1
|
Luo Z, Mu L, Zheng Y, Shen W, Li J, Xu L, Zhong B, Liu Y, Zhou Y. NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J Mol Cell Biol 2020; 12:345-358. [PMID: 31504682 PMCID: PMC7288735 DOI: 10.1093/jmcb/mjz088] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
The release and nuclear translocation of the intracellular domain of Notch receptor (NICD) is the prerequisite for Notch signaling-mediated transcriptional activation. NICD is subjected to various posttranslational modifications including ubiquitination. Here, we surprisingly found that NUMB proteins stabilize the intracellular domain of NOTCH1 receptor (N1ICD) by regulating the ubiquitin-proteasome machinery, which is independent of NUMB's role in modulating endocytosis. BAP1, a deubiquitinating enzyme (DUB), was further identified as a positive N1ICD regulator, and NUMB facilitates the association between N1ICD and BAP1 to stabilize N1ICD. Intriguingly, BAP1 stabilizes N1ICD independent of its DUB activity but relying on the BRCA1-inhibiting function. BAP1 strengthens Notch signaling and maintains stem-like properties of cortical neural progenitor cells. Thus, NUMB enhances Notch signaling by regulating the ubiquitinating activity of the BAP1-BRCA1 complex.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lili Mu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yue Zheng
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Jiali Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lichao Xu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Bo Zhong
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Wei R, Kaneko T, Liu X, Liu H, Li L, Voss C, Liu E, He N, Li SSC. Interactome Mapping Uncovers a General Role for Numb in Protein Kinase Regulation. Mol Cell Proteomics 2018; 17:2216-2228. [PMID: 29217616 PMCID: PMC6210222 DOI: 10.1074/mcp.ra117.000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/04/2017] [Indexed: 12/24/2022] Open
Abstract
Cellular functions are frequently regulated by protein-protein interactions involving the binding of a modular domain in one protein to a specific peptide sequence in another. This mechanism may be explored to identify binding partners for proteins harboring a peptide-recognition domain. Here we report a proteomic strategy combining peptide and protein microarray screening with biochemical and cellular assays to identify modular domain-mediated protein-protein interactions in a systematic manner. We applied this strategy to Numb, a multi-functional protein containing a phosphotyrosine-binding (PTB) domain. Through the screening of a protein microarray, we identified >100 protein kinases, including both Tyr and Ser/Thr kinases, that could potentially interact with the Numb PTB domain, suggesting a general role for Numb in regulating kinase function. The putative interactions between Numb and several tyrosine kinases were subsequently validated by GST pull-down and/or co-immunoprecipitation assays. Furthermore, using the Oriented Peptide Array Library approach, we defined the specificity of the Numb PTB domain which, in turn, allowed us to predict binding partners for Numb at the genome level. The combination of the protein microarray screening with computer-aided prediction produced the most expansive interactome for Numb to date, implicating Numb in regulating phosphorylation signaling through protein kinases and phosphatases. Not only does the data generated from this study provide an important resource for hypothesis-driven research to further define the function of Numb, the proteomic strategy described herein may be employed to uncover the interactome for other peptide-recognition domains whose consensus motifs are known or can be determined.
Collapse
Affiliation(s)
- Ran Wei
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Tomonori Kaneko
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuguang Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Huadong Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- §Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China
| | - Lei Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Courtney Voss
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Eric Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ningning He
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Shawn S-C Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada;
- **Department of Oncology and Child Health Research Institute, Western University
| |
Collapse
|
3
|
Pang Y, Liu J, Li X, Zhang Y, Zhang B, Zhang J, Du N, Xu C, Liang R, Ren H, Tang SC, Sun X. Nano Let‑7b sensitization of eliminating esophageal cancer stem‑like cells is dependent on blockade of Wnt activation of symmetric division. Int J Oncol 2017; 51:1077-1088. [PMID: 28902370 PMCID: PMC5592862 DOI: 10.3892/ijo.2017.4104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
The poor therapy response and poor prognosis of esophageal cancer has made it one of the most malignant carcinoma, and the complicated multidisciplinary treatment failed to achieve a long-term disease-free survival. To diagnose esophageal cancer at an earlier stage, and to improve the effect of anticancer therapy would improve the therapeutic efficacy. After retrospective analysis of the cancer samples of patients who received esophagectomy, we found the relevance between ratio of either ALDH1 or CD133-positive cancer stem cells and 2-year recurrence. Higher ratios of cancer stem cells indicated later clinical stages, and Wnt signaling activation was more frequent in later esophageal carcinoma. Further in bench studies, we explored the suppressive roles and the mechanisms involved in Let‑7 on self-renewal in ECA‑109 and ECA‑9706 esophageal cancer stem cells. Isolated cancer stem cells naturally divide symmetrically and are therapy resistant. Therapy of fluorouracil and docetaxel both enriched the stem cells, proving the resistant characteristics of cancer stem cells. Wnt activation stimulated more symmetric division of stem cells, resulting in self-renewal promotion, which could be blocked by Let‑7 overexpression. Furthermore, enforced Let‑7 sensitized the stem cells to chemotherapies in a Wnt pathway inhibition-dependent manner, contributing to Let‑7 sensitization of chemotherapeutic response. Wnt activation weakened the suppressive Let‑7b through the sponge functions of CCAT-1, forming the negative feedback loop of Let‑7b/Wnt/CCAT1. These results identified the crucial participation of stem cells in esophageal cancer occurrence and progression as the potent indicator, and also indicate the potential powerful agent of Let‑7 nano-particles in treatment of cancer.
Collapse
Affiliation(s)
- Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Liu
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yiwen Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Boxiang Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Liang
- Department of Hepatobiliary Chest Surgery, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi 710066, P.R. China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shou-Ching Tang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
4
|
Huang SS, Su WP, Lin HP, Kuo HL, Wei HL, Chang NS. Role of WW Domain-containing Oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. J Biol Chem 2016; 291:17319-31. [PMID: 27339895 DOI: 10.1074/jbc.m116.716167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 01/24/2023] Open
Abstract
Whether tumor suppressor WWOX (WW domain-containing oxidoreductase) stimulates immune cell maturation is largely unknown. Here, we determined that Tyr-33-phosphorylated WWOX physically binds non-phosphorylated ERK and IκBα in immature acute lymphoblastic leukemia MOLT-4 T cells and in the naïve mouse spleen. The IκBα·ERK·WWOX complex was shown to localize, in part, in the mitochondria. WWOX prevents IκBα from proteasomal degradation. Upon stimulating MOLT-4 with ionophore A23187/phorbol myristate acetate, endogenous IκBα and ERK undergo rapid phosphorylation in <5 min, and subsequently WWOX is Tyr-33 and Tyr-287 de-phosphorylated and Ser-14 phosphorylated. Three hours later, IκBα starts to degrade, and ERK returns to basal or non-phosphorylation, and this lasts for the next 12 h. Finally, expression of CD3 and CD8 occurs in MOLT-4 along with reappearance of the IκBα·ERK·WWOX complex near 24 h. Inhibition of ERK phosphorylation by U0126 or IκBα degradation by MG132 prevents MOLT-4 maturation. By time-lapse FRET microscopy, IκBα·ERK·WWOX complex exhibits an increased binding strength by 1-2-fold after exposure to ionophore A23187/phorbol myristate acetate for 15-24 h. Meanwhile, a portion of ERK and WWOX relocates to the nucleus, suggesting their role in the induction of CD3 and CD8 expression in MOLT-4.
Collapse
Affiliation(s)
| | - Wan-Pei Su
- From the Institute of Molecular Medicine
| | | | | | | | - Nan-Shan Chang
- From the Institute of Molecular Medicine, Center of Infectious Disease and Signaling Research, and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, New York 10314, Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, Republic of China
| |
Collapse
|
5
|
Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression. Oncogene 2016; 35:4741-51. [PMID: 26876201 PMCID: PMC5024153 DOI: 10.1038/onc.2016.5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4+CD8+ DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL.
Collapse
|