1
|
Pan WW, Wubben TJ, Zacks DN. Promising therapeutic targets for neuroprotection in retinal disease. Curr Opin Ophthalmol 2025; 36:247-252. [PMID: 39927457 DOI: 10.1097/icu.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW Neurodegeneration is a common endpoint of various blinding retinal diseases. Yet, despite exciting advances in disease treatment, there continues to exist a critical need for the development of neuroprotective strategies to prevent retinal cell death. Here, we summarize the recent advances in neuroprotective strategies. RECENT FINDINGS From laboratory deciphering of the mechanisms involved in disease, many novel neuroprotective strategies have emerged and are currently under investigation for the treatment of various retinal and ocular diseases such as inherited retinal degeneration, retinal detachment, diabetic retinopathy, age-related macular degeneration, macular telangiectasia type 2, and glaucoma. These strategies include gene therapies, Fas inhibition, and targeting inflammatory, metabolic and reduction-oxidation abnormalities. Interestingly, investigation of several treatments across different diseases suggests shared neuroprotection mechanisms that can be targeted regardless of the particular disease. SUMMARY Retinal neuroprotection can improve treatment of different retinal diseases. Fortunately, the current landscape, with a plethora of novel neuroprotective therapies, portends a better future for patients.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
2
|
Davidson O, Lee ML, Kam JP, Brush M, Rajesh A, Blazes M, Arterburn DE, Duerr E, Gibbons LE, Crane PK, Lee CS. Associations between dementia and exposure to topical glaucoma medications. J Alzheimers Dis 2025; 103:679-686. [PMID: 39834248 PMCID: PMC12036566 DOI: 10.1177/13872877241305745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND Some studies have suggested that glaucoma may be associated with neurodegeneration and a higher risk of dementia. OBJECTIVE To evaluate whether exposure to different categories of topical glaucoma medications is associated with differential dementia risks in people with glaucoma. METHODS We used data from Adult Changes in Thought, a population-based, prospective cohort study that follows cognitively normal older adults from Kaiser Permanente Washington (KPWA) until Alzheimer's disease (AD) and related dementia development. We included participants with a diagnosis of glaucoma, KPWA pharmacy records of filling topical glaucoma medication (alpha-adrenergic agonists [AAA], beta-adrenergic antagonists, miotics, carbonic anhydrase inhibitors [CAI], and prostaglandins) and at least 10 years of pharmacy records. Eight-year sliding windows were derived for each medication class by computing days on each medication starting 10 years earlier and excluding the most recent 2 years. Cox regression used all 5 classes of medication simultaneously to predict AD and all-cause dementia. RESULTS We included 521 participants (mean age 78 [range 65-96], 62% female) with APOE genotype data. Beta-adrenergic antagonists were the most frequently prescribed (n = 431) followed by prostaglandins (351), AAA (239), CAI (162), and miotics (142). Adjusting for time-varying exposure to other glaucoma medications, APOE, demographics, and smoking, each year of use of alpha-adrenergic agonists in an 8-year window was associated with a higher risk of developing dementia (HR = 1.33, 95% CI = 1.03-1.72). CONCLUSIONS Among older adults with treated glaucoma, exposure to alpha-adrenergic agonists appears to be associated with risk for developing all-cause dementia.
Collapse
Affiliation(s)
- Oliver Davidson
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Michael L Lee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jason P Kam
- Kaiser Permanente Washington, Seattle, WA, USA
| | | | - Anand Rajesh
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Marian Blazes
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - David E Arterburn
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Eric Duerr
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- The Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| |
Collapse
|
3
|
Miliotou AN, Kotsoni A, Zacharia LC. Deciphering the Role of Adrenergic Receptors in Alzheimer's Disease: Paving the Way for Innovative Therapies. Biomolecules 2025; 15:128. [PMID: 39858522 PMCID: PMC11764010 DOI: 10.3390/biom15010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases are currently among the most devastating diseases with no effective disease-modifying drugs in the market, with Alzheimer's disease (AD) being the most prevalent. AD is a complex multifactorial neurodegenerative disorder characterized by progressive and severe cognitive impairment and memory loss. It is the most common cause of progressive memory loss (dementia) in the elderly, and to date, there is no effective treatment to cure or slow disease progression substantially. The role of adrenergic receptors in the pathogenesis of Alzheimer's disease and other tauopathies is poorly understood or investigated. Recently, some studies indicated a potential benefit of drugs acting on the adrenergic receptors for AD and dementias, although due to the heterogeneity of the drug classes used, the results on the whole remain inconclusive. The scope of this review article is to comprehensively review the literature on the possible role of adrenergic receptors in neurodegenerative diseases, stemming from the use of agonists and antagonists including antihypertensive and asthma drugs acting on the adrenergic receptors, but also from animal models and in vitro models where these receptors have been studied. Ultimately, we hope to obtain a better understanding of the role of these receptors, identify the gaps in knowledge, and explore the possibility of repurposing such drugs for AD, given their long history of use and safety.
Collapse
Affiliation(s)
- Androulla N. Miliotou
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
| | - Andria Kotsoni
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
| | - Lefteris C. Zacharia
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| |
Collapse
|
4
|
Yang TK, Kuo HT, Ju YJ, Chen CY, Chen WH, Wu AY, Lin CJ, Lee CC, Ho JHC. Comparative analysis of medical treatments for long-term control of normal tension glaucoma: A systematic review and model-based network meta-analysis. Clin Exp Ophthalmol 2025; 53:39-53. [PMID: 39385332 DOI: 10.1111/ceo.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND To evaluate and compare the long-term efficacy of medical treatments for normal tension glaucoma (NTG) in controlling intraocular pressure (IOP), and establish a hierarchical ranking based on their effectiveness. 'Long-term' is defined as a treatment duration of over 12 weeks in randomised controlled trials (RCTs). METHODS This systematic review and model-based network meta-analysis (MBNMA) collected data of 795 patients with 997 eyes from RCTs. Patients with NTG were selected based on strict inclusion/exclusion criteria, with randomsation procedures and masking as reported in the individual trials. Eight different medications were compared, including prostaglandin analogues, beta-blockers, brimonidine, unoprostone isopropyl, brovincamine, and palmitoylethanolamide (PEA). Notably, PEA is an oral medication, while other drugs are topical agents. RESULTS Primary outcome is the long-term efficacy of IOP control across medications with different follow-up durations. Among the eight medications, PEA demonstrates the highest efficacy (Surface under the cumulative ranking, SUCRA = 7.46%), followed by two prostaglandin analogues: travoprost (SUCRA = 6.86%) and latanoprost (SUCRA = 6.76%), then two beta-blockers: nipradilol (SUCRA = 4.90%) and timolol (SUCRA = 4.89%). Both brimonidine and unoprostone isopropyl have SUCRA scores below 4.0%, indicating modest but limited efficacy. Brovincamine has the lowest SUCRA score (1.32%), reflecting minimal effectiveness. CONCLUSIONS This study revealed PEA as a promising agent for long-term IOP control in NTG patients, suggesting potential use as primary or adjunctive therapy. The outcomes call for PEA's consideration in clinical practice and highlight the need for further research into its long-term efficacy and safety for NTG.
Collapse
Affiliation(s)
- Ting-Kai Yang
- Department of General Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hou-Ting Kuo
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yuh-Jen Ju
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Chen
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsien Chen
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Chun-Ju Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center for Intelligent Healthcare, National Taiwan University Hospital, Taipei, Taiwan
| | - Jennifer Hui-Chun Ho
- Department of Ophthalmology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Eye Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
7
|
Maciulaitiene R, Kalesnykas G, Pauza DH, Januleviciene I. A combination of topical and systemic administration of brimonidine is neuroprotective in the murine optic nerve crush model. PLoS One 2024; 19:e0308671. [PMID: 39116180 PMCID: PMC11309405 DOI: 10.1371/journal.pone.0308671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Glaucoma is a multifactorial optic neuropathy that primarily affecting retinal ganglion cells (RGC). Brimonidine is an intraocular pressure-lowering drug with reported neuroprotective properties. This study aimed to compare the neuroprotective effects of topical and intraperitoneal (IP) brimonidine on RGCs from different retinal segments in a murine optic nerve crush (ONC) model. METHODS forty-one Balb/c mice underwent unilateral ONC and were divided into three study groups: fifteen animals received saline drops twice per day and two additional IP injections of saline; fourteen mice received brimonidine drops twice per day; and 12 mice received brimonidine eye drops twice per day and two additional IP brimonidine injections. Animals were sacrificed seven days post-ONC, and immunohistochemical staining of retinal whole mounts was performed using neuronal NeuN and GFAP staining. Microscopic pictures of the central, middle, and peripheral regions of the retina were taken. The density of the retinal cells was assessed. RESULTS The total RGC density after ONC and RGC densities in all retinal eccentricities were significantly higher in the brimonidine eye drop and IP combination treatment group than in the saline drop + saline IP, and brimonidine drop treatment groups. CONCLUSIONS brimonidine eye drops supplemented with IP brimonidine injections improved RGC survival in a preclinical model of ONC.
Collapse
Affiliation(s)
- Ruta Maciulaitiene
- Department of Ophthalmology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giedrius Kalesnykas
- Experimentica Ltd., Kuopio, Finland
- Experimentica UAB, Vilnius, Lithuania
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Dainius Haroldas Pauza
- Academy of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Januleviciene
- Department of Ophthalmology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
8
|
He Z, Yin BK, Wang K, Zhao B, Chen Y, Li ZC, Chen J. The alpha2-adrenergic receptor agonist clonidine protects against cerebral ischemia/reperfusion induced neuronal apoptosis in rats. Metab Brain Dis 2024; 39:741-752. [PMID: 38833094 DOI: 10.1007/s11011-024-01354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Apoptosis is the crucial pathological mechanism following cerebral ischemic injury. Our previous studies demonstrated that clonidine, one agonist of alpha2-adrenergic receptor (α2-AR), could attenuate cerebral ischemic injury in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). However, it's unclear whether clonidine exerts neuroprotective effects by regulating neuronal apoptosis. In this study, we elucidated whether clonidine can exert anti-apoptotic effects in cerebral ischemic injury, and further explored the possible mechanisms. Neurological deficit score was measured to evaluate the neurological function. TTC staining was used for the measurement of brain infarct size. Hematoxylin-Eosin (HE) staining was applied to examine the cell morphology. TUNEL and DAPI fluorescent staining methods were used to analyze the cell apoptosis in brain tissue. Fluorescence quantitative real-time PCR was performed to assess the gene expression of Caspase-3 and P53. Western blotting assay was applied to detect the protein expression of Caspase-3 and P53. The results showed that clonidine improved neurological function, reduced brain infarct size, alleviated neuronal damage, and reduced the ratio of cell apoptosis in the brain with MCAO/R injury. moreover, clonidine down-regulated the gene and protein expression of Caspase-3 and P53 which were over-expressed after MCAO/R injury. Whereas, yohimbine (one selective α2-AR antagonist) mitigated the anti-apoptosis effects of clonidine, accompanied by reversed gene and protein expression changes. The results indicated that clonidine attenuated cerebral MCAO/R injury via suppressing neuronal apoptosis, which may be mediated, at least in part, by activating α2-AR.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China.
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Bo-Kai Yin
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- Yichang Yiling Hospital, 443000, Yichang, People's Republic of China
- Zhongnan Hospital of Wuhan University, 430071, Wuhan, People's Republic of China
| | - Ke Wang
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China
| | - Bo Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Yue Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Zi-Cheng Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Jing Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Medicine and Health Sciences, China Three Gorges University, No.8 Daxue Road, 443002, Yichang, People's Republic of China.
| |
Collapse
|
9
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Ishikawa T, Kishi N, Shimizu Y, Fujimura T, Yamazaki T. Real-Time Imaging of Single Retinal Cell Apoptosis in a Non-Human Primate Ocular Hypertension Model. Transl Vis Sci Technol 2024; 13:20. [PMID: 38252520 PMCID: PMC10810027 DOI: 10.1167/tvst.13.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose To evaluate the feasibility of using DARC (detection of apoptosing retinal cells) technology as a biomarker for preclinical assessment of glaucomatous damage in a non-human primate (NHP) model of ocular hypertension (OHT). Methods Elevated intraocular pressure (IOP) was induced by applying a laser to the trabecular meshwork in each eye of NHPs. Changes in DARC counts in the retina, identified as fluorescent-tagged annexin V (ANX776)-positive cells, were evaluated together with optic nerve damage, assessed using spectral domain-optical coherence tomography. The pharmacokinetic properties of ANX776 in both healthy and OHT model monkeys were also examined. Results Sustained elevation of IOP and subsequent thinning of the retinal nerve fiber layer thickness (RNFLT) around the optic nerve head were confirmed in the OHT model. Increases in DARC counts were also detected after IOP elevation. We identified a statistically significant relationship between cumulative DARC counts and reductions in RNFLT both globally and in each peripapillary sector. Intravenous administration of ANX776 increased blood annexin V in a dose-dependent manner, which was subsequently eliminated. Conclusions This study revealed that DARC technology can effectively assess glaucomatous damage in an NHP OHT model. We obtained the fundamental data that could serve as a reference for developing preclinical models to evaluate the pharmacodynamics of neuroprotective agents using DARC technology in NHP OHT models. Translational Relevance Our basic data in a monkey OHT model could be useful for future preclinical studies using DARC technology to estimate the pharmacodynamic response of neuroprotective agents.
Collapse
Affiliation(s)
- Takeshi Ishikawa
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| | - Naoki Kishi
- Portfolio Evaluation Group, Cooperate Strategy, Astellas Pharma Inc., Tokyo, Japan
| | - Yoshiko Shimizu
- Product Creation Unit, Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Takao Fujimura
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| | - Takao Yamazaki
- Translational Science Management, Non-Clinical Biomedical Science, Astellas Pharma Inc., Tsukuba, Japan
| |
Collapse
|
11
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
12
|
Zhang Y, Han R, Xu S, Chen J, Zhong Y. Matrix Metalloproteinases in Glaucoma: An Updated Overview. Semin Ophthalmol 2023; 38:703-712. [PMID: 37224230 DOI: 10.1080/08820538.2023.2211149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Matrix metalloproteinases (MMPs) are important regulators of the extracellular matrix (ECM) and are involved in many stages of cellular growth and development. An imbalance of MMP expression is also the basis of many diseases, including eye diseases, such as diabetic retinopathy (DR), glaucoma, dry eye, corneal ulcer, keratoconus. This paper describes the role of MMPs in the glaucoma and their role in the glaucomatous trabecular meshwork (TM), aqueous outflow channel, retina, and optic nerve (ON). This review also summarizes several treatments for glaucoma that target MMPs imbalance and suggests that MMPs may represent a viable therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shushu Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
13
|
Salim SA, Badawi NM, El-Moslamy SH, Kamoun EA, Daihom BA. Novel long-acting brimonidine tartrate loaded-PCL/PVP nanofibers for versatile biomedical applications: fabrication, characterization and antimicrobial evaluation. RSC Adv 2023; 13:14943-14957. [PMID: 37200698 PMCID: PMC10186146 DOI: 10.1039/d3ra02244g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The global state of antibiotic resistance highlights the necessity for new drugs that can treat a wide range of microbial infections. Drug repurposing has several advantages, including lower costs and improved safety compared to developing a new compound. The aim of the current study is to evaluate the repurposed antimicrobial activity of Brimonidine tartrate (BT), a well-known antiglaucoma drug, and to potentiate its antimicrobial effect by using electrospun nanofibrous scaffolds. BT-loaded nanofibers were fabricated in different drug concentrations (1.5, 3, 6, and 9%) via the electrospinning technique using two biopolymers (PCL and PVP). Then, the prepared nanofibers were characterized by SEM, XRD, FTIR, swelling ratio, and in vitro drug release. Afterward, the antimicrobial activities of the prepared nanofibers were investigated in vitro using different methods against several human pathogens and compared to the free BT. The results showed that all nanofibers were prepared successfully with a smooth surface. The diameters of nanofibers were reduced after loading of BT compared to the unloaded ones. In addition, scaffolds showed controlled-drug release profiles that were maintained for more than 7 days. The in vitro antimicrobial assessments revealed good activities for all scaffolds against most of the investigated human pathogens, particularly the one prepared with 9% BT which showed superiority in the antimicrobial effect over other scaffolds. To conclude, our findings proved the capability of nanofibers in loading BT and improving its repurposed antimicrobial efficacy. Therefore, it could be a promising carrier for BT to be used in combating numerous human pathogens.
Collapse
Affiliation(s)
- Samar A Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Shahira H El-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
- Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Baher A Daihom
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University Cairo Egypt
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin 78712 USA
| |
Collapse
|
14
|
Li Q, Feng P, Lin S, Xu Z, Zhao J, Chen Z, Luo Z, Tao Y, Chen S, Wang P. Crocetin confers neuroprotection and is anti-inflammatory in rats with induced glaucoma. Mol Biol Rep 2023; 50:1321-1331. [PMID: 36456771 DOI: 10.1007/s11033-022-08102-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Crocetin is a bioactive ingredient in saffron, derived from the Crocus sativus stigmas of the Iridaceae family. As a chemically carotenoid derivative, crocetin exhibites effects like anti-inflammatory, antioxidant, neuroprotective, etc. However, the protective effect of crocetin on glaucoma and its mechanism remains unclear. The current study assesed the neuroprotective and anti-inflammatory effects of crocetin on retinal neurons in glaucoma rats which were induced by 0.3% carbomer injection into the anterior chamber. METHODS AND RESULTS The pathological structures on the retina and optic nerve were observed and examined by H&E staining and transmission electron microscopy. Immunohistochemical staining was used to detect the expression of TNF-α, IL-1β, and IL-6 of the retina and the expression of a brain-derived neurotrophic factor (BDNF) in the primary visual cortex (PVC). Western blot was carried out to detect the expression of PI3K, Akt, and NF-κB in the retina. It was found that crocetin ameliorated the pathological changes of the retina and ON and reduced the number of apoptotic retinal ganglion cells. Immunohistochemical staining showed that crocetin could decrease the contents of TNF-α, IL-1β, and IL-6 and increase the contents of BDNF. Western blot showed that crocetin was found to suppress the expression of PI3K, Akt, and NF-κB. CONCLUSION The results obtained in this study have indicated that crocetin showes neuroprotective effects on retinal ganglion cells in glaucoma rats and inhibits retinal dysfunction. Meanwhile, crocetin exerted an anti-inflammatory effect to protect the retina by inhibiting the expression of the PI3K/Akt/NF-κB signaling pathway. This work provides substantial evidence that crocetin may be a potential drug for the treatment of glaucoma.
Collapse
Affiliation(s)
- Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, 334000, Shangrao, Jiangxi, People's Republic of China
| | - Jiajing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zirui Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, Zhejiang, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China.
| |
Collapse
|
15
|
Kuo CY, Liu CJL. Neuroprotection in Glaucoma: Basic Aspects and Clinical Relevance. J Pers Med 2022; 12:jpm12111884. [PMID: 36579616 PMCID: PMC9697907 DOI: 10.3390/jpm12111884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects primarily the retinal ganglion cells (RGCs). Increased intraocular pressure (IOP) is one of the major risk factors for glaucoma. The mainstay of current glaucoma therapy is limited to lowering IOP; however, controlling IOP in certain patients can be futile in slowing disease progression. The understanding of potential biomolecular processes that occur in glaucomatous degeneration allows for the development of glaucoma treatments that modulate the death of RGCs. Neuroprotection is the modification of RGCs and the microenvironment of neurons to promote neuron survival and function. Numerous studies have revealed effective neuroprotection modalities in animal models of glaucoma; nevertheless, clinical translation remains a major challenge. In this review, we select the most clinically relevant treatment strategies, summarize preclinical and clinical data as well as recent therapeutic advances in IOP-independent neuroprotection research, and discuss the feasibility and hurdles of each therapeutic approach based on possible pathogenic mechanisms. We also summarize the potential therapeutic mechanisms of various agents in neuroprotection related to glutamate excitotoxicity.
Collapse
Affiliation(s)
- Che-Yuan Kuo
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Catherine Jui-Ling Liu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7325
| |
Collapse
|
16
|
Zhao L, Yue Z, Wang Y, Wang J, Ullah I, Muhammad F, Zhou Y, Zhu H, Wang X, Li H. Autophagy activation by Terminalia chebula Retz. reduce Aβ generation by shifting APP processing toward non-amyloidogenic pathway in APPswe transgenic SH-SY5Y cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154245. [PMID: 35696798 DOI: 10.1016/j.phymed.2022.154245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) is a central hallmark of AD. Accumulating evidence suggest that shifting amyloid precursor protein (APP) metabolism pathway to non-amyloidogenic ways and inducing autophagy play key roles in AD pathology. In published reports, there is no research on the APP metabolic process of Terminalia chebula Retz. (T. Chebula). PURPOSE The study aims to assess the effects of T. Chebula in AD transgenic SH-SY5Y cells to determine its underlying mechanisms on reducing Aβ level by regulating APP metabolic process. METHODS The effects of T. Chebula water extract (TWE) on APPswe transgenic SH-SY5Y cells were analyzed by cell viability. ELISA used to quantify extracellular Aβ1-40 and Aβ1-42 generations. Western blot and RT-PCR assays were chosen to detect the expression of proteins and genes. The acridine orange (AO) stain was used to label autophagic-vesicles. RESULTS Treatment with TWE significantly suppressed the Aβ1-40 and Aβ1-42 generations of APPswe transgenic cells. TWE inhibited amyloidogenic pathway by reducing BACE1 expression, and promote non-amyloidogenic pathway by inducing ADAM10 level of APP metabolism. Additionally, TWE induced autophagy in APPswe transgenic cells involved in APP metabolism to shift the balance to non-amyloidogenic pathway. CONCLUSION In summary, our finding first time expounded that TWE can inhibit the generation of Aβ1-40 and Aβ1-42 in APPswe transgenic SH-SY5Y cells, which were regulated APP metabolism tends to non-amyloid metabolism pathway and mediated by autophagy. The results presented a novel finding for AD treatment of traditional natural medicines.
Collapse
Affiliation(s)
- Longhe Zhao
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Zhaorong Yue
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Yanni Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Jiatao Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Inam Ullah
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Fahim Muhammad
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China.
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China; Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China.
| |
Collapse
|
17
|
Narsineni L, Rao PPN, Pham AT, Foldvari M. Peptide-Modified Gemini Surfactants as Delivery System Building Blocks with Dual Functionalities for Glaucoma Treatment: Gene Carriers and Amyloid-Beta (Aβ) Self-Aggregation Inhibitors. Mol Pharm 2022; 19:2737-2753. [PMID: 35802484 DOI: 10.1021/acs.molpharmaceut.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cell (RGC) neurodegeneration in glaucoma has potential links with amyloid-β (Aβ) deposition. Targeting the Aβ pathway was shown to reduce RGC apoptosis and protect RGCs from degeneration. We report exploratory studies on the amyloid Aβ40 aggregation inhibition properties of four cell adhesion peptide (CAP)-gemini surfactants that are intended as building blocks for gene carrier nanoparticles for glaucoma treatment. The CAP-gemini surfactants (18-7N(p1-4)-18) were evaluated as potential Aβ40 peptide aggregation inhibitors by a fluorescence kinetic assay and for their binding interactions with Aβ40 dimers by molecular docking studies. In vitro Aβ40 peptide aggregation inhibition studies showed that the 18-7N(p3)-18 and 18-7N(p1)-18 ligands inhibit Aβ40 peptide aggregation and prevent the formation of higher order structures. CDOCKER energies and CDOCKER interaction energies demonstrated that the CAP-gemini surfactants formed more stable complexes in the Aβ40 dimer assembly and underwent both polar and nonpolar interactions compared to CAP peptides alone. Also, 18-7N(p3)-18 showed a significantly lower CDOCKER energy compared to that of the unmodified gemini surfactant 18-7NH-18 (p < 0.0001) and 18-7N(p4)-18 (p < 0.001), 18-7N(p1)-18, and 18-7N(p2)-18. Similarly, 18-7N(p3)-18 showed a significantly lower CDOCKER interaction energy compared to that of 18-7NH-18, 18-7N(p4)-18 (p < 0.0001), and 18-7N(p2)-18 (p < 0.001), while 18-7N(p3)-18 and 18-7N(p1)-18 showed similar CDOCKER interaction energies. These studies suggest that a combination of both hydrophobic and electrostatic interactions contributes to the anti-Aβ40 aggregation activity of CAP-gemini surfactants. CAP-gemini surfactants showed 10-fold better Aβ40 peptide aggregation inhibition compared to previously reported values and could provide a new opportunity for glaucoma treatment as dual-functional gene carriers.
Collapse
|
18
|
Fedotkina O, Jain R, Prasad RB, Luk A, García-Ramírez M, Özgümüs T, Cherviakova L, Khalimon N, Svietleisha T, Buldenko T, Kravchenko V, Jain D, Vaag A, Chan J, Khalangot MD, Hernández C, Nilsson PM, Simo R, Artner I, Lyssenko V. Neuronal Dysfunction Is Linked to the Famine-Associated Risk of Proliferative Retinopathy in Patients With Type 2 Diabetes. Front Neurosci 2022; 16:858049. [PMID: 35600617 PMCID: PMC9119187 DOI: 10.3389/fnins.2022.858049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Persons with type 2 diabetes born in the regions of famine exposures have disproportionally elevated risk of vision-threatening proliferative diabetic retinopathy (PDR) in adulthood. However, the underlying mechanisms are not known. In the present study, we aimed to investigate the plausible molecular factors underlying progression to PDR. To study the association of genetic variants with PDR under the intrauterine famine exposure, we analyzed single nucleotide polymorphisms (SNPs) that were previously reported to be associated with type 2 diabetes, glucose, and pharmacogenetics. Analyses were performed in the population from northern Ukraine with a history of exposure to the Great Ukrainian Holodomor famine [the Diagnostic Optimization and Treatment of Diabetes and its Complications in the Chernihiv Region (DOLCE study), n = 3,583]. A validation of the top genetic findings was performed in the Hong Kong diabetes registry (HKDR, n = 730) with a history of famine as a consequence of the Japanese invasion during WWII. In DOLCE, the genetic risk for PDR was elevated for the variants in ADRA2A, PCSK9, and CYP2C19*2 loci, but reduced at PROX1 locus. The association of ADRA2A loci with the risk of advanced diabetic retinopathy in famine-exposed group was further replicated in HKDR. The exposure of embryonic retinal cells to starvation for glucose, mimicking the perinatal exposure to famine, resulted in sustained increased expression of Adra2a and Pcsk9, but decreased Prox1. The exposure to starvation exhibited a lasting inhibitory effects on neurite outgrowth, as determined by neurite length. In conclusion, a consistent genetic findings on the famine-linked risk of ADRA2A with PDR indicate that the nerves may likely to be responsible for communicating the effects of perinatal exposure to famine on the elevated risk of advanced stages of diabetic retinopathy in adults. These results suggest the possibility of utilizing neuroprotective drugs for the prevention and treatment of PDR.
Collapse
Affiliation(s)
- Olena Fedotkina
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Ruchi Jain
- Department of Clinical Sciences, Lund University Diabetes Center, Skane University Hospital, Malmö, Sweden
| | - Rashmi B. Prasad
- Department of Clinical Sciences, Lund University Diabetes Center, Skane University Hospital, Malmö, Sweden
| | - Andrea Luk
- Prince of Wales Hospital, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Türküler Özgümüs
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | | | | | | | - Tetiana Buldenko
- Department of Health Care of Chernihiv Regional State Administration, Chernihiv, Ukraine
| | - Victor Kravchenko
- Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
| | - Deepak Jain
- Department of Clinical Sciences, Lund University Diabetes Center, Skane University Hospital, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Juliana Chan
- Prince of Wales Hospital, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mykola D. Khalangot
- Komisarenko Institute of Endocrinology and Metabolism, Kyiv, Ukraine
- Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | | | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University Diabetes Center, Skane University Hospital, Malmö, Sweden
| | - Rafael Simo
- Vall d’Hebron Research Institute and CIBERDEM, Barcelona, Spain
| | - Isabella Artner
- Department of Clinical Sciences, Lund University Diabetes Center, Skane University Hospital, Malmö, Sweden
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Department of Clinical Sciences, Lund University Diabetes Center, Skane University Hospital, Malmö, Sweden
| |
Collapse
|
19
|
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23084287. [PMID: 35457104 PMCID: PMC9025234 DOI: 10.3390/ijms23084287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC.
Collapse
|
20
|
Pinto FE, Olsen P, Glud M, Wulf HC, Lerche CM. Topical Brimonidine Delays Ultraviolet Radiation-Induced Squamous Cell Carcinoma in Hairless Mice. Photochem Photobiol 2022; 98:1390-1394. [PMID: 35338500 PMCID: PMC9790565 DOI: 10.1111/php.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022]
Abstract
We investigated whether topical brimonidine delayed or enhanced the development of squamous cell carcinoma (SCC) when ultraviolet radiation (UVR) was applied to a well-established murine model. Hairless female mice (n = 125) were randomized into five groups and treated as follows: 1% brimonidine cream before UVR (Group 1), 0.33% brimonidine gel before UVR (Group 2), 1% brimonidine cream after UVR (Group 3), UVR only (control; Group 4) and 1% brimonidine cream only (control; Group 5). For each animal, the first four tumors were recorded and followed until three tumors reached 4 mm or one tumor reached 12 mm in diameter. All animal experiments continued for up to 365 days or until death. Application of 1% brimonidine cream before UVR delayed tumor development relative to control mice treated with UVR alone (P = 0.000006). However, when 0.33% brimonidine gel was applied before UVR (P = 0.313) or 1% brimonidine cream was applied after UVR (P = 0.252), there was no significant delay in tumor development relative to control mice treated with UVR alone. The development of the second and third tumors followed a similar pattern. Topical 1% brimonidine cream applied before UVR exposure delayed SCC development in hairless mice. In contrast, when brimonidine was applied after UVR there was no significant delay in tumor development. These results suggest that the 1% brimonidine cream probably absorbed the UVR, and therefore, a delay in tumor formation was only seen when brimonidine was applied before irradiation. However, there can be multiple reasons for this delay in photocarcinogenesis.
Collapse
Affiliation(s)
- Fernanda E. Pinto
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark
| | - Peter Olsen
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark
| | - Martin Glud
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark
| | | | - Catharina M. Lerche
- Department of DermatologyCopenhagen University HospitalCopenhagenDenmark,Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury. J Nanobiotechnology 2021; 19:436. [PMID: 34930292 PMCID: PMC8686547 DOI: 10.1186/s12951-021-01199-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress contributes to retina ganglion cells (RGCs) loss in variety of ocular diseases, including ocular trauma, ocular vein occlusion, and glaucoma. Scavenging the excessed reactive oxygen species (ROS) in retinal neurovascular unit could be beneficial to RGCs survival. In this study, a polydopamine (PDA)-based nanoplatform is developed to protect RGCs. Results The PDA nanoparticles efficiently eliminate multi-types of ROS, protect endothelia and neuronal cells from oxidative damage, and inhibit microglia activation in retinas. In an optic nerve crush (ONC) model, single intravitreal injection of PDA nanoparticles could significantly attenuate RGCs loss via eliminating ROS in retinas, reducing the inflammatory response and maintaining barrier function of retinal vascular endothelia. Comparative transcriptome analysis of the retina implied that PDA nanoparticles improve RGCs survival probably by altering the expression of genes involved in inflammation and ROS production. Importantly, as a versatile drug carrier, PDA nanoparticles could deliver brimonidine (a neuroprotection drug) to synergistically attenuate RGCs loss and promote axon regeneration, thus restore visual function. Conclusions The PDA nanoparticle-based therapeutic nanoplatform displayed excellent performance in ROS elimination, providing a promising probability for treating retinal degeneration diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01199-3.
Collapse
|
22
|
Conti F, Romano GL, Eandi CM, Toro MD, Rejdak R, Di Benedetto G, Lazzara F, Bernardini R, Drago F, Cantarella G, Bucolo C. Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage. Front Pharmacol 2021; 12:705405. [PMID: 34366858 PMCID: PMC8333612 DOI: 10.3389/fphar.2021.705405] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Maria Eandi
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Mario Damiano Toro
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
23
|
Arrigo A, Bandello F. Molecular Features of Classic Retinal Drugs, Retinal Therapeutic Targets and Emerging Treatments. Pharmaceutics 2021; 13:pharmaceutics13071102. [PMID: 34371793 PMCID: PMC8309124 DOI: 10.3390/pharmaceutics13071102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The management of exudative retinal diseases underwent a revolution due to the introduction of intravitreal treatments. There are two main classes of intravitreal drugs, namely anti-vascular endothelial growth factors (anti-VEGF) and corticosteroids molecules. The clinical course and the outcome of retinal diseases radically changed thanks to the efficacy of these molecules in determining the regression of the exudation and the restoration of the macular profile. In this review, we described the molecular features of classic retinal drugs, highlighting the main therapeutic targets, and we provided an overview of new emerging molecules. We performed a systematic review of the current literature available in the MEDLINE library, focusing on current intravitreal molecules and on new emerging therapies. The anti-VEGF molecules include Bevacizumab, Pegaptanib, Ranibizumab, Aflibercept, Conbercept, Brolucizumab, Abicipar-pegol and Faricimab. The corticosteroids approach is mainly based on the employment of triamcinolone acetonide, dexamethasone and fluocinolone acetonide molecules. Many clinical trials and real-life reports demonstrated their efficacy in exudative retinal diseases, highlighting differences in terms of molecular targeting and pharmacologic profiles. Furthermore, several new molecules are currently under investigation. Intravitreal drugs focus their activity on a wide range of therapeutic targets and are safe and efficacy in managing retinal diseases.
Collapse
|
24
|
Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic. Prog Retin Eye Res 2021; 86:100976. [PMID: 34102318 DOI: 10.1016/j.preteyeres.2021.100976] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
DARC (Detection of Apoptosing Retinal Cells) is a retinal imaging technology that has been developed within the last 2 decades from basic laboratory science to Phase 2 clinical trials. It uses ANX776 (fluorescently labelled Annexin A5) to identify stressed and apoptotic cells in the living eye. During its development, DARC has undergone biochemistry optimisation, scale-up and GMP manufacture and extensive preclinical evaluation. Initially tested in preclinical glaucoma and optic neuropathy models, it has also been investigated in Alzheimer, Parkinson's and Diabetic models, and used to assess efficacy of therapies. Progression to clinical trials has not been speedy. Intravenous ANX776 has to date been found to be safe and well-tolerated in 129 patients, including 16 from Phase 1 and 113 from Phase 2. Results on glaucoma and AMD patients have been recently published, and suggest DARC with an AI-aided algorithm can be used to predict disease activity. New analyses of DARC in GA prediction are reported here. Although further studies are needed to validate these findings, it appears there is potential of the technology to be used as a biomarker. Much larger clinical studies will be needed before it can be considered as a diagnostic, although the relatively non-invasive nature of the nasal as opposed to intravenous administration would widen its acceptability in the future as a screening tool. This review describes DARC development and its progression into Phase 2 clinical trials from lab-based research. It discusses hypotheses, potential challenges, and regulatory hurdles in translating technology.
Collapse
|
25
|
New perspectives of immunomodulation and neuroprotection in glaucoma. Cent Eur J Immunol 2021; 46:105-110. [PMID: 33897291 PMCID: PMC8056344 DOI: 10.5114/ceji.2021.104329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is the neurodegenerative disease of retinal ganglion cells. The main risk factor for glaucoma is increased intraocular pressure. The processes leading to cell death due to presence of the injury factor comprise multiple molecular mechanisms, as well as the immunological response. The knowledge of immunological mechanisms occurring in glaucomatous degeneration makes it possible to introduce glaucoma treatment modulating the cellular degradation. The glaucoma treatment of the future will make it possible not only to lower the intraocular pressure, but also to moderate the intracellular mechanisms in order to prevent retinal cell degeneration. Citicoline is a drug modulating glutamate excitotoxicity that is already in use. Rho kinase inhibitors were found to stimulate neurite growth and axon regeneration apart from lowering intraocular pressure. The complementary action of brimonidine is to increase neurotrophic factor (NTF) concentrations and inhibit glutamate toxicity. Immunomodulatory therapies with antibodies and gene therapies show promising effects in the current studies. The supplementation of NTFs prevents glaucomatous damage. Resveratrol and other antioxidants inhibit reactive oxygen species formation. Cell transplantation of stem cells, Schwann cells and nerve extracts was reported to be successful so far. Our review presents the most promising new strategies of neuroprotection and immunomodulation in glaucoma.
Collapse
|
26
|
Wang L, Mao X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int J Mol Sci 2021; 22:2360. [PMID: 33653000 PMCID: PMC7956232 DOI: 10.3390/ijms22052360] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
Amyloid-β (Aβ) accumulations have been identified in the retina for neurodegeneration-associated disorders like Alzheimer's disease (AD), glaucoma, and age-related macular degeneration (AMD). Elevated retinal Aβ levels were associated with progressive retinal neurodegeneration, elevated cerebral Aβ accumulation, and increased disease severity with a decline in cognition and vision. Retinal Aβ accumulation and its pathological effects were demonstrated to occur prior to irreversible neurodegeneration, which highlights its potential in early disease detection and intervention. Using the retina as a model of the brain, recent studies have focused on characterizing retinal Aβ to determine its applicability for population-based screening of AD, which warrants a further understanding of how Aβ manifests between these disorders. While current treatments directly targeting Aβ accumulations have had limited results, continued exploration of Aβ-associated pathological pathways may yield new therapeutic targets for preserving cognition and vision. Here, we provide a review on the role of retinal Aβ manifestations in these distinct neurodegeneration-associated disorders. We also discuss the recent applications of retinal Aβ for AD screening and current clinical trial outcomes for Aβ-associated treatment approaches. Lastly, we explore potential future therapeutic targets based on overlapping mechanisms of pathophysiology in AD, glaucoma, and AMD.
Collapse
Affiliation(s)
- Liang Wang
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Monitoring New Long-Lasting Intravitreal Formulation for Glaucoma with Vitreous Images Using Optical Coherence Tomography. Pharmaceutics 2021; 13:pharmaceutics13020217. [PMID: 33562488 PMCID: PMC7915309 DOI: 10.3390/pharmaceutics13020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
Intravitreal injection is the gold standard therapeutic option for posterior segment pathologies, and long-lasting release is necessary to avoid reinjections. There is no effective intravitreal treatment for glaucoma or other optic neuropathies in daily practice, nor is there a non-invasive method to monitor drug levels in the vitreous. Here we show that a glaucoma treatment combining a hypotensive and neuroprotective intravitreal formulation (IF) of brimonidine–Laponite (BRI/LAP) can be monitored non-invasively using vitreoretinal interface imaging captured with optical coherence tomography (OCT) over 24 weeks of follow-up. Qualitative and quantitative characterisation was achieved by analysing the changes in vitreous (VIT) signal intensity, expressed as a ratio of retinal pigment epithelium (RPE) intensity. Vitreous hyperreflective aggregates mixed in the vitreous and tended to settle on the retinal surface. Relative intensity and aggregate size progressively decreased over 24 weeks in treated rat eyes as the BRI/LAP IF degraded. VIT/RPE relative intensity and total aggregate area correlated with brimonidine levels measured in the eye. The OCT-derived VIT/RPE relative intensity may be a useful and objective marker for non-invasive monitoring of BRI/LAP IF.
Collapse
|
28
|
A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 2020; 21:ijms21239267. [PMID: 33291737 PMCID: PMC7730513 DOI: 10.3390/ijms21239267] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Melatonin is of great importance for regulating several eye processes, including pressure homeostasis. Melatonin in combination with agomelatine has been recently reported to reduce intraocular pressure (IOP) with higher efficacy than each compound alone. Here, we used the methylcellulose (MCE) rat model of hypertensive glaucoma, an optic neuropathy characterized by the apoptotic death of retinal ganglion cells (RGCs), to evaluate the hypotensive and neuroprotective efficacy of an eye drop nanomicellar formulation containing melatonin/agomelatine. Eye tissue distribution of melatonin/agomelatine in healthy rats was evaluated by HPLC/MS/MS. In the MCE model, we assessed by tonometry the hypotensive efficacy of melatonin/agomelatine. Neuroprotection was revealed by electroretinography; by levels of inflammatory and apoptotic markers; and by RGC density. The effects of melatonin/agomelatine were compared with those of timolol (a beta blocker with prevalent hypotensive activity) or brimonidine (an alpha 2 adrenergic agonist with potential neuroprotective efficacy), two drugs commonly used to treat glaucoma. Both melatonin and agomelatine penetrate the posterior segment of the eye. In the MCE model, IOP elevation was drastically reduced by melatonin/agomelatine with higher efficacy than that of timolol or brimonidine. Concomitantly, gliosis-related inflammation and the Bax-associated apoptosis were partially prevented, thus leading to RGC survival and recovered retinal dysfunction. We suggest that topical melatoninergic compounds might be beneficial for ocular health.
Collapse
|
29
|
Zollet P, E.Yap T, Cordeiro MF. Detecting apoptosis as a clinical endpoint for proof of a clinical principle. Ophthalmologica 2020; 244:408-417. [DOI: 10.1159/000513584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022]
Abstract
The transparent eye media represent a window through which to observe changes occurring in the retina during pathological processes. In contrast to visualising the extent of neurodegenerative damage that has already occurred, imaging an active process such as apoptosis has the potential to report on disease progression and therefore the threat of irreversible functional loss in various eye and brain diseases. Early diagnosis in these conditions is an important unmet clinical need to avoid or delay irreversible sight loss. In this setting, apoptosis detection is a promising strategy with which to diagnose, provide prognosis, and monitor therapeutic response. Additionally, monitoring apoptosis in vitro and in vivo has been shown to be valuable for drug development in order to assess the efficacy of novel therapeutic strategies both in the pre-clinical and clinical setting. Detection of Apoptosing Retinal Cells (DARC) technology is to date the only tool of its kind to have been tested in clinical trials, with other new imaging techniques under investigation in the fields of neuroscience, ophthalmology and drug development. We summarize the transitioning of techniques detecting apoptosis from bench to bedside, along with the future possibilities they encase.
Collapse
|
30
|
Guo Y, Wu Y, Li N, Wang Z. Up-regulation of miRNA-151-3p enhanced the neuroprotective effect of dexmedetomidine against β-amyloid by targeting DAPK-1 and TP53. Exp Mol Pathol 2020; 118:104587. [PMID: 33275947 DOI: 10.1016/j.yexmp.2020.104587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is the leading lethal disease among the elderly. Dexmedetomidine (Dex) has been reported to have multiple neuroprotective effects, but its effect against beta-amyloid (Aβ) has not been completely determined and understood. Dex can activate both α2 adrenoceptor/cAMP/PKA and imidazoline I receptors/ERK1/2 signals. To determine which signal is critical for the effect of Dex on Aβ toxicity, we treated SH-SY5Y and PC12 cells with inhibitors of α2 adrenoceptor and ERK1/2. Dex suppressed the apoptosis of neuronal cells and production of reactive oxygen species induced by Aβ. These suppressive effects were attenuated by both inhibitors. As indicated by western blot, Dex stimulates both pro-apoptosis (activating death-associated protein kinase 1 [DAPK-1] and p53) and anti-apoptotic (up-regulating bcl-2 and bcl-xL) signals in Aβ-treated neuronal cells. This effect is likely associated with ERK1/2 signaling because ERK1/2 inhibitor disrupts the effect of Dex on these signals. To eliminate the pro-apoptotic effect of Dex while retaining its anti-apoptosis action, we screened miRNA-151-3p to target DAPK-1 and p53. Transfection with miRNA-151-3p mimics suppressed DAPK-1 and TP53 expression induced by Dex and increased Nrf-2 and SOD expression. More importantly, increasing miRNA-151-3p enhanced the anti-apoptotic and antioxidative effects of Dex in Aβ-treated neuronal cells. Overall, this study revealed that Dex additionally stimulated pro-apoptosis signaling, although it suppressed Aβ-induced apoptosis of neuronal cells. miRNA-151-3p enhanced the neuroprotective effect of Dex against Aβ by targeting DAPK-1 and TP53.
Collapse
Affiliation(s)
- Yan Guo
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Yipeng Wu
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Na Li
- Department of Ophthalmology, Changzhi people's Hospital, No.053, Yingbin West Street, Changzhi County, Changzhi City, Shanxi Province 046000, China
| | - Zehua Wang
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China.
| |
Collapse
|
31
|
Kelada M, Hill D, Yap TE, Manzar H, Cordeiro MF. Innovations and revolutions in reducing retinal ganglion cell loss in glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1835470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mary Kelada
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - Daniel Hill
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| | - Haider Manzar
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
| | - M. Francesca Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
| |
Collapse
|
32
|
Pinazo-Durán MD, Muñoz-Negrete FJ, Sanz-González SM, Benítez-Del-Castillo J, Giménez-Gómez R, Valero-Velló M, Zanón-Moreno V, García-Medina JJ. The role of neuroinflammation in the pathogenesis of glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:99-124. [PMID: 32958217 DOI: 10.1016/bs.pbr.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The chapter is a review enclosed in the volume "Glaucoma: A pancitopatia of the retina and beyond." No cure exists for glaucoma. Knowledge on the molecular and cellular alterations underlying glaucoma neurodegeneration (GL-ND) includes innovative and path-breaking research on neuroinflammation and neuroprotection. A series of events involving immune response (IR), oxidative stress and gene expression are occurring during the glaucoma course. Uveitic glaucoma (UG) is a prevalent acute/chronic complication, in the setting of chronic anterior chamber inflammation. Managing the disease requires a team approach to guarantee better results for eyes and vision. Advances in biomedicine/biotechnology are driving a tremendous revolution in ophthalmology and ophthalmic research. New diagnostic and imaging modalities, constantly refined, enable outstanding criteria for delimiting glaucomatous neurodegeneration. Moreover, biotherapies that may modulate or inhibit the IR must be considered among the first-line for glaucoma neuroprotection. This review offers the readers useful and practical information on the latest updates in this regard.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain.
| | - Francisco J Muñoz-Negrete
- Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Ophthalmology Department at the University Hospital "Ramón y Cajal" (IRYCIS) and Surgery Department at the Faculty of Medicine, University Alcala de Henares, Madrid, Spain
| | - Silvia M Sanz-González
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain
| | - Javier Benítez-Del-Castillo
- Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Department of Ophthalmology at the Hospital of Jerez, Jerez de la Frontera, Cádiz, Spain
| | - Rafael Giménez-Gómez
- Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Department of Ophthalmology at the University Hospital "Reina Sofia", Córdoba, Spain
| | - Mar Valero-Velló
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; International University of Valencia, Valencia, Spain
| | - José J García-Medina
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Department of Ophthalmology at the University Hospital "Morales Meseguer" and Department of Ophthalmology at the Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
33
|
Scuteri D, Bagetta G, Nucci C, Aiello F, Cesareo M, Tonin P, Corasaniti MT. Evidence on the neuroprotective properties of brimonidine in glaucoma. PROGRESS IN BRAIN RESEARCH 2020; 257:155-166. [PMID: 32988470 DOI: 10.1016/bs.pbr.2020.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND glaucoma is the leading cause of irreversible blindness all over the world. The degree of visual field loss accounts for the severity of the disease and represents the main clinical outcome of treatment for patients affected by glaucoma. The α2 agonists, like brimonidine, emerged in the 1960s as topical ophthalmologic treatment. Their neuroprotective mechanism in glaucoma is still debated, ranging from effect on extracellular glutamate, to ocular hypotension and blood flow. OBJECTIVES this systematic review and meta-analysis aims at assessing the efficacy of brimonidine on visual field deterioration during glaucoma through the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) approach. Databases consulted: the literature search has been performed on PubMed, MEDLINE, ClinicalTrials.gov and Scopus up to June 10th, 2020. Study eligibility criteria, participants, and interventions: clinical trials assessing the effects of brimonidine on visual field in patients with glaucoma. Study appraisal: the eligibility of the studies has been assessed by two independent authors and the selection has followed the PRISMA flow diagram. The retrieved results have been subjected to risk of bias evaluation. RESULTS the search of literature has retrieved 418 papers, among which 5 are eligible for inclusion in the qualitative analysis. All the studies present high heterogeneity, therefore meta-analysis has not been possible. The results obtained suggest that brimonidine improves visual field, but the design of the clinical trials rises some concerns in terms of risk of bias. CONCLUSIONS the evidence of neuroprotective effect of brimonidine is inconclusive and needs stronger support. Large double-blind randomized clinical trials are necessary to strengthen this evidence.
Collapse
Affiliation(s)
- Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Aiello
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, University "Magna Graecia" of Catanzaro and Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
34
|
Veritti D, Sarao V, Samassa F, Danese C, Löwenstein A, Schmidt-Erfurth U, Lanzetta P. State-of-the art pharmacotherapy for non-neovascular age-related macular degeneration. Expert Opin Pharmacother 2020; 21:773-784. [PMID: 32153203 DOI: 10.1080/14656566.2020.1736557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly in the industrialized world. While effective treatment is available for neovascular AMD, no therapy is successful for the non-neovascular form. Herein, the authors report the current knowledge on non-neovascular AMD pathogenesis and the promising research on treatments. AREAS COVERED In the present review, the authors summarize the most recent advances in the treatment of non-neovascular AMD and provide an update on current treatment strategies. Evidence available from preclinical and clinical studies and from a selective literature search is reported. EXPERT OPINION When investigating AMD, numerous pathological cascades and alterations of physiological processes have been investigated. It is well-known that AMD is a multifactorial disease, with environmental causes and genetics playing a role. Perturbations in multiple pathogenic pathways have been identified and this led to the development of several molecules directed at specific therapeutic targets. However, despite the huge research effort, the only proven approach so far is oral antioxidant supplementation. We believe that, in addition to successful advancement of promising drugs, further research should be directed at tailoring therapy to specific patient groups, eventually employing a combinational therapy strategy.
Collapse
Affiliation(s)
- Daniele Veritti
- Department of Medicine - Ophthalmology, University of Udine , Udine, Italy
| | - Valentina Sarao
- Department of Medicine - Ophthalmology, University of Udine , Udine, Italy.,Istituto Europeo Di Microchirurgia Oculare (IEMO) , Udine, Italy
| | - Francesco Samassa
- Department of Medicine - Ophthalmology, University of Udine , Udine, Italy
| | - Carla Danese
- Department of Medicine - Ophthalmology, University of Udine , Udine, Italy
| | - Anat Löwenstein
- Division of Ophthalmology, Tel Aviv Medical Center , Tel Aviv, Israel
| | | | - Paolo Lanzetta
- Department of Medicine - Ophthalmology, University of Udine , Udine, Italy.,Istituto Europeo Di Microchirurgia Oculare (IEMO) , Udine, Italy
| |
Collapse
|
35
|
Enhancing α-secretase Processing for Alzheimer's Disease-A View on SFRP1. Brain Sci 2020; 10:brainsci10020122. [PMID: 32098349 PMCID: PMC7071437 DOI: 10.3390/brainsci10020122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Amyloid β (Aβ) peptides generated via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) are major etiopathological agents of Alzheimer's disease (AD). However, an initial APP cleavage by an α-secretase, such as the a disintegrin and metalloproteinase domain-containing protein ADAM10, precludes β-secretase cleavage and leads to APP processing that does not produce Aβ. The latter appears to underlie the disease symptom-attenuating effects of a multitude of experimental therapeutics in AD animal models. Recent work has indicated that an endogenous inhibitor of ADAM10, secreted-frizzled-related protein 1 (SFRP1), is elevated in human AD brains and associated with amyloid plaques in mouse AD models. Importantly, genetic or functional attenuation of SFRP1 lowered Aβ accumulation and improved AD-related histopathological and neurological traits. Given SFRP1's well-known activity in attenuating Wnt signaling, which is also commonly impaired in AD, SFRP1 appears to be a promising therapeutic target for AD. This idea, however, needs to be addressed with care because of cancer enhancement potentials resulting from a systemic loss of SFRP1 activity, as well as an upregulation of ADAM10 activity. In this focused review, I shall discuss α-secretase-effected APP processing in AD with a focus on SFRP1, and explore the contrasting perspectives arising from the recent findings.
Collapse
|
36
|
Kurysheva NI. [Selective α2 agonists in the treatment of glaucoma: neuroprotective properties and impact on ocular blood flow]. Vestn Oftalmol 2019; 135:113-120. [PMID: 31393455 DOI: 10.17116/oftalma2019135031113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glaucoma is the main cause of irreversible blindness in the world. The selective α2 adrenergic receptor agonist brimonidine holds an important place among the hypotensive eye drops. The second part of this review focuses on some important effects of brimonidine that characterizes it as a medication with direct neuroprotective multifactorial action, discusses its influence on ocular blood flow and highlights its capability to maintain normal autoregulation of ocular blood flow.
Collapse
Affiliation(s)
- N I Kurysheva
- Ophthalmological Center of the Federal Medical-Biological Agency of the Russian Federation, State Research Center Burnasyan Federal Medical Biophysical Center of the Federal Medical-Biological Agency, Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Department of Ophthalmology, 15 Gamalei St., Moscow, Russian Federation, 123098
| |
Collapse
|
37
|
Radulović V, Aleksić M, Kapetanović V, Rajić KK, Jovanović M, Marjanović I, Stojković M, Agbaba D. The evaluation of short- and long-term stability studies for brimonidine in aqueous humor by DPV/BDDE method-possible application for direct assay in native samples. Anal Bioanal Chem 2019; 411:5755-5763. [PMID: 31201462 DOI: 10.1007/s00216-019-01955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 11/24/2022]
Abstract
A novel voltammetric method was developed for brimonidine (BRIM) determination in deproteinized aqueous humor, simplifying preparation of biological samples for analysis for stability studies. The differential pulse voltammetric (DPV) method using boron doped diamond electrode (BDDE), based on characteristic oxidation peaks, was proposed and successfully applied. The linearity range was within 5.0 × 10-6 to 5.0 × 10-5 M of brimonidine, and limit of detection and limit of quantitation were 1.94 × 10-6 M and 6.46 × 10-6 M, respectively. Intra-day and inter-day precision and accuracy were evaluated and all results were in accordance with validation ICH guidelines. The best short-term stability study results were obtained for a concentration level of 3.0 × 10-5 M expressed by deviation of + 1.86% between initial and post storage concentrations. A long-term stability study was performed for two concentrations of 3.0 × 10-5 M and 5.0 × 10-5 M and resulted in deviations of + 1.63% and + 3.56%, respectively. A freeze and thaw stability study indicated that samples might be frozen only once. The enhancement of DPV/BDDE method sensitivity gained by modification, for the analysis of immeasurable BRIM quantities in native, untreated aqueous humor, was reached for quantities of 6 or 12 nmol/0.1 mL aqueous humor with acceptable accuracy (up to + 7.5%). The nature of the process-the irreversible one electron oxidation voltammetric peak of BRIM-limited the sensitivity. Only electrochemical pre-treatment of the BDD electrode before each measurement significantly speeded up the whole procedure. The advantages of the proposed method are simplicity, short-time performance, and good specificity/selectivity, as well as satisfactory accuracy, and no chemical modification of BDDE was necessary.
Collapse
Affiliation(s)
- Valentina Radulović
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia.
| | - Mara Aleksić
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia
| | - Vera Kapetanović
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia
| | - Katarina Karljiković Rajić
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia
| | - Miloš Jovanović
- Department of Ophthalmology, Faculty of Medicine, University of Belgrade, Dr Subotića 2, Belgrade, 11000, Serbia
| | - Ivan Marjanović
- Department of Ophthalmology, Faculty of Medicine, University of Belgrade, Dr Subotića 2, Belgrade, 11000, Serbia
| | - Milenko Stojković
- Department of Ophthalmology, Faculty of Medicine, University of Belgrade, Dr Subotića 2, Belgrade, 11000, Serbia
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11000, Serbia
| |
Collapse
|
38
|
Shamsher E, Davis BM, Yap TE, Guo L, Cordeiro MF. Neuroprotection in glaucoma: old concepts, new ideas. EXPERT REVIEW OF OPHTHALMOLOGY 2019. [DOI: 10.1080/17469899.2019.1604222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ehtesham Shamsher
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
| | - Benjamin M. Davis
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Li Guo
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
| | - Maria Francesca Cordeiro
- Department of Visual Neuroscience, University College London Institute of Ophthalmology, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London
- The Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
39
|
Nebbioso M, Lambiase A, Cerini A, Limoli PG, La Cava M, Greco A. Therapeutic Approaches with Intravitreal Injections in Geographic Atrophy Secondary to Age-Related Macular Degeneration: Current Drugs and Potential Molecules. Int J Mol Sci 2019; 20:ijms20071693. [PMID: 30987401 PMCID: PMC6479480 DOI: 10.3390/ijms20071693] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
The present review focuses on recent clinical trials that analyze the efficacy of intravitreal therapeutic agents for the treatment of dry age-related macular degeneration (AMD), such as neuroprotective drugs, and complement inhibitors, also called immunomodulatory or anti-inflammatory agents. A systematic literature search was performed to identify randomized controlled trials published prior to January 2019. Patients affected by dry AMD treated with intravitreal therapeutic agents were included. Changes in the correct visual acuity and reduction in geographic atrophy progression were evaluated. Several new drugs have shown promising results, including those targeting the complement cascade and neuroprotective agents. The potential action of the two groups of drugs is to block complement cascade upregulation of immunomodulating agents, and to prevent the degeneration and apoptosis of ganglion cells for the neuroprotectors, respectively. Our analysis indicates that finding treatments for dry AMD will require continued collaboration among researchers to identify additional molecular targets and to fully interrogate the utility of pluripotent stem cells for personalized therapy.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alberto Cerini
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | | | - Maurizio La Cava
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
40
|
Tsao SW, Gabriel R, Thaker K, Kuppermann BD, Kenney MC. Effects of Brimonidine on Retinal Pigment Epithelial Cells and Müller Cells Exposed to Amyloid-Beta 1-42 Peptide In Vitro. Ophthalmic Surg Lasers Imaging Retina 2019; 49:S23-S28. [PMID: 30339264 DOI: 10.3928/23258160-20180814-04] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate whether brimonidine can prevent cytotoxicity in human retinal pigment epithelial (RPE) and Müller (MIO) cells after exposure to amyloid-beta 1-42 (Aβ42). MATERIALS AND METHODS An in vitro model of geographic atrophy (GA), which is an end-stage complication of age-related macular degeneration (AMD), simulated with the application of Aβ42 in cell culture. RPE and MIO cells were pretreated with brimonidine for 6 hours, then exposed to 10μM Aβ42 for 24 hours. Several concentrations (one time [1×], two times [2×], and five times [5×]) of brimonidine were used to assess for a dose-related effect. Assays were immediately run following the treatment period. 2',7'-Dichlorofluorescein diacetate was used to assess reactive oxygen species production, the MTT assay was used to assess cell viability, and the JC-1 dye assay was used to assess mitochondrial membrane potential. The main outcome measures were reactive oxygen species (ROS) production, cell viability, and mitochondrial membrane potential (ΔΨm) of RPE and MIO cells following the treatment phase. RESULTS High-dose (5×) brimonidine was capable of reducing ROS production in RPE and MIO cells with exposure to Aβ42. The application of Aβ42 alone did not trigger a rise in ROS production. Brimonidine was unable to rescue cell viability and ΔΨm after exposure to Aβ42 in both cell cultures. Instead, high-dose (5×) brimonidine appeared to increase the toxicity to cell viability and ΔΨm in cultures exposed to Aβ42. However, this was not due to medication toxicity alone, because high-dose (5×) brimonidine without exposure to Aβ42 did not affect the cell viability in both cell types. CONCLUSION Brimonidine may have a role in preventing oxidative cellular injury in AMD. However, this role does not appear to translate into protection against some of the cytotoxic effects observed from this in vitro model of GA. In this cellular model of GA, brimonidine is able to reduce oxidative stress but is unable to rescue cell viability or prevent mitochondrial dysfunction. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:S23-S28.].
Collapse
|
41
|
Huang J, Jiang Q. Dexmedetomidine Protects Against Neurological Dysfunction in a Mouse Intracerebral Hemorrhage Model by Inhibiting Mitochondrial Dysfunction-Derived Oxidative Stress. J Stroke Cerebrovasc Dis 2019; 28:1281-1289. [PMID: 30797643 DOI: 10.1016/j.jstrokecerebrovasdis.2019.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/09/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a subtype of stroke with high disability and mortality. Dexmedetomidine (Dex) has been shown to provide neuroprotection in several neurological diseases. The aim of present study was to investigate the effects of Dex on ICH-induced neurological deficits and brain injury and the underlying mechanisms. METHODS ICH mouse model was established by intracerebral injection of autologous blood, followed by Dex or vehicle treatment. Neurological function, brain water content, neuronal activity, and oxidative parameters were determined. The protein expressions of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), uncoupling protein 2, and manganese-dependent superoxide dismutase were examined by western blotting. RESULTS Dex administration significantly inhibited ICH-induced the memory impairment, dyskinesia, brain edema, and neuron loss. In addition, ICH-induced the increase in brain oxidative stress level was markedly attenuated after Dex treatment, as evidenced by increased glutathione peroxidase and superoxide dismutase levels and reduced malondialdehyde and nitric oxide levels. Compared with vehicle-treated ICH mice, Dex-treated ICH mice showed significantly decreased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mROS) production in brain, but had no effects on the increased nicotinamide-adenine dinucleotide phosphate oxidase activity. However, stimulation of mROS abrogated the inhibitory effects of Dex on neurological deficits and oxidative stress. The decrease in production of adenosine triphosphate and the expressions of PGC-1α, uncoupling protein 2, and manganese-dependent superoxide dismutase induced by ICH was restored by Dex treatment. CONCLUSIONS Our results reveal that Dex improves ICH-induced neurological deficits and brain injury by inhibiting PGC-1α pathway inactivation and mitochondrial dysfunction-derived oxidative stress.
Collapse
Affiliation(s)
- Jing Huang
- Department of Anesthesiology, Changzhou No.2 People's Hospital, The Affiliated Hospital to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Qiang Jiang
- Department of Anesthesiology, Changzhou No.2 People's Hospital, The Affiliated Hospital to Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
42
|
|
43
|
Activation of 5-HT1A Receptors Promotes Retinal Ganglion Cell Function by Inhibiting the cAMP-PKA Pathway to Modulate Presynaptic GABA Release in Chronic Glaucoma. J Neurosci 2018; 39:1484-1504. [PMID: 30541912 DOI: 10.1523/jneurosci.1685-18.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) receptor agonists are neuroprotective in CNS injury models. However, the neuroprotective functional implications and synaptic mechanism of 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT), a serotonin receptor (5-HT1A) agonist, in an adult male Wistar rat model of chronic glaucoma model remain unknown. We found that ocular hypertension decreased 5-HT1A receptor expression in rat retinas because the number of retinal ganglion cells (RGCs) was significantly reduced in rats with induced ocular hypertension relative to that in control retinas and 8-OH-DPAT enhanced the RGC viability. The protective effects of 8-OH-DPAT were blocked by intravitreal administration of the selective 5-HT1A antagonist WAY-100635 or the selective GABAA receptor antagonist SR95531. Using patch-clamp techniques, spontaneous and miniature GABAergic IPSCs (sIPSCs and mIPSCs, respectively) of RGCs in rat retinal slices were recorded. 8-OH-DPAT significantly increased the frequency and amplitude of GABAergic sIPSCs and mIPSCs in ON- and OFF-type RGCs. Among the signaling cascades mediated by the 5-HT1A receptor, the role of cAMP-protein kinase A (PKA) signaling was investigated. The 8-OH-DPAT-induced changes at the synaptic level were enhanced by PKA inhibition by H-89 and blocked by PKA activation with bucladesine. Furthermore, the density of phosphorylated PKA (p-PKA)/PKA was significantly increased in glaucomatous retinas and 8-OH-DPAT significantly decreased p-PKA/PKA expression, which led to the inhibition of PKA phosphorylation upon relieving neurotransmitter GABA release. These results showed that the activation of 5-HT1A receptors in retinas facilitated presynaptic GABA release functions by suppressing cAMP-PKA signaling and decreasing PKA phosphorylation, which could lead to the de-excitation of RGC circuits and suppress excitotoxic processes in glaucoma.SIGNIFICANCE STATEMENT We found that serotonin (5-HT) receptors in the retina (5-HT1A receptors) were downregulated after intraocular pressure elevation. Patch-clamp recordings demonstrated differences in the frequencies of miniature GABAergic IPSCs (mIPSCs) in ON- and OFF-type retinal ganglion cells (RGCs) and RGCs in normal and glaucomatous retinal slices. Therefore, phosphorylated protein kinase A (PKA) inhibition upon release of the neurotransmitter GABA was eliminated by 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT), which led to increased levels of GABAergic mIPSCs in ON- and OFF-type RGCs, thus enhancing RGC viability and function. These protective effects were blocked by the GABAA receptor antagonist SR95531 or the 5-HT1A antagonist WAY-100635. This study identified a novel mechanism by which activation of 5-HT1A receptors protects damaged RGCs via the cAMP-PKA signaling pathway that modulates GABAergic presynaptic activity.
Collapse
|
44
|
Oh DJ, Chen JL, Vajaranant TS, Dikopf MS. Brimonidine tartrate for the treatment of glaucoma. Expert Opin Pharmacother 2018; 20:115-122. [DOI: 10.1080/14656566.2018.1544241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Daniel J. Oh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Judy L. Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Thasarat S. Vajaranant
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark S. Dikopf
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Mir S, Andres DA. Small GTPase RIT1 in Mouse Retina; Cellular and Functional Analysis. Curr Eye Res 2018; 43:1160-1168. [PMID: 29843527 DOI: 10.1080/02713683.2018.1482557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE Ras-like without CAAX 1 (RIT1/Rit) is a member of the Ras subfamily of small GTP-binding proteins with documented roles in regulating neuronal function, including contributions to neurotrophin signaling, neuronal survival, and neurogenesis. The aim of the study was to (1) examine the expression of RIT1 protein in mouse retina and retinal cell types and (2) determine whether RIT1 contributes to retinal ganglion cell (RGC) survival and synaptic stability following excitotoxic stress. MATERIALS AND METHODS Gene expression and immunohistochemical analysis were used to examine RIT1 expression in the mouse retina. Primary RGC and Müller glia cultures were used to validate novel RIT1 lentiviral RNAi silencing reagents, and to demonstrate that RIT1 loss does not alter RGC morphology. Finally, in vitro glutamate exposure identified a role for RIT1 in the adaptation of RGCs to excitotoxic stress. RESULTS Gene expression analysis and immunohistochemical studies in whole eyes and primary cell culture demonstrate RIT1 expression throughout the retina, including Müller glia and RGCs. While genetic RIT1 knockout (RIT1-KO) does not affect gross retinal anatomy, including the thickness of constituent retinal layers or RGC cell numbers, RNAi-mediated RIT1 silencing results in increased RGC death and synaptic loss following exposure to excitotoxic stress. CONCLUSIONS RIT1 is widely expressed in the murine retina, including both Müller glia and RGCs. While genetic deletion of RIT1 does not result in gross retinal abnormalities, these studies identify a novel role for RIT1 in the adaptation of RGC to excitotoxic stress, with RIT1 promoting both neuronal survival and the retention of PSD-95+ synapses.
Collapse
Affiliation(s)
- Sajad Mir
- a Department of Molecular and Cellular Biochemistry , University of Kentucky, College of Medicine , Lexington , Kentucky , US
| | - Douglas A Andres
- a Department of Molecular and Cellular Biochemistry , University of Kentucky, College of Medicine , Lexington , Kentucky , US
| |
Collapse
|
46
|
Yap TE, Donna P, Almonte MT, Cordeiro MF. Real-Time Imaging of Retinal Ganglion Cell Apoptosis. Cells 2018; 7:E60. [PMID: 29914056 PMCID: PMC6025611 DOI: 10.3390/cells7060060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells) project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.
Collapse
Affiliation(s)
- Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Piero Donna
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Melanie T Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Maria Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK.
| |
Collapse
|
47
|
Abstract
Glaucoma is one of the leading causes of irreversible visual loss, which has been estimated to affect 3.5% of those over 40 years old and projected to affect a total of 112 million people by 2040. Such a dramatic increase in affected patients demonstrates the need for continual improvement in the way we diagnose and treat this condition. Annexin A5 is a 36 kDa protein that is ubiquitously expressed in humans and is studied as an indicator of apoptosis in several fields. This molecule has a high calcium-dependent affinity for phosphatidylserine, a cell membrane phospholipid externalized to the outer cell membrane in early apoptosis. The DARC (Detection of Apoptosing Retinal Cells) project uses fluorescently-labelled annexin A5 to assess glaucomatous degeneration, the inherent process of which is the apoptosis of retinal ganglion cells. Furthermore, this project has conducted investigation of the retinal apoptosis in the neurodegenerative conditions of the eye and brain. In this present study, we summarized the use of annexin A5 as a marker of apoptosis in the eye. We also relayed the progress of the DARC project, developing real-time imaging of retinal ganglion cell apoptosis in vivo from the experimental models of disease and identifying mechanisms underlying neurodegeneration and its treatments, which has been applied to the first human clinical trials. DARC has potential as a biomarker in neurodegeneration, especially in the research of novel treatments, and could be a useful tool for the diagnosis and monitoring of glaucoma.
Collapse
|
48
|
Nikkhah H, Garfami KH, Kanavi MR, Nashtaei EM, Karimi S, Soheilian M. Safety threshold of intravitreal clonidine in rabbit's eyes. Int J Ophthalmol 2018; 11:25-30. [PMID: 29375986 DOI: 10.18240/ijo.2018.01.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To determine the safe dose of intravitreal clonidine (IVC), a potential drug for neuroprotection and angiogenesis inhibition in rabbits. METHODS A total of 28 rabbits were divided into four groups. Three groups received IVC with concentrations of 15 (Group A), 25 (Group B), and 50 (Group C) µg/0.1 mL and the control group (Group D) received 0.1 mL balanced salt solution (BSS). To investigate IVC safety, electroretinography (ERG) was performed at baseline, then at 1, 4 and 8wk after injection. After last ERG, all rabbits were euthanized, their eyes were enucleated and subjected to routine histopathological evaluation, immunohistochemistry for glial fibrillary acidic protein (GFAP) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. RESULTS Based on ERG, histopathology, GFAP and TUNEL assay findings, 15 µg IVC was determined as the safe dose in rabbit eyes. While, the results of routine histopathology and TUNEL assay were unremarkable in all groups, toxic effects attributed to 25 and 50 µg IVC were demonstrated by ERG and GFAP tests. CONCLUSION Totally 15 µg clonidine is determined as the safe dose for intravitreal injection in rabbits. Contribution of IVC in neuroprotection and inhibition of angiogenesis deserve more studies.
Collapse
Affiliation(s)
- Homayoun Nikkhah
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran.,Torfeh Eye Hospital, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Kiumars Heidari Garfami
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Mozhgan Rezaei Kanavi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran.,Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Ebrahim Mohammad Nashtaei
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran.,Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Saeed Karimi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran.,Torfeh Eye Hospital, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Masoud Soheilian
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran.,Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran.,Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| |
Collapse
|
49
|
Bucolo C, Platania CBM, Drago F, Bonfiglio V, Reibaldi M, Avitabile T, Uva M. Novel Therapeutics in Glaucoma Management. Curr Neuropharmacol 2018; 16:978-992. [PMID: 28925883 PMCID: PMC6120119 DOI: 10.2174/1570159x15666170915142727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/26/2017] [Accepted: 09/03/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy characterized by retinal ganglion cell death and alterations of visual field. Elevated intraocular pressure (IOP) is considered the main risk factor of glaucoma, even though other factors cannot be ruled out, such as epigenetic mechanisms. OBJECTIVE An overview of the ultimate promising experimental drugs to manage glaucoma has been provided. RESULTS In particular, we have focused on purinergic ligands, KATP channel activators, gases (nitric oxide, carbon monoxide and hydrogen sulfide), non-glucocorticoid steroidal compounds, neurotrophic factors, PI3K/Akt activators, citicoline, histone deacetylase inhibitors, cannabinoids, dopamine and serotonin receptors ligands, small interference RNA, and Rho kinase inhibitors. CONCLUSIONS The review has been also endowed of a brief chapter on last reports about potential neuroprotective benefits of anti-glaucoma drugs already present in the market.
Collapse
Affiliation(s)
- Claudio Bucolo
- Address correspondence to this author at the Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; Tel: +39 095 4781196;
| | | | | | | | | | | | | |
Collapse
|
50
|
Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, Calpena AC, Souto EMB, Ravindran N, Ettcheto M, Camins A, García ML, Cordeiro MF. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1701808. [PMID: 29154484 DOI: 10.1002/smll.201701808] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/10/2017] [Indexed: 05/20/2023]
Abstract
Glaucoma is a multifactorial neurodegenerative disease associated with retinal ganglion cells (RGC) loss. Increasing reports of similarities in glaucoma and other neurodegenerative conditions have led to speculation that therapies for brain neurodegenerative disorders may also have potential as glaucoma therapies. Memantine is an N-methyl-d-aspartate (NMDA) antagonist approved for Alzheimer's disease treatment. Glutamate-induced excitotoxicity is implicated in glaucoma and NMDA receptor antagonism is advocated as a potential strategy for RGC preservation. This study describes the development of a topical formulation of memantine-loaded PLGA-PEG nanoparticles (MEM-NP) and investigates the efficacy of this formulation using a well-established glaucoma model. MEM-NPs <200 nm in diameter and incorporating 4 mg mL-1 of memantine were prepared with 0.35 mg mL-1 localized to the aqueous interior. In vitro assessment indicated sustained release from MEM-NPs and ex vivo ocular permeation studies demonstrated enhanced delivery. MEM-NPs were additionally found to be well tolerated in vitro (human retinoblastoma cells) and in vivo (Draize test). Finally, when applied topically in a rodent model of ocular hypertension for three weeks, MEM-NP eye drops were found to significantly (p < 0.0001) reduce RGC loss. These results suggest that topical MEM-NP is safe, well tolerated, and, most promisingly, neuroprotective in an experimental glaucoma model.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
| | - Maria Antonia Egea
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Benjamin Michael Davis
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Li Guo
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Amelia Maria Silva
- Department of Biology and Environment, School of Life and Environmental sciences (ECVA, UTAD), and Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana Maria Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC) and REQUIMTE/Group of Pharmaceutical Technology, Polo das Ciências da Saúde Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Nivedita Ravindran
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Miren Ettcheto
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Camins
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Maria Francesca Cordeiro
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|