1
|
Stecco A, Bonaldi L, Fontanella CG, Stecco C, Pirri C. The Effect of Mechanical Stress on Hyaluronan Fragments' Inflammatory Cascade: Clinical Implications. Life (Basel) 2023; 13:2277. [PMID: 38137878 PMCID: PMC10744800 DOI: 10.3390/life13122277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is a common experience, reported by patients who have undergone manual therapy that uses deep friction, to perceive soreness in treatment areas; however, it is still not clear what causes it and if it is therapeutically useful or a simple side effect. The purpose of this narrative review is to determine whether manual and physical therapies can catalyze an inflammatory process driven by HA fragments. The literature supports the hypothesis that mechanical stress can depolymerize into small pieces at low molecular weight and have a high inflammatory capacity. Many of these pieces are then further degraded into small oligosaccharides. Recently, it has been demonstrated that oligosaccharides are able to stop this inflammatory process. These data support the hypothesis that manual therapy that uses deep friction could metabolize self-aggregated HA chains responsible for increasing loose connective tissue viscosity, catalyzing a local HA fragment cascade that will generate soreness but, at the same time, facilitate the reconstitution of the physiological loose connective tissue properties. This information can help to explain the meaning of the inflammatory process as well as the requirement for it for the long-lasting resolution of these alterations.
Collapse
Affiliation(s)
- Antonio Stecco
- Department of Physical Medicine and Rehabilitation, New York University School of Medicine, New York, NY 10016, USA;
| | - Lorenza Bonaldi
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy;
| | | | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, 35121 Padova, Italy;
| | - Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, 35121 Padova, Italy;
| |
Collapse
|
2
|
Mohan N, Pavan SS, Jayakumar A, Rathinavelu S, Sivaprakasam S. Real-time metabolic heat-based specific growth rate soft sensor for monitoring and control of high molecular weight hyaluronic acid production by Streptococcus zooepidemicus. Appl Microbiol Biotechnol 2022; 106:1079-1095. [PMID: 35076739 DOI: 10.1007/s00253-022-11760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
This present investigation addressing the metabolic bottleneck in synthesis of high MW HA by Streptococcus zooepidemicus and illustrates the application of calorimetric fed-batch control of µ at a narrower range. Feedforward (FF) and feedback (FB) control was devised to improve the molecular weight (MW) of HA production by S. zooepidemicus. Metabolic heat measurements (Fermentation calorimetry) were modeled to decipher real-time specific growth rate, [Formula: see text] was looped into the PID circuit, envisaged to control [Formula: see text] to their desired setpoint values 0.05 [Formula: see text], 0.1 [Formula: see text], and 0.15 [Formula: see text] respectively. Similarly, a predetermined exponential feed rate irrespective of real-time µ was carried out in FF strategy. The developed FB strategy established a robust control capable of maintaining the specific growth rate (µ) close to the [Formula: see text] value with a minimal tracking error. Exponential feed rate carried out with a lowest [Formula: see text] of 0.05 [Formula: see text] showed an improved MW of HA to 2.98 MDa and 2.94 MDa for the FF and FB-based control strategies respectively. An optimal HA titer of 4.73 g/L was achieved in FF control strategy at [Formula: see text]. Superior control of µ at low [Formula: see text] value was observed to influence HA polymerization positively by yielding an improved MW and desired polydispersity index (PDI) of HA. PID control offers advantage over conventional fed-batch method to synthesize HA at an improved MW. Calorimetric signal-based µ control by PID negates adverse effects due to the secretion of other end products albeit maintaining regular metabolic activities. KEY POINTS: First report to compare HA productivities by feedforward and feedback control strategy. Inherent merits of regulating µ at narrower range were entailed. Relationship between operating µ and HA molecular weight was discussed.
Collapse
Affiliation(s)
- Naresh Mohan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anjali Jayakumar
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sivakumar Rathinavelu
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Icardi A, Lompardia SL, Papademetrio DL, Rosales P, Díaz M, Pibuel MA, Alaniz L, Alvarez E. Hyaluronan in the Extracellular Matrix of Hematological and Solid Tumors. Its Biological Effects. BIOLOGY OF EXTRACELLULAR MATRIX 2022:161-196. [DOI: 10.1007/978-3-030-99708-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Hohn A, Baumann A, Pietroschinsky E, Franklin J, Illerhaus A, Buchwald D, Hinkelbein J, Zahn PK, Annecke T. Hemoadsorption: effective in reducing circulating fragments of the endothelial glycocalyx during cardiopulmonary bypass in patients undergoing on-pump cardiac surgery? Minerva Anestesiol 2020; 87:35-42. [PMID: 32643361 DOI: 10.23736/s0375-9393.20.14525-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The vascular endothelial glycocalyx is susceptible to ischemia and hypoxia. Released soluble components of the endothelial glycocalyx (EG) have been identified as potential damage associated molecular patterns (DAMPs) able to enhance an ongoing inflammatory response. Shedding of the EG has been associated with released atrial-natriuretic peptide (ANP) during cardiac surgery procedures. A novel hemoadsorption technique (CytoSorb®) has been shown to effectively remove molecules up to 55 kDa unspecifically from circulation. It is not known whether ANP or glycocalyx components can be removed successfully by this technique. METHODS In 15 patients undergoing on-pump cardiac surgery, the hemoadsorption device was integrated in the cardiopulmonary bypass (CPB) circuit. Pre- and post-adsorber concentrations of ANP, heparan sulphate (HEP), syndecan-1 (SYN) and hyaluronan (HYA) were measured at 10 (T1), 30 (T2), and 60 (T3) minutes after aortic cross-clamping and complete CPB. RESULTS Hemoadsorption significantly reduced mean HEP concentrations (-157.5 [333.4] ng/mL; P<0.001) post adsorber. For ANP and SYN no statistically significant changes were detected whereas mean [SD] HYA concentrations even increased significantly (+21.6 [43.0] ng/mL; P<0.001) post adsorber. CONCLUSIONS In this study representing a real-life scenario, we could demonstrate that the novel hemoadsorption device (CytoSorb®) was able to effectively adsorb HEP from the circulation if integrated in a CPB circuit. However, blood concentrations of HYA, SYN, and ANP could not be reduced during CPB in our investigation.
Collapse
Affiliation(s)
- Andreas Hohn
- Faculty of Medicine, University of Cologne, Cologne, Germany - .,Department of Anesthesiology and Intensive Care Medicine, Cologne University Hospital, Cologne, Germany - .,Department of Anesthesiology and Intensive Care Medicine, Kliniken Maria Hilf GmbH, Moenchengladbach, Germany -
| | - Andreas Baumann
- Department of Anesthesiology, Intensive Care, Palliative Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Eva Pietroschinsky
- Faculty of Medicine, University of Cologne, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Cologne University Hospital, Cologne, Germany
| | - Jeremy Franklin
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | - Anja Illerhaus
- Faculty of Medicine, University of Cologne, Cologne, Germany.,Department of Dermatology, Cologne University Hospital, Cologne, Germany
| | - Dirk Buchwald
- Department of Cardiac and Thoracic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jochen Hinkelbein
- Faculty of Medicine, University of Cologne, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Cologne University Hospital, Cologne, Germany
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care, Palliative Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Thorsten Annecke
- Faculty of Medicine, University of Cologne, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Cologne University Hospital, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Kliniken der Stadt Köln GmbH, University of Witten Herdecke, Cologne, Germany
| |
Collapse
|
5
|
Biocompatibility and structural characterization of glycosaminoglycans isolated from heads of silver-banded whiting (Sillago argentifasciata Martin & Montalban 1935). Int J Biol Macromol 2020; 151:663-676. [PMID: 32070739 DOI: 10.1016/j.ijbiomac.2020.02.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Glycosaminoglycans (GAGs) were extracted from heads of silver-banded whiting (SBW) fish and subjected to preliminary biocompatibility testing per ISO 10993: intracutaneous irritation, maximization sensitization, systemic toxicity, and cytotoxicity. When the GAG solution was injected intradermally, the observed irritation was within ISO limits and comparable to a marketed control. There was no evidence of sensitization, systemic toxicity, or cellular toxicity on the test organisms treated with the GAG mixture from SBW fish heads. Fractionation by size-exclusion chromatography has shown three distinct fractions: F1 as low molecular weight hyaluronic acid (190 kDa), F2 (82 kDa) and F3 (64 kDa), both as chondroitin sulfates. Structural characterization by 1D and 2D nuclear magnetic resonance spectroscopy and disaccharide analysis have shown sulfation ratios at positions C4:C6 of the F2 and F3 fractions respectively as 70:20% and 50:30%, and the balance of non-sulfated and 4,6-di-sulfated units. The preliminary results here suggest that GAG-based extracts from SBW fish heads are suitable alternative products to be used in soft tissue augmentation, although further long-term biocompatibility studies are still required.
Collapse
|
6
|
Avenoso A, Bruschetta G, D'Ascola A, Scuruchi M, Mandraffino G, Gullace R, Saitta A, Campo S, Campo GM. Hyaluronan fragments produced during tissue injury: A signal amplifying the inflammatory response. Arch Biochem Biophys 2019; 663:228-238. [PMID: 30668938 DOI: 10.1016/j.abb.2019.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Inflammation is a complex mechanism that plays a key role during diseases. Dynamic features of the extracellular matrix (ECM), in particular, during phases of tissue inflammation, have long been appreciated, and a great deal of several investigations has focused on the effects of ECM derivatives on cell function. It has been well defined that during inflammatory and tissue injury, ECM components were degraded. ECM degradation direct consequence is the loss of cell homeostasis, while a further consequence is the generation of fragments from larger precursor molecules. These bio-functional ECM shred defined matrikines as capable of playing different actions, especially when they function as powerful initiators, able to prime the inflammatory mechanism. Non-sulphated glycosaminoglycan hyaluronan (HA) is the major component of the ECM that undergoes specific modulation during tissue damage and inflammation. HA fragments at very low molecular weight are produced as a result of HA depolymerization. Several evidence has considered the plausibility that HA breakdown products play a modulatory action in the sequential stages of inflammation, although the effective mechanism of these HA derivative compounds act is not completely defined. This review will focus on the pro-inflammatory effects of HA fragments in recent years obtained by in vitro investigations.
Collapse
Affiliation(s)
- Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Rosa Gullace
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| |
Collapse
|
7
|
Chemosensitivity is differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes in acute lymphoblastic leukemia with MLL gene rearrangements. Leuk Res 2018; 75:36-44. [PMID: 30453100 DOI: 10.1016/j.leukres.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022]
Abstract
Although recent advances in chemotherapy have markedly improved outcome of acute lymphoblastic leukemia (ALL), infantile ALL with MLL gene rearrangements (MLL+ALL) is refractory to chemotherapy. We have shown that specific cytokines FLT3 ligand and TGFβ1 both of which are produced from bone marrow stromal cells synergistically induced MLL+ALL cells into chemo-resistant quiescence, and that treatment of MLL+ALL cells with inhibitors against FLT3 and/or TGFβ1 receptor partially but significantly converts them toward chemo-sensitive. In the present study, we showed that MLL+ALL cells expressed CXCR4 and CXCR7, both receptors for the same chemokine stromal cell derived factor-1 (SDF-1), but their biological events were differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes and particularly exerted an opposite effect for determining chemo-sensitivity of MLL+ALL cells; enhancement via the SDF-1/CXCR4 axis vs. suppression via the SDF-1/CXCR7 axis. Because cytosine-arabinoside-induced apoptosis of MLL+ALL cells was inhibited by pretreatment with the CXCR4 inhibitor but rather accelerated by pretreatment with the CXCR7 inhibitor, an application of the CXCR7 inhibitor may become a good treatment option in future for MLL+ALL patients. MLL+ALL has a unique gene profile distinguishable from other types of ALL and AML, and should be investigated separately in responses to biological active agents including chemokine inhibitors.
Collapse
|
8
|
Toapanta FR, Bernal PJ, Kotloff KL, Levine MM, Sztein MB. T cell mediated immunity induced by the live-attenuated Shigella flexneri 2a vaccine candidate CVD 1208S in humans. J Transl Med 2018. [PMID: 29534721 PMCID: PMC5851169 DOI: 10.1186/s12967-018-1439-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Shigellosis persists as a public health problem worldwide causing ~ 165,000 deaths every year, of which ~ 55,000 are in children less than 5 years of age. No vaccine against shigellosis is currently licensed. The live-attenuated Shigella flexneri 2a vaccine candidate CVD 1208S (S. flexneri 2a; ΔguaBA, Δset, Δsen) demonstrated to be safe and immunogenic in phase 1 and 2 clinical trials. Earlier reports focused on humoral immunity. However, Shigella is an intracellular pathogen and therefore, T cell mediated immunity (T-CMI) is also expected to play an important role. T-CMI responses after CVD 1208S immunization are the focus of the current study. Methods Consenting volunteers were immunized orally (3 doses, 108 CFU/dose, 28 days apart) with CVD 1208S. T-CMI to IpaB was assessed using autologous EBV-transformed B-Lymphocytic cell lines as stimulator cells. T-CMI was assessed by the production of 4 cytokines (IFN-γ, IL-2, IL-17A and TNF-α) and/or expression of the degranulation marker CD107a in 14 volunteers (11 vaccine and 3 placebo recipients). Results Following the first immunization, T-CMI was detected in CD8 and CD4 T cells obtained from CVD 1208S recipients. Among CD8 T cells, the T effector memory (TEM) and central memory (TCM) subsets were the main cytokine/CD107a producers/expressors. Multifunctional (MF) cells were also detected in CD8 TEM cells. Cells with 2 and 3 functions were the most abundant. Interestingly, TNF-α appeared to be dominant in CD8 TEM MF cells. In CD4 T cells, TEM responses predominated. Following subsequent immunizations, no booster effect was detected. However, production of cytokines/expression of CD107a was detected in individuals who had previously not responded. After three doses, production of at least one cytokine/CD107a was detected in 8 vaccinees (73%) in CD8 TEM cells and in 10 vaccinees (90%) in CD4 TEM cells. Conclusions CVD 1208S induces diverse T-CMI responses, which likely complement the humoral responses in protection from disease. Trial registration This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT01531530) Electronic supplementary material The online version of this article (10.1186/s12967-018-1439-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franklin R Toapanta
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Paula J Bernal
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Myron M Levine
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marcelo B Sztein
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Tamai M, Furuichi Y, Kasai S, Ando N, Harama D, Goi K, Inukai T, Kagami K, Abe M, Ichikawa H, Sugita K. TGFβ1 synergizes with FLT3 ligand to induce chemoresistant quiescence in acute lymphoblastic leukemia with MLL gene rearrangements. Leuk Res 2017; 61:68-76. [DOI: 10.1016/j.leukres.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022]
|