a common polyphenol found in turmeric, which has been shown to promote cellular drug accumulation and increase the effectiveness of chemotherapy. Moreover, various other phytochemicals such as resveratrol, genistein, and apigenin are effective against different endocrine cancers by regulating the CSCs. Thus, phytochemicals have emerged as chemotherapeutics that may have significance in preventing and treating the endocrine cancers.
Collapse
Affiliation(s)
- Ravi Gor
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| |
Collapse
|
9
|
Boda E, Lorenzati M, Parolisi R, Harding B, Pallavicini G, Bonfanti L, Moccia A, Bielas S, Di Cunto F, Buffo A. Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nat Commun 2022; 13:2331. [PMID: 35484145 PMCID: PMC9051058 DOI: 10.1038/s41467-022-30010-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
In the developing mouse forebrain, temporally distinct waves of oligodendrocyte progenitor cells (OPCs) arise from different germinal zones and eventually populate either dorsal or ventral regions, where they present as transcriptionally and functionally equivalent cells. Despite that, developmental heterogeneity influences adult OPC responses upon demyelination. Here we show that accumulation of DNA damage due to ablation of citron-kinase or cisplatin treatment cell-autonomously disrupts OPC fate, resulting in cell death and senescence in the dorsal and ventral subsets, respectively. Such alternative fates are associated with distinct developmental origins of OPCs, and with a different activation of NRF2-mediated anti-oxidant responses. These data indicate that, upon injury, dorsal and ventral OPC subsets show functional and molecular diversity that can make them differentially vulnerable to pathological conditions associated with DNA damage.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy.
| | - Martina Lorenzati
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Brian Harding
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gianmarco Pallavicini
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Amanda Moccia
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ferdinando Di Cunto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, IT-10043, Orbassano (Turin), Italy
| |
Collapse
|
10
|
Kedhari Sundaram M, Almutary AG, Alsulimani A, Rehan Ahmad S, Somvanshi P, Bhardwaj T, Pellicano R, Fagoonee S, Hussain A, Haque S. Antineoplastic action of sulforaphane on HeLa cells by modulation of signaling pathways and epigenetic pathways. Minerva Med 2021; 112:792-803. [PMID: 34114450 DOI: 10.23736/s0026-4806.21.07656-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Epigenetic modifications alter signaling and molecular pathways; moreover, they are an important therapeutic target. This study examined the effect of sulforaphane on molecular targets in HeLa cells. METHODS Quantitative PCR of various molecular targets was performed. Activity of epigenetic enzymes was measured by ELISA and molecular docking analysis was conducted. Promoter methylation of some tumor suppressor genes was quantified using PCR based methylation array. In-silico protein-protein interaction network analysis was performed to understand the effect of transcriptional changes. RESULTS Quantitative PCR demonstrated the transcriptional modulation of genes involved in proliferation, metastasis, inflammation, signal transduction pathways and chromatin modifiers. Sulforaphane reduced the enzymatic activity of DNA methyl transferases, histone deacetylases and histone methyltransferases. Molecular docking results suggest that sulforaphane competitively inhibited several DNA methyl transferases and histone deacetylases. Promoter 5'CpG methylation levels of selected tumor suppressor genes was found to be reduced which correlated with their transcriptional increase as well modulation of epigenetic enzymes. Further, protein-protein interaction network analysis discerned the participation of genes towards cancer pathways. Functional enrichment and pathway-based analysis represented the modulation of epigenetic and signaling pathways on sulforaphane treatment. CONCLUSIONS The modulation in transcriptional status of epigenetic regulators, genes involved in tumorigenesis resulting in tumor suppressor genes demethylation and re-expression underscores the mechanism behind the anticancer effect of sulforaphane on HeLa cells.
Collapse
Affiliation(s)
| | - Abdulmajeed G Almutary
- College of Applied Medical Sciences, Department of Medical Biotechnology, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Alsulimani
- College of Applied Medical Sciences, Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
| | | | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, India
- Special Centre of Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, India
| | - Tulika Bhardwaj
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, India
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates -
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey
| |
Collapse
|
11
|
Liu X, Shan W, Li T, Gao X, Kong F, You H, Kong D, Qiao S, Tang R. Cellular retinol binding protein-1 inhibits cancer stemness via upregulating WIF1 to suppress Wnt/β-catenin pathway in hepatocellular carcinoma. BMC Cancer 2021; 21:1224. [PMID: 34775955 PMCID: PMC8590789 DOI: 10.1186/s12885-021-08967-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background CRBP-1, a cytosolic chaperone of vitamin A, is identified in a serious number of cancers; however, its biological role in hepatocellular carcinoma (HCC) needs to be further explored. The aim of our present study is to explore the roles and mechanisms of CRBP-1 in regulating liver cancer by using in vitro and in vivo biology approaches. Methods The expression level of CRBP-1 was detected using immunohistochemistry in HCC and matching adjacent non-tumorous liver tissues. Following established stable CRBP-1 overexpressed HCC cell lines, the cell growth and tumorigenicity were investigated both in vitro and in vivo. Intracellular retinoic acid was quantified by ELISA. The relationship between CRBP-1 and WIF1 was validated by using dual luciferase and ChIP analyses. Results The low expression of CRBP-1 was observed in HCC tissues compared to the normal liver tissues, while high CRBP-1 expression correlated with clinicopathological characteristics and increased overall survival in HCC patients. Overexpression of CRBP-1 significantly inhibited cell growth and tumorigenicity both in vitro and in vivo. Moreover, overexpression of CRBP-1 suppressed tumorsphere formation and cancer stemness related genes expression in HCC. Mechanically, CRBP-1 inhibited Wnt/β-catenin signaling pathway to suppress cancer cell stemness of HCC. Furthermore, our results revealed that CRBP-1 could increase the intracellular levels of retinoic acid, which induced the activation of RARs/RXRs leading to the transcriptional expression of WIF1, a secreted antagonist of the Wnt/β-catenin signaling pathway, by physically interacting with the region on WIF1 promoter. Conclusion Our findings reveal that CRBP-1 is a crucial player in the initiation and progression of HCC, which provide a novel independent prognostic biomarker and therapeutic target for the diagnosis and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08967-2.
Collapse
Affiliation(s)
- Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Wenhua Shan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Tingting Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Shuxi Qiao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| |
Collapse
|
12
|
Li K, Han F, Wu Y, Wang X. miR-340 Promotes Retinoblastoma Cell Proliferation, Migration and Invasion Through Targeting WIF1. Onco Targets Ther 2021; 14:3635-3648. [PMID: 34113129 PMCID: PMC8187089 DOI: 10.2147/ott.s302800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background MicroRNAs (miRNAs) function as important regulators of gene expression involved in tumor pathogenesis, including retinoblastoma. However, the expression profiles and potential roles in retinoblastoma are still largely unclear. Material and Methods Differentially expressed miRNAs (DEmiRs) and genes (DEGs) in retinoblastoma were extracted from Gene Expression Omnibus (GEO) repository. Expression levels of miR-340 and WIF1 were detected in retinoblastoma tissues and cell lines by qRT-PCR. Both gain-of-function and loss-of-function experiments were performed to explore the effects of miR-340 on cell proliferation, migration and invasion. Bioinformatics analysis and luciferase reporter assay were used to explore the interaction between miR-340 and WIF1. Results A total of 11 DEmiRs were identified in retinoblastoma tissue and blood samples. Among them, we validated that miR-340 was the most highly expressed miRNA and correlated with tumor size, ICRB stage and optic nerve invasion. miR-340 was observed to enhance the proliferation, migration and invasion capacity of retinoblastoma cells. We then identified 26 DEGs from 3 retinoblastoma GEO datasets and subsequently constructed a miRNA–mRNA regulatory network. Further analysis revealed that WIF1 was a direct target of miR-340. Moreover, overexpression of WIF1 could repress retinoblastoma progression induced by miR-340 in vitro and in vivo. Conclusion Collectively, miR-340 functioned as an oncomiRNA to promote retinoblastoma cell proliferation, migration and invasion via regulating WIF1. Our data also provided multiple miRNAs and genes that may contribute to a better understanding of retinoblastoma pathogenesis.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| | - Fengmei Han
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| | - Yanping Wu
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| | - Xue Wang
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| |
Collapse
|
13
|
Yoshida K, Yamamoto Y, Ochiya T. miRNA signaling networks in cancer stem cells. Regen Ther 2021; 17:1-7. [PMID: 33598508 PMCID: PMC7848775 DOI: 10.1016/j.reth.2021.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small cell subpopulation in many cancer types and are involved in various processes of tumor progression, such as initiation, metastasis and recurrence. The distinguished features of CSCs include a variety of biological properties, including self-renewal, multidifferentiation, stemness marker expression, and resistance to chemotherapy and radiotherapy. Despite their great potential of clinical importance, the CSC signaling pathways are not well understood at the molecular level. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs that play an important role in the regulation of several cellular, physiological, and developmental processes. Aberrant miRNA expression is associated with many human diseases, including cancer. miRNAs have been implicated in the regulation of CSC properties; therefore, a better understanding of miRNA-induced modulation of CSC gene expression could aid in the identification of promising biomarkers and therapeutic targets. In the present review, we summarize the major findings of the impacts of miRNAs on CSC signaling networks; we then discuss the recent advances that have improved our understanding of CSC regulation by miRNA-mediated signaling networks and that may lead to the development of miRNA therapeutics specifically targeting CSCs.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Vandenhoeck J, van Meerbeeck JP, Fransen E, Raskin J, Van Camp G, Op de Beeck K, Lamote K. DNA Methylation as a Diagnostic Biomarker for Malignant Mesothelioma: A Systematic Review and Meta-Analysis. J Thorac Oncol 2021; 16:1461-1478. [PMID: 34082107 DOI: 10.1016/j.jtho.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Malignant mesothelioma is an aggressive cancer type linked to asbestos exposure. Because of several intrinsic challenges, mesothelioma is often diagnosed in an advanced disease stage. Therefore, there is a need for diagnostic biomarkers that may contribute to early detection. Recently, the epigenome of tumors is being extensively investigated to identify biomarkers. This manuscript is a systematic review summarizing the state-of-the-art research investigating DNA methylation in mesothelioma. Four literature databases (PubMed, Scopus, Web of Science, MEDLINE) were systematically searched for studies investigating DNA methylation in mesothelioma up to October 16, 2020. A meta-analysis was performed per gene investigated in at least two independent studies. A total of 53 studies investigated DNA methylation of 97 genes in mesothelioma and are described in a qualitative overview. Furthermore, ten studies investigating 13 genes (APC, CDH1, CDKN2A, DAPK, ESR1, MGMT, miR-34b/c, PGR, RARβ, RASSF1, SFRP1, SFRP4, WIF1) were included in the quantitative meta-analysis. In this meta-analysis, the APC gene is significantly hypomethylated in mesothelioma, whereas CDH1, ESR1, miR-34b/c, PGR, RARβ, SFRP1, and WIF1 are significantly hypermethylated in mesothelioma. The three genes that are the most appropriate candidate biomarkers from this meta-analysis are APC, miR-34b/c, and WIF1. Nevertheless, both study number and study objects comprised in this meta-analysis are too low to draw final conclusions on their clinical applications. The elucidation of the genome-wide DNA methylation profile of mesothelioma is desirable in the future, using a standardized genome-wide methylation analysis approach. The most informative CpG sites from this signature could then form the basis of a panel of highly sensitive and specific biomarkers that can be used for the diagnosis of mesothelioma and even for the screening of an at high-risk population of asbestos-exposed individuals.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; StatUa Centre for Statistics, University of Antwerp, Antwerp, Belgium
| | - Jo Raskin
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Pulmonology, Antwerp University Hospital, Edegem, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Abdel-Motaleb AI, Azzazy HM, Moustafa A. Toward Colorectal Cancer Biomarkers: The Role of Genetic Variation, Wnt Pathway, and Long Noncoding RNAs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:302-312. [PMID: 33891491 PMCID: PMC8110006 DOI: 10.1089/omi.2020.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of death worldwide, comprising nearly 8% of cancer-related deaths per year. In South Korea, for example, CRC is the second most common cancer in men, and third in women. This study reports on the association of CRC with genetic variations in long noncoding RNAs, activators, and inhibitors of a cell proliferation pathway. Five normal colon mucosa tissue samples and their matched five-stage IV CRC samples were evaluated (dataset Gene Expression Omnibus accession: GSE50760). We identified more than 5000 differentially expressed genes (DEGs). The Wnt pathway had the greatest portion of DEGs, including activators, inhibitors, and associated long noncoding RNAs (lncRNAs), suggesting the importance of Wnt pathway in CRC. The following genes were aberrantly expressed: WIF1, SFRP4, CD82, WNT2, WNT3, WNT5A, HOTAIR, CRNDE, and UCA1. Notably, HOTAIR is known to silence WIF1, and WIF1 inhibits the Wnt ligands to negatively regulate the pathway. The lncRNA CRNDE positively regulates WNT5A, while UCA1 positively regulates WNT2 and WNT3. We note that HOTAIR was unable to silence WIF1. CRNDE and UCA1 were found to be upregulated, which may explain the high expression of the WIF1 targets. Furthermore, 10 single-nucleotide polymorphisms (SNPs) were identified in five of the candidate genes above. A possible novel SNP in CD82, chr11:44619242T > C, was predicted to introduce a ZBTB7A binding site. These SNPs are hypothesized to contribute to aberrant and discrepant regulation of the Wnt pathway in a context of CRC pathogenesis. These findings collectively inform future research on diagnostics and therapeutics innovation in CRC.
Collapse
Affiliation(s)
| | - Hassan M Azzazy
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt.,Department of Chemistry and American University in Cairo, New Cairo, Egypt
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt.,Department of Biology, American University in Cairo, New Cairo, Egypt
| |
Collapse
|
16
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
17
|
Liddiard K, Grimstead JW, Cleal K, Evans A, Baird DM. Tracking telomere fusions through crisis reveals conflict between DNA transcription and the DNA damage response. NAR Cancer 2021; 3:zcaa044. [PMID: 33447828 PMCID: PMC7787266 DOI: 10.1093/narcan/zcaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Identifying attributes that distinguish pre-malignant from senescent cells provides opportunities for targeted disease eradication and revival of anti-tumour immunity. We modelled a telomere-driven crisis in four human fibroblast lines, sampling at multiple time points to delineate genomic rearrangements and transcriptome developments that characterize the transition from dynamic proliferation into replicative crisis. Progression through crisis was associated with abundant intra-chromosomal telomere fusions with increasing asymmetry and reduced microhomology usage, suggesting shifts in DNA repair capacity. Eroded telomeres also fused with genomic loci actively engaged in transcription, with particular enrichment in long genes. Both gross copy number alterations and transcriptional responses to crisis likely underpin the elevated frequencies of telomere fusion with chromosomes 9, 16, 17, 19 and most exceptionally, chromosome 12. Juxtaposition of crisis-regulated genes with loci undergoing de novo recombination exposes the collusive contributions of cellular stress responses to the evolving cancer genome.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Julia W Grimstead
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Kez Cleal
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Anna Evans
- Wales Gene Park, Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
18
|
Muthusami S, Ramachandran I, Krishnamoorthy S, Sambandam Y, Ramalingam S, Queimado L, Chaudhuri G, Ramachandran IK. Regulation of MicroRNAs in Inflammation-Associated Colorectal Cancer: A Mechanistic Approach. Endocr Metab Immune Disord Drug Targets 2021; 21:67-76. [PMID: 32940190 DOI: 10.2174/1871530320666200917112802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
The development of colorectal cancer (CRC) is a multistage process. The inflammation of
the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease
(CD) is often regarded as the initial trigger for the development of inflammation-associated CRC.
Many cytokines such as tumor necrosis factor alpha (TNF-α) and interleukins (ILs) are known to exert
proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers,
including CRC, through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be
oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles
during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of
miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown.
Consolidating the published results and offering perspective solutions to circumvent CRC, the current
review is focused on the role of miRNAs and their regulation in the development of CRC. We have
also discussed the model systems adapted by researchers to delineate the role of miRNAs in
inflammation-associated CRC.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603 203, Tamil Nadu, India
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | | |
Collapse
|
19
|
Muthusami S, Ramachandran IK, Babu KN, Krishnamoorthy S, Guruswamy A, Queimado L, Chaudhuri G, Ramachandran I. Role of Inflammation in the Development of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:77-90. [PMID: 32901590 DOI: 10.2174/1871530320666200909092908] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Chronic inflammation can lead to the development of many diseases, including cancer. Inflammatory bowel disease (IBD) that includes both ulcerative colitis (UC) and Crohnmp's disease (CD) are risk factors for the development of colorectal cancer (CRC). Many cytokines produced primarily by the gut immune cells either during or in response to localized inflammation in the colon and rectum are known to stimulate the complex interactions between the different cell types in the gut environment resulting in acute inflammation. Subsequently, chronic inflammation, together with genetic and epigenetic changes, have been shown to lead to the development and progression of CRC. Various cell types present in the colon, such as enterocytes, Paneth cells, goblet cells, and macrophages, express receptors for inflammatory cytokines and respond to tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and other cytokines. Among the several cytokines produced, TNF-α and IL-1β are the key pro-inflammatory molecules that play critical roles in the development of CRC. The current review is intended to consolidate the published findings to focus on the role of pro-inflammatory cytokines, namely TNF-α and IL-1β, on inflammation (and the altered immune response) in the gut, to better understand the development of CRC in IBD, using various experimental model systems, preclinical and clinical studies. Moreover, this review also highlights the current therapeutic strategies available (monotherapy and combination therapy) to alleviate the symptoms or treat inflammation-associated CRC by using monoclonal antibodies or aptamers to block pro-inflammatory molecules, inhibitors of tyrosine kinases in the inflammatory signaling cascade, competitive inhibitors of pro-inflammatory molecules, and the nucleic acid drugs like small activating RNAs (saRNAs) or microRNA (miRNA) mimics to activate tumor suppressor or repress oncogene/pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | | | - Kokelavani Nampalli Babu
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Akash Guruswamy
- University of Missouri- Kansas City, College of Medicine, Kansas City, MO 64110, United States
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ilangovan Ramachandran
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
20
|
Barlak N, Capik O, Sanli F, Karatas OF. The roles of microRNAs in the stemness of oral cancer cells. Oral Oncol 2020; 109:104950. [PMID: 32828020 DOI: 10.1016/j.oraloncology.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
Oral cancer (OC), which is the most common form of head and neck cancers, has one of the lowest (~50%) overall 5-year survival rates. The main reasons for this high mortality rate are diagnosis of OC in advanced stages in most patients and spread to distant organs via lymph node metastasis. Many studies have shown that a small population of cells within the tumor plays vital roles in the initiation, progression, and metastasis of the tumor, resistance to chemotherapeutic agents, and recurrence. These cells, identified as cancer stem cells (CSCs), are the main reasons for the failure of current treatment modalities. Deregulated expressions of microRNAs are closely related to tumor prognosis, metastasis and drug resistance. In addition, microRNAs play important roles in regulating the functions of CSCs. Until now, the roles of microRNAs in the acquisition and maintenance of OC stemness have not been elucidated in detail yet. Here in this review, we summarized significant findings and the latest literature to better understand the involvement of CSCs in association with dysregulated microRNAs in oral carcinogenesis. Possible roles of these microRNAs in acquisition and maintenance of CSCs features during OC pathogenesis were summarized.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
21
|
Zhang Y, Wu X, Kai Y, Lee CH, Cheng F, Li Y, Zhuang Y, Ghaemmaghami J, Chuang KH, Liu Z, Meng Y, Keswani M, Gough NR, Wu X, Zhu W, Tzatsos A, Peng W, Seto E, Sotomayor EM, Zheng X. Secretome profiling identifies neuron-derived neurotrophic factor as a tumor-suppressive factor in lung cancer. JCI Insight 2019; 4:129344. [PMID: 31852841 DOI: 10.1172/jci.insight.129344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Clinical and preclinical studies show tissue-specific differences in tumorigenesis. Tissue specificity is controlled by differential gene expression. We prioritized genes that encode secreted proteins according to their preferential expression in normal lungs to identify candidates associated with lung cancer. Indeed, most of the lung-enriched genes identified in our analysis have known or suspected roles in lung cancer. We focused on the gene encoding neuron-derived neurotrophic factor (NDNF), which had not yet been associated with lung cancer. We determined that NDNF was preferentially expressed in the normal adult lung and that its expression was decreased in human lung adenocarcinoma and a mouse model of this cancer. Higher expression of NDNF was associated with better clinical outcome of patients with lung adenocarcinoma. Purified NDNF inhibited proliferation of lung cancer cells, whereas silencing NDNF promoted tumor cell growth in culture and in xenograft models. We determined that NDNF is downregulated through DNA hypermethylation near CpG island shores in human lung adenocarcinoma. Furthermore, the lung cancer-related DNA hypermethylation sites corresponded to the methylation sites that occurred in tissues with low NDNF expression. Thus, by analyzing the tissue-specific secretome, we identified a tumor-suppressive factor, NDNF, which is associated with patient outcomes in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ya Zhang
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xuefeng Wu
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yan Kai
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Physics, George Washington University Columbian College of Arts and Sciences, Washington, DC, USA
| | - Chia-Han Lee
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Biochemistry and Molecular Medicine
| | - Fengdong Cheng
- GW Cancer Center and.,Division of Hematology and Oncology, Department of Medicine, and
| | - Yixuan Li
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Yongbao Zhuang
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Javid Ghaemmaghami
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kun-Han Chuang
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zhuo Liu
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yunxiao Meng
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Meghana Keswani
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nancy R Gough
- Center for Translational Medicine, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xiaojun Wu
- Department of Pathology, Johns Hopkins Sibley Memorial Hospital, Washington, DC, USA.,Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenge Zhu
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Alexandros Tzatsos
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Weiqun Peng
- GW Cancer Center and.,Department of Physics, George Washington University Columbian College of Arts and Sciences, Washington, DC, USA
| | - Edward Seto
- GW Cancer Center and.,Department of Biochemistry and Molecular Medicine
| | - Eduardo M Sotomayor
- GW Cancer Center and.,Division of Hematology and Oncology, Department of Medicine, and
| | - Xiaoyan Zheng
- GW Cancer Center and.,Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
22
|
Tang H, Song C, Ye F, Gao G, Ou X, Zhang L, Xie X, Xie X. miR-200c suppresses stemness and increases cellular sensitivity to trastuzumab in HER2+ breast cancer. J Cell Mol Med 2019; 23:8114-8127. [PMID: 31599500 PMCID: PMC6850933 DOI: 10.1111/jcmm.14681] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24− phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24− phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.
Collapse
Affiliation(s)
- Hailin Tang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guanfeng Gao
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lijuan Zhang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinhua Xie
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
23
|
Feng J, Lan R, Cai G, Lin J. TREX1 suppression imparts cancer-stem-cell-like characteristics to CD133 - osteosarcoma cells through the activation of E2F4 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1134-1153. [PMID: 31933929 PMCID: PMC6947077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 06/10/2023]
Abstract
There is ongoing debate whether cancer stem cells (CSCs) could arise from the transformation of non-CSCs under specific conditions. In the present study, the role of the three prime repair exonuclease 1 (TREX1) in regulating CSC generation form human osteosarcoma cells was investigated. High, intermediate and low levels of TREX1 expression were respectively observed in low-grade, high-grade and metastatic human osteosarcoma samples, while the opposite tendency was observed for E2F4, a transcription factor associated with G2 arrest. Luciferase assay proved that TREX1 had a negative impact on the activity of E2F4 promoter. TREX1 was highly expressed in CD133- HOS cells (non-CSC osteosarcoma cells) compared to CD133+ ones; whereas TREX1 knockdown endowed the CD133- non-CSCs with CSC-like characteristics in vitro relying on E2F4 activation, as demonstrated by enlarged proportion of the subset expressing CSC markers in flow cytometry analysis, enhanced self-renewal ability in osteosphere formation assay, increased metastasis capacity in migration and invasion assays, together with improved chemoresistance to cisplatin. Furthermore, TREX1 knockdown and subsequent E2F4 activation could promote the tumorigenicity of CD133- non-CSCs in vivo. With respect to underlying mechanisms, it was found that in CD133- HOS cells, TREX1 suppression would allow the activation of β-catenin signaling in the dependence of E2F4, thus possibly leading to the up-regulation of the transcription factor OCT4. These findings suggested that TREX1 was probably a negative regulator of CSC formation and hence worth to be further studied for developing new treatments in cancer therapies targeting CSCs.
Collapse
Affiliation(s)
- Jinyi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen UniversityXiamen, China
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| | - Ruilong Lan
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| | - Guanxiong Cai
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| | - Jianhua Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical UniversityFuzhou, Fujian, China
| |
Collapse
|
24
|
Asadzadeh Z, Mansoori B, Mohammadi A, Aghajani M, Haji‐Asgarzadeh K, Safarzadeh E, Mokhtarzadeh A, Duijf PHG, Baradaran B. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol 2018; 234:10002-10017. [DOI: 10.1002/jcp.27885] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Department of Microbiology & Immunology Faculty of Medicine, Ardabil University of Medical Sciences Ardabil Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Pascal H. G. Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland Brisbane Queensland Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
25
|
Zhang K, Wang J, Yang L, Yuan YC, Tong TR, Wu J, Yun X, Bonner M, Pangeni R, Liu Z, Yuchi T, Kim JY, Raz DJ. Targeting histone methyltransferase G9a inhibits growth and Wnt signaling pathway by epigenetically regulating HP1α and APC2 gene expression in non-small cell lung cancer. Mol Cancer 2018; 17:153. [PMID: 30348169 PMCID: PMC6198520 DOI: 10.1186/s12943-018-0896-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulated histone methyltransferase G9a may represent a potential cancer therapeutic target. The roles of G9a in tumorigenesis and therapeutics are not well understood in non-small cell lung cancer (NSCLC). Here we investigated the impact of G9a on tumor growth and signaling pathways in NSCLC. METHODS Immunohistochemistry analyzed G9a expression in NSCLC tissues. Both siRNA and selective inhibitor were used to target G9a. The impact of targeting G9a on key genes, signaling pathways and growth were investigated in NSCLC cells by RNA sequencing analysis, rescue experiments, and xenograft models. RESULTS Overexpression of G9a (≥ 5% of cancer cells showing positive staining) was found in 43.2% of 213 NSCLC tissues. Multiple tumor-associated genes including HP1α, APC2 are differentially expressed; and signaling pathways involved in cellular growth, adhesion, angiogenesis, hypoxia, apoptosis, and canonical Wnt signaling pathways are significantly altered in A549, H1299, and H1975 cells upon G9a knockdown. Additionally, targeting G9a by siRNA-mediated knockdown or by a selective G9a inhibitor UNC0638 significantly inhibited tumor growth, and dramatically suppressed Wnt signaling pathway in vitro and in vivo. Furthermore, we showed that treatment with UNC0638 restores the expression of APC2 expression in these cells through promoter demethylation. Restoring HP1α and silencing APC2 respectively attenuated the inhibitory effects on cell proliferation and Wnt signaling pathway in cancer cells in which G9a was silenced or suppressed. CONCLUSIONS These findings demonstrate that overexpressed G9a represents a promising therapeutic target, and targeting G9a potentially suppresses growth and Wnt signaling pathway partially through down-regulating HP1α and epigenetically restoring these tumor suppressors such as APC2 that are silenced in NSCLC.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Jinhui Wang
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Lu Yang
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Yate-Ching Yuan
- The Bioinformatics Core lab of Department of Molecular Medicine, City of Hope Medical Center, Duarte, CA USA
| | - Tommy R. Tong
- Department of Pathology, City of Hope Medical Center, Duarte, CA USA
| | - Jun Wu
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Melissa Bonner
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Rajendra Pangeni
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Zheng Liu
- The Bioinformatics Core lab of Department of Molecular Medicine, City of Hope Medical Center, Duarte, CA USA
| | - Tiger Yuchi
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Jae Y. Kim
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Dan J. Raz
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| |
Collapse
|
26
|
Nardi I, Reno T, Yun X, Sztain T, Wang J, Dai H, Zheng L, Shen B, Kim J, Raz D. Triptolide inhibits Wnt signaling in NSCLC through upregulation of multiple Wnt inhibitory factors via epigenetic modifications to Histone H3. Int J Cancer 2018; 143:2470-2478. [PMID: 30006924 PMCID: PMC6483070 DOI: 10.1002/ijc.31756] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/01/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
In the last decade, it has become clear that epigenetic changes act together with genetic mutations to promote virtually every stage of tumorigenesis and cancer progression. This knowledge has triggered searches for "epigenetic drugs" that can be developed into new cancer therapies. Here we report that triptolide reduced lung cancer incidence from 70% to 10% in a Fen1 E160D transgenic mouse model and effectively inhibited cancer growth and metastasis in A549 and H460 mouse xenografts. We found that triptolide induced lung cancer cell apoptosis that was associated with global epigenetic changes to histone 3 (H3). These global epigenetic changes in H3 are correlated with an increase in protein expression of five Wnt inhibitory factors that include WIF1, FRZB, SFRP1, ENY2, and DKK1. Triptolide had no effect on DNA methylation status at any of the CpG islands located in the promoter regions of all five Wnt inhibitory factors. Wnt expression is implicated in promoting the development and progression of many lung cancers. Because of this, the potential to target Wnt signaling with drugs that induce epigenetic modifications provides a new avenue for developing novel therapies for patients with these tumor types.
Collapse
Affiliation(s)
- Isaac Nardi
- City of Hope Medical Center, Division of Thoracic Surgery, Baum Family Thoracic Oncology laboratory; Beckman Research Institute
| | - Theresa Reno
- City of Hope Medical Center, Division of Thoracic Surgery, Baum Family Thoracic Oncology laboratory; Beckman Research Institute
| | - Xinwei Yun
- City of Hope Medical Center, Division of Thoracic Surgery, Baum Family Thoracic Oncology laboratory; Beckman Research Institute
| | - Terra Sztain
- City of Hope Medical Center, Division of Thoracic Surgery, Baum Family Thoracic Oncology laboratory; Beckman Research Institute
| | - Jami Wang
- City of Hope Medical Center, Division of Thoracic Surgery, Baum Family Thoracic Oncology laboratory; Beckman Research Institute
| | - Huifang Dai
- Department of Cancer Genetics and Epigenetics, Duarte, California
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Duarte, California
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Duarte, California
| | - Jae Kim
- City of Hope Medical Center, Division of Thoracic Surgery, Baum Family Thoracic Oncology laboratory; Beckman Research Institute
| | - Dan Raz
- City of Hope Medical Center, Division of Thoracic Surgery, Baum Family Thoracic Oncology laboratory; Beckman Research Institute
| |
Collapse
|
27
|
Uchuya-Castillo J, Aznar N, Frau C, Martinez P, Le Nevé C, Marisa L, Penalva LOF, Laurent-Puig P, Puisieux A, Scoazec JY, Samarut J, Ansieau S, Plateroti M. Increased expression of the thyroid hormone nuclear receptor TRα1 characterizes intestinal tumors with high Wnt activity. Oncotarget 2018; 9:30979-30996. [PMID: 30123421 PMCID: PMC6089551 DOI: 10.18632/oncotarget.25741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023] Open
Abstract
Our previous work demonstrated a key function of the thyroid hormone nuclear receptor TRα1, a T3-modulated transcription factor, in controlling intestinal development and homeostasis via the Wnt and Notch pathways. Importantly, increased expression of TRα1 in the intestinal epithelium in a mutated Apc genetic background (vil-TRα1/Apc+/1638N mice) accelerated tumorigenesis and contributed to a more aggressive tumor phenotype compared to that of the Apc mutants alone. Therefore, the aim of this study was to determine the relevance of this synergistic effect in human colorectal cancers and to gain insights into the mechanisms involved. We analyzed cohorts of patients by in silico and experimental approaches and observed increased TRα1 expression and a significant correlation between TRα1 levels and Wnt activity. TRα1 loss-of-function and gain-of-function in Caco2 cell lines not only confirmed that TRα1 levels control Wnt activity but also demonstrated the role of TRα1 in regulating cell proliferation and migration. Finally, upon investigation of the molecular mechanisms responsible for the Wnt-TRα1 association, we described the repression by TRα1 of several Wnt inhibitors, including Frzb, Sox17 and Wif1. In conclusion, our results underline an important functional interplay between the thyroid hormone nuclear receptor TRα1 and the canonical Wnt pathway in intestinal cancer initiation and progression. More importantly, we show for the first time that the expression of TRα1 is induced in human colorectal cancers.
Collapse
Affiliation(s)
- Joel Uchuya-Castillo
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Pierre Martinez
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Clementine Le Nevé
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Laetitia Marisa
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Paris 75000, France
| | - Luiz O F Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | | | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | | | - Jacques Samarut
- Institute de Génomique Fonctionnelle de Lyon, ENS de Lyon, Lyon 69342, France
| | - Stephane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la recherche, Lyon 69000, France
| |
Collapse
|
28
|
Tramontano D, De Amicis F. Is the secret for a successful aging to keep track of cancer pathways? J Cell Physiol 2018; 233:8467-8476. [DOI: 10.1002/jcp.26825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnologies University of Naples “Federico II” Naples Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria Rende Italy
| |
Collapse
|
29
|
Emmerson E, Knox SM. Salivary gland stem cells: A review of development, regeneration and cancer. Genesis 2018; 56:e23211. [PMID: 29663717 PMCID: PMC5980780 DOI: 10.1002/dvg.23211] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary glands are responsible for maintaining the health of the oral cavity and are routinely damaged by therapeutic radiation for head and neck cancer as well as by autoimmune diseases such as Sjögren's syndrome. Regenerative approaches based on the reactivation of endogenous stem cells or the transplant of exogenous stem cells hold substantial promise in restoring the structure and function of these organs to improve patient quality of life. However, these approaches have been hampered by a lack of knowledge on the identity of salivary stem cell populations and their regulators. In this review we discuss our current knowledge on salivary stem cells and their regulators during organ development, homeostasis and regeneration. As increasing evidence in other systems suggests that progenitor cells may be a source of cancer, we also review whether these same salivary stem cells may also be cancer initiating cells.
Collapse
Affiliation(s)
- Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah M. Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
30
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
31
|
Li M, Sun Q, Wang X. Transcriptional landscape of human cancers. Oncotarget 2018; 8:34534-34551. [PMID: 28427185 PMCID: PMC5470989 DOI: 10.18632/oncotarget.15837] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
The homogeneity and heterogeneity in somatic mutations, copy number alterations and methylation across different cancer types have been extensively explored. However, the related exploration based on transcriptome data is lacking. In this study we explored gene expression profiles across 33 human cancer types using The Cancer Genome Atlas (TCGA) data. We identified consistently upregulated genes (such as E2F1, EZH2, FOXM1, MYBL2, PLK1, TTK, AURKA/B and BUB1) and consistently downregulated genes (such as SCARA5, MYOM1, NKAPL, PEG3, USP2, SLC5A7 and HMGCLL1) across various cancers. The dysregulation of these genes is likely to be associated with poor clinical outcomes in cancer. The dysregulated pathways commonly in cancers include cell cycle, DNA replication, repair, and recombination, Notch signaling, p53 signaling, Wnt signaling, TGFβ signaling, immune response etc. We also identified genes consistently upregulated or downregulated in highly-advanced cancers compared to lowly-advanced cancers. The highly (low) expressed genes in highly-advanced cancers are likely to have higher (lower) expression levels in cancers than in normal tissue, indicating that common gene expression perturbations drive cancer initiation and cancer progression. In addition, we identified a substantial number of genes exclusively dysregulated in a single cancer type or inconsistently dysregulated in different cancer types, demonstrating the intertumor heterogeneity. More importantly, we found a number of genes commonly dysregulated in various cancers such as PLP1, MYOM1, NKAPL and USP2 which were investigated in few cancer related studies, and thus represent our novel findings. Our study provides comprehensive portraits of transcriptional landscape of human cancers.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
32
|
Kumar V, Kumar V, McGuire T, Coulter DW, Sharp JG, Mahato RI. Challenges and Recent Advances in Medulloblastoma Therapy. Trends Pharmacol Sci 2017; 38:1061-1084. [PMID: 29061299 DOI: 10.1016/j.tips.2017.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Medulloblastoma (MB) is the most common childhood brain tumor, which occurs in the posterior fossa. MB tumors are highly heterogeneous and have diverse genetic make-ups, with differential microRNA (miRNA) expression profiles and variable prognoses. MB can be classified into four subgroups, each with different origins, pathogenesis, and potential therapeutic targets. miRNA and small-molecule targeted therapies have emerged as a potential new therapeutic paradigm in MB treatment. However, the development of chemoresistance due to surviving cancer stem cells and dysregulation of miRNAs remains a challenge. Combination therapies using multiple drugs and miRNAs could be effective approaches. In this review we discuss various MB subtypes, barriers, and novel therapeutic options which may be less toxic than current standard treatments.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - John G Sharp
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
33
|
Pereira NB, do Carmo ACDM, Campos K, Costa SFDS, Diniz MG, Gomez RS, Gomes CC. DNA methylation polymerase chain reaction (PCR) array of apoptosis-related genes in pleomorphic adenomas of the salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:554-560. [PMID: 28941993 DOI: 10.1016/j.oooo.2017.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/30/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the DNA methylation profile in 22 apoptosis-related genes in pleomorphic adenomas (PAs) of the salivary glands, in comparison with normal salivary glands (NSGs), and to address the differences in methylation patterns between smaller and larger tumors. Additionally, we investigated if the hypermethylation of differentially methylated genes between NSGs and PAs impacted the messenger RNA (mRNA) transcription. DESIGN Twenty-three fresh PA samples and 12 NSG samples were included. The PA samples were divided into 2 groups: PAs with clinical size larger than 2 cm (n = 12) and PAs with clinical size 2 cm or smaller (n = 11). DNA methylation at the promoter region of a panel of 22 genes involved in apoptosis was profiled by using a human apoptosis DNA methylation polymerase chain reaction array, and the transcriptional levels of genes showing differential methylation profiles between PAs and NSGs were assessed. RESULTS TNFRSF25 and BCL2 L11 were highly methylated in PAs, in comparison with NSGs, irrespective of tumor size. However, no difference could be observed in the mRNA transcription between PAs and NSGs. CONCLUSIONS Hypermethylation of the proapoptotic genes BCL2 L11 and TNFRSF25 is observed in PA. However, this phenomenon did not impact mRNA transcription.
Collapse
Affiliation(s)
- Núbia Braga Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Ana Carolina de Melo do Carmo
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Kelma Campos
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Sara Ferreira Dos Santos Costa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Marina Gonçalves Diniz
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Carolina Cavalieri Gomes
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil.
| |
Collapse
|
34
|
McCubrey JA, Fitzgerald TL, Yang LV, Lertpiriyapong K, Steelman LS, Abrams SL, Montalto G, Cervello M, Neri LM, Cocco L, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Nicoletti F, Falzone L, Candido S, Libra M. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget 2017; 8:14221-14250. [PMID: 27999207 PMCID: PMC5355173 DOI: 10.18632/oncotarget.13991] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| |
Collapse
|
35
|
Yang L, Xing S, Wang K, Yi H, Du B. Paeonol attenuates aging MRC-5 cells and inhibits epithelial–mesenchymal transition of premalignant HaCaT cells induced by aging MRC-5 cell-conditioned medium. Mol Cell Biochem 2017; 439:117-129. [DOI: 10.1007/s11010-017-3141-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
|
36
|
Brouwers B, Fumagalli D, Brohee S, Hatse S, Govaere O, Floris G, Van den Eynde K, Bareche Y, Schöffski P, Smeets A, Neven P, Lambrechts D, Sotiriou C, Wildiers H. The footprint of the ageing stroma in older patients with breast cancer. Breast Cancer Res 2017; 19:78. [PMID: 28673354 PMCID: PMC5494807 DOI: 10.1186/s13058-017-0871-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Background Tumours are not only composed of malignant cells but also consist of a stromal micro-environment, which has been shown to influence cancer cell behaviour. Because the ageing process induces accumulation of senescent cells in the body, this micro-environment is thought to be different in cancers occurring in old patients compared with younger patients. More specifically, senescence-related fibroblastic features, such as the senescence-associated secretory profile (SASP) and the induction of autophagy, are suspected to stimulate tumour growth and progression. Methods We compared gene expression profiles in stromal fields of breast carcinomas by performing laser capture microdissection of the cancer-associated stroma from eight old (aged ≥80 years at diagnosis) and nine young (aged <45 years at diagnosis) patients with triple-negative breast cancer. Gene expression data were obtained by microarray analysis (Affymetrix). Differential gene expression and gene set enrichment analysis (GSEA) were performed. Results Differential gene expression analysis showed changes reminiscent of increased growth, de-differentiation and migration in stromal samples of older versus younger patients. GSEA confirmed the presence of a SASP, as well as the presence of autophagy in the stroma of older patients. Conclusions We provide the first evidence in humans that older age at diagnosis is associated with a different stromal micro-environment in breast cancers. The SASP and the presence of autophagy appear to be important age-induced stromal features. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0871-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Brouwers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium. .,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.
| | - Debora Fumagalli
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Sylvain Brohee
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Govaere
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Kathleen Van den Eynde
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Yacine Bareche
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Department of Oncology, Laboratory for Translational Genetics, Vesalius Research Center (VRC), Vlaams Instituut voor Biotechnologie (VIB) and KU Leuven, Leuven, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PLoS One 2017; 12:e0177780. [PMID: 28542301 PMCID: PMC5436899 DOI: 10.1371/journal.pone.0177780] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/03/2017] [Indexed: 01/30/2023] Open
Abstract
Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public.
Collapse
|
38
|
Bahrami A, Hasanzadeh M, ShahidSales S, Yousefi Z, Kadkhodayan S, Farazestanian M, Joudi Mashhad M, Gharib M, Mahdi Hassanian S, Avan A. Clinical Significance and Prognosis Value of Wnt Signaling Pathway in Cervical Cancer. J Cell Biochem 2017; 118:3028-3033. [DOI: 10.1002/jcb.25992] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/14/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Zohre Yousefi
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sima Kadkhodayan
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Marjaneh Farazestanian
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Masoumeh Gharib
- Department of Pathology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic syndrome Research centerMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Metabolic syndrome Research centerMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
39
|
Expression, Mutation, and Amplification Status of EGFR and Its Correlation with Five miRNAs in Salivary Gland Tumours. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9150402. [PMID: 28377929 PMCID: PMC5362712 DOI: 10.1155/2017/9150402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
Malignant salivary gland tumours are rare histologically and clinically heterogeneous group of tumours, missing prognostic factors and therapeutic targets. MicroRNAs (miRNAs), small noncoding RNAs, and posttranscriptional regulators of mRNA are poorly described in different subtypes of salivary gland tumours. Epidermal growth factor receptor (EGFR), an important therapeutic target and target of certain miRNAs (i.e., miR-133b), shows variable degrees of expression in salivary gland tumours. Our study included 70 parotid gland tumours of different histological subtypes. Expression, mutations, and copy number variations (CNVs) of EGFR were determined using immunohistochemistry, single-stranded conformation polymorphism, quantitative polymerase chain reaction (qPCR), and fluorescence in situ hybridization. Expression of miR-99b, miR-133b, miR-140, miR-140-3p, and let-7a was analysed using qPCR. Expression of EGFR was observed in 37% of tumours with low and 40% of tumours with high malignant potential. There were no mutations, with the majority of samples showing polysomy of chromosome 7. Based on histological subtypes, we found differential expression of all five miRNAs. We confirmed association of reactivity of EGFR, miR-133b, miR-140, miR-140-3p, and let-7a with CNV of EGFR and a positive association between miR-133b/let-7a and reactivity of EGFR. Age and need for postoperative radiotherapy were characterized as significant in multivariate survival analysis.
Collapse
|
40
|
Naik PP, Das DN, Panda PK, Mukhopadhyay S, Sinha N, Praharaj PP, Agarwal R, Bhutia SK. Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncol 2016; 62:122-135. [PMID: 27865365 DOI: 10.1016/j.oraloncology.2016.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022]
Abstract
Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
41
|
Particular aspects in the cytogenetics and molecular biology of salivary gland tumours - current review of reports. Contemp Oncol (Pozn) 2016; 20:281-6. [PMID: 27688723 PMCID: PMC5032155 DOI: 10.5114/wo.2016.61847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/24/2015] [Indexed: 12/26/2022] Open
Abstract
Salivary gland tumours are a group of lesions whose heterogeneity of biological and pathological features is widely reflected in the molecular aspect. This is demonstrated by an increasing number of studies in the field of genetics of these tumours. The aim of this study was to collect the most significant scientific reports on the cytogenetic and molecular data concerning these tumours, which might facilitate the identification of potential biomarkers and therapeutic targets. The analysis covered 71 papers included in the PubMed database. We focused on the most common tumours, such as pleomorphic adenoma, Warthin tumour, mucoepidermoid carcinoma, and others. The aim of this study is to present current knowledge about widely explored genotypic alterations (such as PLAG1 gene in pleomorphic adenoma or MECT1 gene in mucoepidermoid carcinoma), and also about rare markers, like Mena or SOX10 protein, which might also be associated with tumourigenesis and carcinogenesis of these tumours.
Collapse
|
42
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
43
|
Wu G, Liu A, Zhu J, Lei F, Wu S, Zhang X, Ye L, Cao L, He S. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway. Oncotarget 2016; 6:28882-94. [PMID: 26337084 PMCID: PMC4745698 DOI: 10.18632/oncotarget.4921] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Geyan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China.,State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Aibin Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| | - Jinrong Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| | - Fangyong Lei
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Shu Wu
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Xin Zhang
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Liping Ye
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Lixue Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| | - Shanyang He
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, PR China
| |
Collapse
|
44
|
Abstract
Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes.
Collapse
|
45
|
Noce A, Canale MP, Capria A, Rovella V, Tesauro M, Splendiani G, Annicchiarico-Petruzzelli M, Manzuoli M, Simonetti G, Di Daniele N. Coronary artery calcifications predict long term cardiovascular events in non diabetic Caucasian hemodialysis patients. Aging (Albany NY) 2016; 7:269-79. [PMID: 26131456 PMCID: PMC4429091 DOI: 10.18632/aging.100740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular calcifications are frequent in chronic renal disease and are associated to significant cardiovascular morbidity and mortality. The long term predictive value of coronary artery calcifications detected by multi-layer spiral computed tomography for major cardiovascular events was evaluated in non-diabetic Caucasian patients on maintenance hemodialysis free of clinical cardiovascular disease. Two-hundred and five patients on maintenance hemodialysis were enrolled into this observational, prospective cohort study. Patients underwent a single cardiac multi-layer spiral computed tomography. Calcium load was quantified and patients grouped according to the Agatston score: group 1 (Agatston score: 0), group 2 (Agatston score 1-400), group 3 (Agatston score 401-1000) and group 4 (Agatston score >1000). Follow-up was longer than seven years. Primary endpoint was death from a major cardiovascular event. Actuarial survival was calculated separately in the four groups with Kaplan-Meier method. Patients who died from causes other than cardiovascular disease and transplanted patients were censored. The “log rank” test was employed to compare survival curves. One-hundred two patients (49.7%) died for a major cardiovascular event during the follow-up period. Seven-year actuarial survival was more than 90% for groups 1 and 2, but failed to about 50% for group 3 and to <10% for group 4. Hence, Agatston score >400 predicts a significantly higher cardiovascular mortality compared with Agatston score <400 (p<0.0001); furthermore, serum Parathyroid hormone levels > 300 pg/l were associated to a lower survival (p < 0.05). Extended coronary artery calcifications detected by cardiac multi-layer spiral computed tomography, strongly predicted long term cardiovascular mortality in non-diabetic Caucasian patients on maintenance hemodialysis. Moreover, it was not related to conventional indices of atherosclerosis, but to other non-traditional risk factors, as serum Parathyroid hormone levels. A full cost-benefit analysis is however necessary to justify a widespread use of cardiac multi-layer spiral computed tomography in clinical practice.
Collapse
|
46
|
WNT signaling in glioblastoma and therapeutic opportunities. J Transl Med 2016; 96:137-50. [PMID: 26641068 DOI: 10.1038/labinvest.2015.140] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/19/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
WNTs and their downstream effectors regulate proliferation, death, and migration and cell fate decision. Deregulation of WNT signaling is associated with various cancers including GBM, which is the most malignant primary brain cancer. In this review, we will summarize the experimental evidence supporting oncogenic roles of WNT signaling in GBM and discuss current progress in the targeting of WNT signaling as an anti-cancer approach. In particular, we will focus on (1) genetic and epigenetic alterations that lead to aberrant WNT pathway activation in GBM, (2) WNT-mediated control of GBM stem cell maintenance and invasion, and (3) cross-talk between WNT and other signaling pathways in GBM. We will then review the discovery of agents that can inhibit WNT signaling in preclinical models and the current status of human clinical trials.
Collapse
|
47
|
Shimono Y, Mukohyama J, Nakamura SI, Minami H. MicroRNA Regulation of Human Breast Cancer Stem Cells. J Clin Med 2015; 5:jcm5010002. [PMID: 26712794 PMCID: PMC4730127 DOI: 10.3390/jcm5010002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Junko Mukohyama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Shun-Ichi Nakamura
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
48
|
Abstract
EBV expresses a number of viral noncoding RNAs (ncRNAs) during latent infection, many of which have known regulatory functions and can post-transcriptionally regulate viral and/or cellular gene expression. With recent advances in RNA sequencing technologies, the list of identified EBV ncRNAs continues to grow. EBV-encoded RNAs (EBERs) , the BamHI-A rightward transcripts (BARTs) , a small nucleolar RNA (snoRNA) , and viral microRNAs (miRNAs) are all expressed during EBV infection in a variety of cell types and tumors. Recently, additional novel EBV ncRNAs have been identified. Viral miRNAs, in particular, have been under extensive investigation since their initial identification over ten years ago. High-throughput studies to capture miRNA targets have revealed a number of miRNA-regulated viral and cellular transcripts that tie into important biological networks. Functions for many EBV ncRNAs are still unknown; however, roles for many EBV miRNAs in latency and in tumorigenesis have begun to emerge. Ongoing mechanistic studies to elucidate the functions of EBV ncRNAs should unravel additional roles for ncRNAs in the viral life cycle. In this chapter, we will discuss our current knowledge of the types of ncRNAs expressed by EBV, their potential roles in viral latency, and their potential involvement in viral pathogenesis.
Collapse
|
49
|
Di Daniele N. Therapeutic approaches of uncomplicated arterial hypertension in patients with COPD. Pulm Pharmacol Ther 2015; 35:1-7. [PMID: 26363278 DOI: 10.1016/j.pupt.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/23/2022]
Abstract
The concomitant presence of systemic arterial hypertension and chronic obstructive pulmonary disease (COPD) is frequent. Indeed, arterial hypertension is the most common comorbid disease in COPD patients. Since many antihypertensive drugs can act on airway function the treatment of arterial hypertension in COPD patients appears complex. Moreover, in these patients, a combined therapy is required for the adequate control of blood pressure. Currently, available data are inconsistent and not always comparable. Therefore the aim of this review is to analyze how antihypertensive drugs can affect airway function in order to improve the clinical management of hypertensive patients with COPD. Thiazide diuretics and calcium channel blockers appear the first-choice pharmacological treatment for these patients.
Collapse
Affiliation(s)
- Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
50
|
Birkeland AC, Owen JH, Prince ME. Targeting Head and Neck Cancer Stem Cells: Current Advances and Future Challenges. J Dent Res 2015; 94:1516-23. [PMID: 26307039 DOI: 10.1177/0022034515601960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells, comprise a subset of tumor cells with demonstrated ability for tumor growth, invasion, metastasis, and resistance to chemotherapy and radiation. Targeting of CSCs remains an attractive yet elusive therapeutic option, with the goal of increasing specificity and effectiveness in tumor eradication, as well as decreasing off-target or systemic toxicity. Research into further characterization and targeted therapy toward head and neck CSCs is an active and rapidly evolving field. This review discusses the current state of research into therapy against head and neck CSCs and future directions for targeted therapy.
Collapse
Affiliation(s)
- A C Birkeland
- Department of Otolaryngology-HNS, University of Michigan, Ann Arbor, MI, USA
| | - J H Owen
- Department of Otolaryngology-HNS, University of Michigan, Ann Arbor, MI, USA
| | - M E Prince
- Department of Otolaryngology-HNS, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|