1
|
Yiming C, Chen Y, Sun L, Li L, Ning W. The importance of the trisomy 21 local cutoff value evaluation for prenatal screening in the second trimester of pregnancy. Lab Med 2023; 54:603-607. [PMID: 37053168 DOI: 10.1093/labmed/lmad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE The aim of this work was to compare different local cutoff values (LCV) and inline cutoff values (ICV) in pregnant women in the second trimester at high risk for carrying fetuses with trisomy 21. METHODS This retrospective cohort study analyzed prenatal screening outcomes in pregnant women (n = 311,561). The receiver operating characteristic curve was used to evaluate the diagnostic significance of the trisomy 21 risk value, alpha-fetoprotein, and free beta human chorionic gonadotropin multiple of the median for predicting trisomy 21 risk. The cutoff value corresponding to the maximal Youden index was taken as the LCV. The screening efficiency of both cutoff values was compared. RESULTS The LCV cutoff value was lower than the ICV cutoff value (1/643 vs 1/270). The sensitivity increased by 19.80%, the positive predictive value decreased by 0.20%, and the false-positive rate increased by 6.50%. CONCLUSION The LCV should be used to determine trisomy 21 risk, which can increase the detection rate of trisomy 21 in the second trimester.
Collapse
Affiliation(s)
- Chen Yiming
- Departments of Prenatal Diagnosis and Screening Center, Zhejiang Chinese Medical University, Hangzhou, China
- Department of the Fourth School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijie Chen
- Department of the Fourth School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Long Sun
- Clinical
Laboratory, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Liyao Li
- Departments of Prenatal Diagnosis and Screening Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenwen Ning
- Department of the Fourth School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Jiang Y, Zhang LL, Zhang F, Bi W, Zhang P, Yu XJ, Rao SL, Wang SH, Li Q, Ding C, Jin Y, Liu ZM, Yang HT. Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts. Bioact Mater 2023; 28:206-226. [PMID: 37274446 PMCID: PMC10236375 DOI: 10.1016/j.bioactmat.2023.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts; however, their efficacy needs to be enhanced. Here we tested the hypotheses that the combination of decellularized porcine small intestinal submucosal extracellular matrix (SIS-ECM) with hCVPCs, hCMs, or dual of them (Mix, 1:1) could provide better therapeutic effects than the SIS alone, and dual hCVPCs with hCMs would exert synergic effects in cardiac repair. The data showed that the SIS patch well supported the growth of hCVPCs and hCMs. Epicardially implanted SIS-hCVPC, SIS-hCM, or SIS-Mix patches at 7-day post-myocardial infarction significantly ameliorated functional worsening, ventricular dilation and scar formation at 28- and 90-day post-implantation in C57/B6 mice, whereas the SIS only mildly improved function at 90-day post-implantation. Moreover, the SIS and SIS-cell patches improved vascularization and suppressed MI-induced cardiomyocyte hypertrophy and expression of Col1 and Col3, but only the SIS-hCM and the SIS-Mix patches increased the ratio of collagen III/I fibers in the infarcted hearts. Further, the SIS-cell patches stimulated cardiomyocyte proliferation via paracrine action. Notably, the SIS-Mix had better improvements in cardiac function and structure, engraftments, and cardiomyocyte proliferation. Proteomic analysis showed distinct biological functions of exclusive proteins secreted from hCVPCs and hCMs, and more exclusive proteins secreted from co-cultivated hCVPCs and hCMs than mono-cells involving in various functional processes essential for infarct repair. These findings are the first to demonstrate the efficacy and mechanisms of mono- and dual-hCVPC- and hCM-seeding SIS-ECM for repair of infarcted hearts based on the side-by-side comparison.
Collapse
Affiliation(s)
- Yun Jiang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Ling-Ling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Peng Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Xiu-Jian Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Sen-Le Rao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Shi-Hui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Qiang Li
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yin Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Zhong-Min Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huang-Tian Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, PR China
| |
Collapse
|
3
|
Miao N, Zeng Z, Lee T, Guo Q, Zheng W, Cai W, Chen W, Wang J, Sun T. Integrative epigenome profiling of 47XXY provides insights into whole genomic DNA hypermethylation and active chromatin accessibility. Front Mol Biosci 2023; 10:1128739. [PMID: 37051325 PMCID: PMC10083376 DOI: 10.3389/fmolb.2023.1128739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Klinefelter syndrome (KS, 47XXY) is a disorder characterized by sex chromosomal aneuploidy, which may lead to changes in epigenetic regulations of gene expression. To define epigenetic architectures in 47XXY, we annotated DNA methylation in euploid males (46XY) and females (46XX), and 47XXY individuals using whole genome bisulfite sequencing (WGBS) and integrated chromatin accessbilty, and detected abnormal hypermethylation in 47XXY. Furthermore, we detected altered chromatin accessibility in 47XXY, in particular in chromosome X, using Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) in cultured amniotic cells. Our results construct the whole genome-wide DNA methylation map in 47XXY, and provide new insights into the early epigenomic dysregulation resulting from an extra chromosome X in 47XXY.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, United States
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wenwei Zheng
- Quanzhou Women and Children’s Hospital, Quanzhou, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
- *Correspondence: Tao Sun,
| |
Collapse
|
4
|
Wang J, Chen Z, He F, Lee T, Cai W, Chen W, Miao N, Zeng Z, Hussain G, Yang Q, Guo Q, Sun T. Single-Cell Transcriptomics of Cultured Amniotic Fluid Cells Reveals Complex Gene Expression Alterations in Human Fetuses With Trisomy 18. Front Cell Dev Biol 2022; 10:825345. [PMID: 35392164 PMCID: PMC8980718 DOI: 10.3389/fcell.2022.825345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Trisomy 18, commonly known as Edwards syndrome, is the second most common autosomal trisomy among live born neonates. Multiple tissues including cardiac, abdominal, and nervous systems are affected by an extra chromosome 18. To delineate the complexity of anomalies of trisomy 18, we analyzed cultured amniotic fluid cells from two euploid and three trisomy 18 samples using single-cell transcriptomics. We identified 6 cell groups, which function in development of major tissues such as kidney, vasculature and smooth muscle, and display significant alterations in gene expression as detected by single-cell RNA-sequencing. Moreover, we demonstrated significant gene expression changes in previously proposed trisomy 18 critical regions, and identified three new regions such as 18p11.32, 18q11 and 18q21.32, which are likely associated with trisomy 18 phenotypes. Our results indicate complexity of trisomy 18 at the gene expression level and reveal genetic reasoning of diverse phenotypes in trisomy 18 patients.
Collapse
Affiliation(s)
- Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco- Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fei He
- Genergy Bio-Technology (Shanghai) Co., Ltd, Shanghai, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, United States
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemical Biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Qingwei Yang
- Department of Neurology, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, School of Medicine and School of Public Health, Women and Children’s Hospital, Xiamen University, Xiamen, China
- *Correspondence: Qiwei Guo, ; Tao Sun,
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- *Correspondence: Qiwei Guo, ; Tao Sun,
| |
Collapse
|
5
|
Kumar A, Cheng T, Song W, Cheuk B, Yang E, Yang L, Xie Y, Du Y. Two-step induction of trabecular meshwork cells from induced pluripotent stem cells for glaucoma. Biochem Biophys Res Commun 2020; 529:411-417. [PMID: 32703444 DOI: 10.1016/j.bbrc.2020.05.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 02/08/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Reducing intraocular pressure is currently the only effective treatment. Elevated intraocular pressure is associated with increased resistance of the outflow pathway, mainly the trabecular meshwork (TM). Despite great progress in the field, the development of novel and effective treatment for glaucoma is still challenging. In this study, we reported that human induced pluripotent stem cells (iPSCs) can be cultured as colonies and monolayer cells expressing OCT4, alkaline phosphatase, SSEA4 and SSEA1. After induction to neural crest cells (NCCs) positive to NGFR and HNK1, the iPSCs can differentiate into TM cells. The induced iPSC-TM cells expressed TM cell marker CHI3L1, were responsive to dexamethasone treatment with increased expression of myocilin, ANGPTL7, and formed CLANs, comparable to primary TM cells. To the best of our knowledge, this is the first study that induces iPSCs to TM cells through a middle neural crest stage, which ensures a stable NCC pool and ensures the high output of the same TM cells. This system can be used to develop personalized treatments using patient-derived iPSCs, explore high throughput screening of new drugs focusing on TM response for controlling intraocular pressure, and investigate stem cell-based therapy for TM regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianyu Cheng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weitao Song
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Brandon Cheuk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY, USA
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Paulis M, Susani L, Castelli A, Suzuki T, Hara T, Straniero L, Duga S, Strina D, Mantero S, Caldana E, Sergi LS, Villa A, Vezzoni P. Chromosome Transplantation: A Possible Approach to Treat Human X-linked Disorders. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:369-377. [PMID: 32099849 PMCID: PMC7029378 DOI: 10.1016/j.omtm.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
Abstract
Many human genetic diseases are associated with gross mutations such as aneuploidies, deletions, duplications, or inversions. For these “structural” disorders, conventional gene therapy, based on viral vectors and/or on programmable nuclease-mediated homologous recombination, is still unsatisfactory. To correct such disorders, chromosome transplantation (CT), defined as the perfect substitution of an endogenous defective chromosome with an exogenous normal one, could be applied. CT re-establishes a normal diploid cell, leaving no marker of the procedure, as we have recently shown in mouse pluripotent stem cells. To prove the feasibility of the CT approach in human cells, we used human induced pluripotent stem cells (hiPSCs) reprogrammed from Lesch-Nyhan (LN) disease patients, taking advantage of their mutation in the X-linked HPRT gene, making the LN cells selectable and distinguishable from the resistant corrected normal cells. In this study, we demonstrate, for the first time, that CT is feasible in hiPSCs: the normal exogenous X chromosome was first transferred using an improved chromosome transfer system, and the extra sex chromosome was spontaneously lost. These CT cells were functionally corrected and maintained their pluripotency and differentiation capability. By inactivation of the autologous HPRT gene, CT paves the way to the correction of hiPSCs from several X-linked disorders.
Collapse
Affiliation(s)
- Marianna Paulis
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Lucia Susani
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Alessandra Castelli
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Stefano Duga
- Humanitas Clinical and Research Center, Rozzano (MI), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Dario Strina
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Stefano Mantero
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Elena Caldana
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | | | - Anna Villa
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,San Raffaele-TIGET, Milan, Italy
| | - Paolo Vezzoni
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| |
Collapse
|
7
|
Nikitina TV, Kashevarova AA, Lebedev IN. Chromosomal Instability and Karyotype Correction in Human Induced Pluripotent Stem Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
9
|
Xing K, Cui Y, Luan J, Zhou X, Shi L, Han J. Establishment of a human trisomy 18 induced pluripotent stem cell line from amniotic fluid cells. Intractable Rare Dis Res 2018; 7:94-99. [PMID: 29862150 PMCID: PMC5982630 DOI: 10.5582/irdr.218.01038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trisomy 18 (18T) is the second most common autosomal trisomy syndrome in humans, but the detailed mechanism of its pathology remains unclear due to the lack of appropriate models of this disease. To resolve this problem, the current study reprogrammed human 18T amniotic fluid cells (AFCs) into an induced pluripotent stem cell (iPSC) line by introducing integration-free episomal vectors carrying pCXLE-hOCT3/4-shp53-F, pCXLE-hSK, pCXLE-hUL, and pCXWB-EBNA1. The pluripotency of 18T-iPSCs was subsequently validated by alkaline phosphatase staining, detection of iPSC biomarkers using real-time PCR and flow cytometry, detection of embryoid body (EB) formation, and detection of in vivo teratoma formation. Moreover, this study also investigated the transcriptomic profiles of 18T-iPSCs using RNA sequencing, and several gene clusters associated with the clinical manifestations of 18T were identified. In summary, the generated induced pluripotent stem cells line has typical pluripotency characteristics and can provide a useful tool with which to understand the development of 18T.
Collapse
Affiliation(s)
- Kaixuan Xing
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, China
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yazhou Cui
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jing Luan
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, China
| | - Xiaoyan Zhou
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, China
| | - Liang Shi
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jinxiang Han
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, China
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han, Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|