1
|
Liu X, Wang J, Yang Z, Xie Q, Diao X, Yao X, Huang S, Chen R, Zhao Y, Li T, Jiang M, Lou Z, Huang C. Upregulated DNMT3a coupling with inhibiting p62-dependent autophagy contributes to NNK tumorigenicity in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117157. [PMID: 39393198 DOI: 10.1016/j.ecoenv.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
NNK, formally known as 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanoe, is a potent chemical carcinogen prevalent in cigarette smoke and is a key contributor to the development of human lung adenocarcinomas. On the other hand, autophagy plays a complex role in cancer development, acting as a "double-edged sword" whose impact varies depending on the cancer type and stage. Despite this, the relationship between autophagy and NNK-induced lung carcinogenesis remains largely unexplored. Our current study uncovers a marked reduction in p62 protein expression in both lung adenocarcinomas and lung tissues of mice exposed to cigarette smoke. Interestingly, this reduction appears to be contingent upon the activity of extrahepatic cytochrome P450 (CYP450), revealing that NNK metabolic activation by CYP450 enzyme escalates its potential to induce p62 downregulation. Further mechanistic investigations reveal that NNK suppresses autophagy by accelerating the degradation of p62 mRNA, thereby promoting the malignant transformation of human bronchial epithelial cells. This degradation process is facilitated by the hypermethylation of the Human antigen R (HuR) promoter, resulting in the transcriptional repression of HuR - a key regulator responsible for stabilizing p62 mRNA through direct binding. This hypermethylation is triggered by the activation of ribosomal protein S6, which is influenced by NNK exposure and subsequently amplifies the translation of DNA methyltransferase 3 alpha (DNMT3a). These findings provide crucial insights into the nature of p62 in both the development and potential treatment of tobacco-related lung cancer.
Collapse
Affiliation(s)
- Xuelei Liu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinqi Diao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Xiaoyan Yao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Shirui Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruifan Chen
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Tengda Li
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhefeng Lou
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China.
| |
Collapse
|
2
|
Niu Y, Zhang X, Zhang H, Men S, Xu T, Ding L, Li X, Wang L, Wang H, Storey KB, Chen Q. Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives. BMC Biol 2024; 22:231. [PMID: 39390465 PMCID: PMC11465660 DOI: 10.1186/s12915-024-02033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. RESULTS Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. CONCLUSIONS Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China.
| | - Xuejing Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiying Zhang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Shengkang Men
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tisen Xu
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Li Ding
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiangyong Li
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Lei Wang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Huisong Wang
- School of Life Sciences, Dezhou University, Dezhou, Shandong, 253023, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
4
|
Peng M, Meng H, Wang J, Guo M, Li T, Qian X, Chen R, Jin H, Huang C. p27 specifically decreases in squamous carcinoma, and mediates NNK-induced transformation of human bronchial epithelial cells. J Cell Mol Med 2024; 28:e18577. [PMID: 39099000 PMCID: PMC11298314 DOI: 10.1111/jcmm.18577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths, with cigarette smoking being the most critical factor, linked to nearly 90% of lung cancer cases. NNK, a highly carcinogenic nitrosamine found in tobacco, is implicated in the lung cancer-causing effects of cigarette smoke. Although NNK is known to mutate or activate certain oncogenes, its potential interaction with p27 in modulating these carcinogenic effects is currently unexplored. Recent studies have identified specific downregulation of p27 in human squamous cell carcinoma, in contrast to adenocarcinoma. Additionally, exposure to NNK significantly suppresses p27 expression in human bronchial epithelial cells. Subsequent studies indicates that the downregulation of p27 is pivotal in NNK-induced cell transformation. Mechanistic investigations have shown that reduced p27 expression leads to increased level of ITCH, which facilitates the degradation of Jun B protein. This degradation in turn, augments miR-494 expression and its direct regulation of JAK1 mRNA stability and protein expression, ultimately activating STAT3 and driving cell transformation. In summary, our findings reveal that: (1) the downregulation of p27 increases Jun B expression by upregulating Jun B E3 ligase ITCH, which then boosts miR-494 transcription; (2) Elevated miR-494 directly binds to 3'-UTR of JAK1 mRNA, enhancing its stability and protein expression; and (3) The JAK1/STAT3 pathway is a downstream effector of p27, mediating the oncogenic effect of NNK in lung cancer. These findings provide significant insight into understanding the participation of mechanisms underlying p27 inhibition of NNK induced lung squamous cell carcinogenic effect.
Collapse
Affiliation(s)
- Minggang Peng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hao Meng
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Mengxin Guo
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Tengda Li
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaohui Qian
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Ruifan Chen
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Honglei Jin
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiangChina
| |
Collapse
|
5
|
Song F, Hou C, Huang Y, Liang J, Cai H, Tian G, Jiang Y, Wang Z, Hou J. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia. Cell Signal 2024; 120:111228. [PMID: 38750680 DOI: 10.1016/j.cellsig.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells tend to live in hypoxic environment characterized by enhanced glycolysis and accumulation of lactate. Intracellular lactate is shown to drive a novel type of post-translational modification (PTM), lysine lactylation (Kla). Kla has been confirmed to affect the malignant progression of tumors such as hepatocellular carcinoma (HCC) and colon cancer, whereas the global lactylomic profiling of oral squamous cell carcinoma (OSCC) is unclear. Here, the integrative lactylome and proteome analyses by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1011 Kla sites within 532 proteins and 1197 Kla sites within 608 proteins in SCC25 cells under normoxic and hypoxic environments, respectively. Among these lactylated proteins, histones accounted for only a small fraction, suggesting the presence of Kla modification of OSCC in a large number of non-histone proteins. Notably, Kla preferred to enrich in spliceosome, ribosome and glycolysis/gluconeogenesis pathway in both normoxic and hypoxic cultures. Compared with normoxia, 589 differential proteins with 898 differentially lactylated sites were detected under hypoxia, which were mainly associated with the glycolysis/gluconeogenesis pathway by KEGG analysis. Importantly, we verified the presence of lactylation modification in the spliceosomal proteins hnRNPA1, SF3A1, hnRNPU and SLU7, as well as in glycolytic enzyme PFKP. In addition, the differential alternative splicing analysis described the divergence of pre-mRNA splicing patterns in the presence or absence of sodium lactate and at different oxygen concentrations. Finally, a negative correlation between tissue Kla levels and the prognosis of OSCC patients was revealed by immunohistochemistry. Our study is the first report to elucidate the lactylome and its biological function in OSCC, which deepens our understanding of the mechanisms underlying OSCC progression and provides a novel strategy for targeted therapy for OSCC.
Collapse
Affiliation(s)
- Fan Song
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Chen Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yingzhao Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Guoli Tian
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
6
|
Zhao T, Sun D, Long K, Lemos B, Zhang Q, Man J, Zhao M, Zhang Z. N 6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163428. [PMID: 37061066 DOI: 10.1016/j.scitotenv.2023.163428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston 02108, MA, USA
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China.
| |
Collapse
|
7
|
Zhu J, Huang S, Li Y, Xu J, Chen R, Guo M, Qian X, Li T, Tian Z, Jin H, Huang C. NF-κB1 p50 stabilizes HIF-1α protein through suppression of ATG7-dependent autophagy. Cell Death Dis 2022; 13:1076. [PMID: 36575197 PMCID: PMC9794792 DOI: 10.1038/s41419-022-05521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
The function and underlying mechanisms of p50 in the regulation of protein expression is much less studied because of its lacking of transactivation domain. In this study, we discovered a novel function of p50 in its stabilization of hypoxia-inducible factor 1α (HIF-1α) protein under the condition of cells exposed to arsenic exposure. In p50-deficient (p50-/-) cells, the HIF-1α protein expression was impaired upon arsenic exposure, and such defect could be rescued by reconstitutional expression of p50. Mechanistic study revealed that the inhibition of autophagy-related gene 7 (ATG7)-dependent autophagy was in charge of p50-mediated HIF-1α protein stabilization following arsenic exposure. Moreover, p50 deletion promoted nucleolin (NCL) protein translation to enhance ATG7 mRNA transcription via directly binding transcription factor Sp1 mRNA and increase its stability. We further discovered that p50-mediated miR-494 upregulation gave rise to the inhibition of p50-mediated NCL translation by interacting with its 3'-UTR. These novel findings provide a great insight into the understanding of biomedical significance of p50 protein in arsenite-associated disease development and therapy.
Collapse
Affiliation(s)
- Junlan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, 315800, Ningbo, Zhejiang, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yang Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Mengxin Guo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Xiaohui Qian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Honglei Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
9
|
Baffi TR, Cohen-Katsenelson K, Newton AC. PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling. Annu Rev Pharmacol Toxicol 2021; 61:723-743. [PMID: 32997603 PMCID: PMC11003498 DOI: 10.1146/annurev-pharmtox-031820-122108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whereas protein kinases have been successfully targeted for a variety of diseases, protein phosphatases remain an underutilized therapeutic target, in part because of incomplete characterization of their effects on signaling networks. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is a relatively new player in the cell signaling field, and new roles in controlling the balance among cell survival, proliferation, and apoptosis are being increasingly identified. Originally characterized for its tumor-suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response. This review summarizes the current knowledge of PHLPP as both a tumor suppressor and an oncogene and highlights emerging functions in regulating gene expression and the immune system. Understanding the context-dependent functions of PHLPP is essential for appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Ksenya Cohen-Katsenelson
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| |
Collapse
|
10
|
Cui N, Li L, Feng Q, Ma HM, Lei D, Zheng PS. Hexokinase 2 Promotes Cell Growth and Tumor Formation Through the Raf/MEK/ERK Signaling Pathway in Cervical Cancer. Front Oncol 2020; 10:581208. [PMID: 33324557 PMCID: PMC7725710 DOI: 10.3389/fonc.2020.581208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
Hexokinase 2 (HK2) is a member of the hexokinases (HK) that has been reported to be a key regulator during glucose metabolism linked to malignant growth in many types of cancers. In this study, stimulation of HK2 expression was observed in squamous cervical cancer (SCC) tissues, and HK2 expression promoted the proliferation of cervical cancer cells in vitro and tumor formation in vivo by accelerating cell cycle progression, upregulating cyclin A1, and downregulating p27 expression. Moreover, transcriptome sequencing analysis revealed that MAPK3 (ERK1) was upregulated in HK2-overexpressing HeLa cells. Further experiments found that the protein levels of p-Raf, p-MEK1/2, ERK1/2, and p-ERK1/2 were increased in HK2 over-expressing SiHa and HeLa cells. When ERK1/2 and p-ERK1/2 expression was blocked by an inhibitor (FR180204), reduced cyclin A1 expression was observed in HK2 over-expressing cells, with induced p27 expression and inhibited cell growth. Therefore, our data demonstrated that HK2 promoted the proliferation of cervical cancer cells by upregulating cyclin A1 and down-regulating p27 expression through the Raf/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Lu Li
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| |
Collapse
|
11
|
Liu J, Niu Q, Hu Y, Ran S, Li S. The Mechanism of Trivalent Inorganic Arsenic on HIF-1α: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2020; 198:449-463. [PMID: 32124230 DOI: 10.1007/s12011-020-02087-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
The purpose of our study was to investigate the role of hypoxia-inducible factor-1α (HIF-1α) in arsenic-induced carcinogenesis. We included 39 articles for meta-analysis. The results showed that low-dose exposure to arsenic (≤ 10 μmol/L) could promote the expression of phosphatidylinositol 3-kinase (PI3K) and phosphorylation-protein kinase B (p-AKT). High-dose arsenic exposure (> 10 μmol/L) promoted the expression of PI3K, HIF-1α, vascular endothelial growth factor (VEGF), and p38MAPK (P38). Acute arsenic exposure (< 24 h) promoted the expression of PI3K, HIF-1α, and VEGF. Chronic arsenic exposure (≥ 24 h) promoted the expression of PI3K, p-AKT, and P38. Moreover, for normal tissue-derived cells, arsenic could induce the increased expression of PI3K, p-AKT, HIF-1α, and VEGF. For tumor tissue-derived cells, arsenic could induce the expression of PI3K, p-AKT, and P38. We found that arsenic exposure could activate the PI3K/AKT pathway, further induce the high expression of HIF-1α, and then upregulate the levels of miRNA-21 and VEGF, promote the expression of proliferating cell nuclear antigen (PCNA), and ultimately lead to malignant cell proliferation. Our findings indicated that arsenic could increase the expression of HIF-1α by activating the PI3K/AKT pathway and eventually induce malignant cell proliferation.
Collapse
Affiliation(s)
- Jiaqing Liu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qiang Niu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Shanshan Ran
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
12
|
Fan Y, Ou L, Fan J, Li L, Wang X, Niu L, Wu X, Luo C. PLCε regulates metabolism and metastasis signaling via HIF-1α/MEK/ERK pathway in prostate cancer. J Cell Physiol 2020; 235:8546-8557. [PMID: 32383180 DOI: 10.1002/jcp.29698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/09/2022]
Abstract
Phospholipase C-ε (PLCε) is frequently overexpressed in tumors and plays an important role in the regulation of tumorigenesis. Although great progress has been made in understanding biological roles of PLCε, the relevant molecular mechanisms underlying its pro-tumor activity remain largely unclear. Here, we demonstrated that PLCε knockdown reduced cell metastasis, glucose consumption and lactate production in a manner that depended on hypoxia inducible factor 1α (HIF-1α) expression in prostate cancer cells. Interestingly, our findings showed that the expression levels of PLCε were positively associated with those of HIF-1α in clinical prostate carcinoma samples. Knockdown of PLCε impaired HIF-1α levels and transcriptional activity by regulating the extracellular-signal-regulated kinase pathway, and blocking HIF-1α nuclear translocation. Furthermore, PLCε could interact with the von Hippel-Lindau E3 ligase complex to modulate the stability of HIF-1α. Collectively, our findings demonstrate that PLCε could be a crucial positive regulator of HIF-1α, which would promote PLCε-enhanced tumorigenesis.
Collapse
Affiliation(s)
- Yanru Fan
- Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, China
| | - Liping Ou
- Laboratory Medical College, Chongqing Medical University, Chongqing, China
| | - Jiaxin Fan
- Laboratory Medical College, Chongqing Medical University, Chongqing, China
| | - Luo Li
- Laboratory Medical College, Chongqing Medical University, Chongqing, China
| | - Xiao Wang
- First Affliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingfang Niu
- Laboratory Medical College, Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- First Affliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Luo
- Laboratory Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Peng M, Wang J, Tian Z, Zhang D, Jin H, Liu C, Xu J, Li J, Hua X, Xu J, Huang C, Huang C. Autophagy-mediated Mir6981 degradation exhibits CDKN1B promotion of PHLPP1 protein translation. Autophagy 2019; 15:1523-1538. [PMID: 30821592 DOI: 10.1080/15548627.2019.1586254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PHLPP1 (PH domain and leucine rich repeat protein phosphatase 1) is a newly identified family of Ser/Thr phosphatases that catalyzes the dephosphorylation of a conserved regulatory motif of the AGC kinases resulting in a tumor suppressive function, while CDKN1B/p27 also acts as a tumor suppressor by regulating cell cycle, senescence, apoptosis, and cell motility. Our most recent studies reveal that CDKN1B is required for PHLPP1 abundance, which contributes to the inhibition of carcinogenic arsenite-induced cell malignant transformation through inhibition of RPS6-mediated Hif1a translation. However, nothing is known about the mechanisms underlying the crosstalk between these 2 key tumor suppressors in intact cells. Here, for the first time to the best of our knowledge, we show that CDKN1B is able to promote PHLPP1 protein translation by attenuating the abundance of Mir6981, which binds directly to the 5'untranslated region (UTR) of Phlpp1 mRNA. Further studies indicate that the attenuation of Mir6981 expression is due to macroautophagy/autophagy-mediated degradation of Mir6981 in an SQSTM1/p62-dependent fashion. Moreover, we have determined that Sqstm1 is upregulated by CDKN1B at the level of transcription via enhancing SP1 protein stability in an HSP90-depdendent manner. Collectively, our studies prove that: 1) SQSTM1 is a CDKN1B downstream effector responsible for CDKN1B-mediated autophagy; 2) by promoting the autophagy-mediated degradation of Mir6981, CDKN1B exerts a positive regulatory effect on PHLPP1 translation; 3) Mir6981 suppresses PHLPP1 translation by binding directly to its mRNA 5'-UTR, rather than classical binding to the 3'-UTR. These findings provide significant insight into understanding the crosstalk between CDKN1B and PHLPP1. Abbreviations: ATG: autophagy related; ACTB: actin beta; BAF: bafilomycin; BECN1: beclin 1; Cdkn1b/p27: cyclin-dependent kinase inhibitor 1B; CHX: cycloheximide; DMEM: dulbecco's modified eagle medium; FBS: fetal bovine serum; GAPDH: glyceraldehyde -3-phosphate dehydrogenase; Hif1a: hypoxia inducible factor 1, alpha subunit; Hsp90: heat shock protein 90; JUN: Jun proto-oncogene, AP1 transcription factor subunit; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MG132: proteasome inhibitor; Mtor: mechanistic target of rapamycin kinase; Phlpp1: PH domain and leucine rich repeat protein phosphatase 1; Phlpp2: PH domain and leucine rich repeat protein phosphatase 2; Pp2c: protein phosphatase 2 C; RPS6: ribosomal protein S6; Sp1: trans-acting transcription factor 1; Sqstm1/p62: sequestosome 1; TUBA: alpha tubulin; 3'-UTR; 3'-untranslated region; 5'-UTR: 5'-untranslated region.
Collapse
Affiliation(s)
- Minggang Peng
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingjing Wang
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhongxian Tian
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Dongyun Zhang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Honglei Jin
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Claire Liu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiawei Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Xiaohui Hua
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiheng Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chuanshu Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
14
|
Ivanova IG, Park CV, Kenneth NS. Translating the Hypoxic Response-the Role of HIF Protein Translation in the Cellular Response to Low Oxygen. Cells 2019; 8:E114. [PMID: 30717305 PMCID: PMC6406544 DOI: 10.3390/cells8020114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-Inducible Factors (HIFs) play essential roles in the physiological response to low oxygen in all multicellular organisms, while their deregulation is associated with human diseases. HIF levels and activity are primarily controlled by the availability of the oxygen-sensitive HIFα subunits, which is mediated by rapid alterations to the rates of HIFα protein production and degradation. While the pathways that control HIFα degradation are understood in great detail, much less is known about the targeted control of HIFα protein synthesis and what role this has in controlling HIF activity during the hypoxic response. This review will focus on the signalling pathways and RNA binding proteins that modulate HIFα mRNA half-life and/or translation rate, and their contribution to hypoxia-associated diseases.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Catherine V Park
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Niall S Kenneth
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
15
|
Peng M, Wang J, Zhang D, Jin H, Li J, Wu XR, Huang C. PHLPP2 stabilization by p27 mediates its inhibition of bladder cancer invasion by promoting autophagic degradation of MMP2 protein. Oncogene 2018; 37:5735-5748. [PMID: 29930380 PMCID: PMC6202328 DOI: 10.1038/s41388-018-0374-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/24/2023]
Abstract
Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) is a tumor suppressor that catalyzes the de-phosphorylation of the AGC kinases, while p27 acts as a tumor suppressor that regulates cell cycle, apoptosis, and cell motility. Our previous studies have identified that PHLPP2 participates in inhibition of transformation of human bronchial epithelial cells following lung carcinogen B[a]P/B[a]PDE exposure. However, nothing was known about the association of p27 with regulation of PHLPP2 expression and the role of PHLPP2 in bladder cancer (BC) invasion. In our current studies, we demonstrated that PHLPP2 inhibited BC invasion through promoting MMP2 degradation via p62-mediated autophagy; and p27 expression was able to stabilize PHLPP2 protein by inhibiting protein degradation of Hsp90, which could directly bind to PHLPP2 and protect it from degradation. More in-depth studies discovered that stabilization of Hsp90 by p27 was mediated by calpain1 proteolysis system, whereas p27 inhibited calpain1 gene transcription by attenuating Jak1/Stat1 cascade in human invasive BC cells. Collectively, we for the first time revealed PHLPP2 downregulation in BCs and its participating in promotion of BC invasion, as well as novel role of p27 and mechanisms underlying its regulation of PHLPP2 protein degradation through Hsp90-dependent manner. Our findings improve our understanding of p27 and PHLPP2 roles and their crosstalk in regulation of BC invasion, which further contributes to improve the current strategy for invasive bladder cancer therapy.
Collapse
Affiliation(s)
- Minggang Peng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Jingjing Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA.
| |
Collapse
|
16
|
Lan D, Xiong X, Ji W, Li J, Mipam TD, Ai Y, Chai Z. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs. Genetica 2017; 146:151-160. [DOI: 10.1007/s10709-017-0005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/26/2017] [Indexed: 11/29/2022]
|
17
|
Liao X, Huang C, Zhang D, Wang J, Li J, Jin H, Huang C. Mitochondrial catalase induces cells transformation through nucleolin-dependent Cox-2 mRNA stabilization. Free Radic Biol Med 2017; 113:478-486. [PMID: 29097213 DOI: 10.1016/j.freeradbiomed.2017.10.387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
It's well documented that over-production of reactive oxygen species (ROS) causes detrimental damages to cells. While a low level of ROS, such as H2O2, functions as signaling transducer and motivates cell proliferation in both cancer and non-transformed stem cells. As a double-edged sword, the direct evidence for demonstrating the function of H2O2 in the cause of tumor is barely characterized in intact cells. In our current study, we found that targeted expression of mitochondrial catalase (mCAT), but not catalase, could significantly reduce the accumulation of H2O2 in mouse epithelial JB6 Cl41 cells, consequently led to the cell malignant transformation and anchorage-independent cell growth. Further study revealed that this reduction of H2O2 resulted in the translocation of nucleolin from the cytoplasm to nuclear, and maintaining the nucleolin nuclear location status, and in turn stabilizing the cox-2 mRNA and consequently leading to a COX-2 protein upregulation, as well as malignant transforming mCAT-overexpressed Cl41 cells. Collectively, our studies here provide direct experimental evidence demonstrating a novel function and molecular mechanisms of mCAT in transforming mouse Cl41 cells, and high significance insight into understanding the beneficial aspect of H2O2 in circumventing tumor promotion and the theoretical basis for the management of H2O2 in the clinic implementation as a chemotherapeutic strategy.
Collapse
Affiliation(s)
- Xin Liao
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo Park, NY 10987, USA; Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo Park, NY 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo Park, NY 10987, USA
| | - Jingjing Wang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo Park, NY 10987, USA; Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo Park, NY 10987, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, Tuxedo Park, NY 10987, USA.
| |
Collapse
|
18
|
Wang H, Chen H, Zhou H, Yu W, Lu Z. Cyclin-Dependent Kinase Inhibitor 3 Promotes Cancer Cell Proliferation and Tumorigenesis in Nasopharyngeal Carcinoma by Targeting p27. Oncol Res 2017; 25:1431-1440. [PMID: 28109073 PMCID: PMC7840971 DOI: 10.3727/096504017x14835311718295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignancy of the head and neck that arises from the nasopharynx epithelium and is highly invasive. Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the dual-specificity protein phosphatase family, which plays a key role in regulating cell division. Abnormal expression of CDKN3 has been found in numerous types of cancer. In the current study, we explored the possible role of CDKN3 in cell proliferation, ability to invade, and radiosensitivity in NPC cells. We reported that CDKN3 was upregulated and p27 was downregulated in NPC tissues and is associated with a worse prognosis for patients. In addition, downregulation of CDKN3 and upregulation of p27 decreased cell proliferation, induced cell cycle arrest, increased apoptosis, decreased cell invasion, and enhanced radiosensitivity. Silencing of p27 significantly inhibited the effects of the knockdown of CDKN3. Moreover, downregulation of CDKN3 and upregulation of p27 inhibited the increase in tumor volume and weight in implanted tumors, decreased the phosphorylation of Akt, and increased the expression of cleaved caspase 3 in tumors. CDKN3 expression was also inversely correlated with p27 expression in NPC patients. Knockdown of CDKN3 increased p27 expression. Silencing of p27 markedly inhibited the effects of CDKN3 on cell proliferation, cell cycle progression, apoptosis, invasion, and radiosensitivity. These results demonstrate that upregulation of p27 is involved in the knockdown of CDKN3-induced decrease in cell proliferation, increase in cell cycle arrest and apoptosis, decrease in invasion, and increase in radiosensitivity. The results demonstrate that the CDKN3/p27 axis may be a novel target in the treatment of NPC.
Collapse
|
19
|
Regina C, Panatta E, Candi E, Melino G, Amelio I, Balistreri CR, Annicchiarico-Petruzzelli M, Di Daniele N, Ruvolo G. Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases. Mech Ageing Dev 2016; 159:14-21. [DOI: 10.1016/j.mad.2016.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
|
20
|
Labak CM, Wang PY, Arora R, Guda MR, Asuthkar S, Tsung AJ, Velpula KK. Glucose transport: meeting the metabolic demands of cancer, and applications in glioblastoma treatment. Am J Cancer Res 2016; 6:1599-608. [PMID: 27648352 PMCID: PMC5004066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023] Open
Abstract
GLUT1, and to a lesser extent, GLUT3, appear to be interesting targets in the treatment of glioblastoma multiforme. The current review aims to give a brief history of the scientific community's understanding of these glucose transporters and to relate their importance to the metabolic changes that occur as a result of cancer. One of the primary changes that occurs in cancer, the Warburg Effect, is characterized by an extreme shift toward glycolysis from the usual reliance on oxidative phosphorylation and is currently being investigated to target the upstream and downstream factors responsible for Warburg-induced changes. Further, it aims to explain the differential expression of GLUT1 and GLUT3 in glioblastoma tissue, and how these modulations in expression can serve as targets to restore a more normal metabolism. Additionally, hypoxia-induced factor-1α's (HIF1α) role in a number of transcriptional changes typical to GBM will be discussed, including its role in GLUT upregulation. Finally, the four known subtypes of GBM [proneural, neural, mesenchymal, and classical] will be characterized in order to discuss how metabolic changes differ in each subtype. These changes have the potential to be selectively targeted in order to provide specificity to the clinical treatment options in GBM.
Collapse
Affiliation(s)
- Collin M Labak
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Paul Y Wang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Rishab Arora
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Illinois Neurological InstitutePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Microbiology, Yogi Vemana UniversityKadapa, India
| |
Collapse
|
21
|
Hribal ML, Mancuso E, Spiga R, Mannino GC, Fiorentino TV, Andreozzi F, Sesti G. PHLPP phosphatases as a therapeutic target in insulin resistance-related diseases. Expert Opin Ther Targets 2016; 20:663-75. [PMID: 26652182 DOI: 10.1517/14728222.2016.1130822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pleckstrin homology domain leucine-rich repeat protein phosphatases (PHLPPs), originally identified as Akt kinase hydrophobic motif specific phosphatases, have subsequently been shown to regulate several molecules recurring within the insulin signaling pathway. This observation suggests that PHLPP phosphatases may have a clinically relevant role in the pathogenesis of insulin resistance-related diseases and may thus represent suitable targets for the treatment of these conditions. AREAS COVERED The literature pertaining to PHLPPs substrates is reviewed herein, along with information on the molecular players involved in regulating the activity and expression of PHLPP phosphatases. In the present review, knowledge of genetic variants in the genes that encode for PHLPP isozymes and the surrounding regulatory regions is also summarized. In addition, data from the studies addressing the role of PHLPPs in insulin resistance-related disorders and from those investigating the possibility to manipulate these phosphatases for therapeutic purposes are presented. EXPERT OPINION A number of issues should be resolved before PHLPPs are pursued as therapeutic targets including: the mechanisms regulating the specificity of PHLPP isozymes; the possibility of differentially regulating PHLPP family members and the possible impact of PHLPPs modulation on the risk of cancer.
Collapse
Affiliation(s)
- Marta Letizia Hribal
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Elettra Mancuso
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Rosangela Spiga
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Gaia Chiara Mannino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Teresa Vanessa Fiorentino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Francesco Andreozzi
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Giorgio Sesti
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| |
Collapse
|