1
|
Osei B, Naganathan G, Daniel JM, Kulkarni S, Lofters A, Oladele Y, Springer L, Omole M. When "One Size Fits All" Fits None: A Commentary on the Impacts of the"Draft Canadian Breast Cancer Screening Guidelines" on Racialized Populations in Canada. Curr Oncol 2025; 32:123. [PMID: 40136327 PMCID: PMC11940997 DOI: 10.3390/curroncol32030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Epidemiological data show racial and ethnic differences exist in breast cancer morbidity and mortality amongst Black, Indigenous, Asian, and Hispanic populations, with non-white females experiencing earlier age at diagnosis, more aggressive breast cancer subtypes and advanced cancer stages, and earlier mortality than white females. However, the current Canadian breast cancer screening guidelines recommend biannual screening for all females starting from age 50 to age 74 and suggest not to screen individuals aged 40-49. In May 2024, the Canadian Task Force for Preventative Health released updated draft breast cancer screening guidelines, maintaining such recommendations for screening. Both the existing and the proposed guidelines fail to account for the unique cancer burden amongst racialized populations in Canada and risk further perpetuation of existing racial and ethnic disparities by underscreening racialized females. This commentary will present data regarding racial disparities in cancer burden, highlighting the role social and biological factors play in impacting cancer risk and age of disease and presenting perspectives from stakeholder groups reflecting the impacts of current screening guidelines. Ultimately, we critique the current "one-size-fits-all" approach to breast cancer screening in Canada, emphasizing the need for adapted screening practices with the understanding that the current approaches overlook the needs of racialized Canadian populations.
Collapse
Affiliation(s)
- Beverley Osei
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Gayathri Naganathan
- Department of Surgery, Michael Garron Hospital, Toronto, ON M4C 3E7 1A1, Canada;
| | - Juliet M. Daniel
- Department of Biology, Center for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Supriya Kulkarni
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Aisha Lofters
- Department of Family and Community Medicine, Women’s College Hospital, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Yinka Oladele
- African Cancer Support Group, Calgary, AB T1Y 6M6, Canada;
| | | | - Mojola Omole
- Department of Surgery, Scarborough Health Network, Scarborough, ON M1P 2T7, Canada
| |
Collapse
|
2
|
Zhang H, Ouyang C. BTB protein family and human breast cancer: signaling pathways and clinical progress. J Cancer Res Clin Oncol 2023; 149:16213-16229. [PMID: 37682360 DOI: 10.1007/s00432-023-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Breast cancer is considered the number one killer of women both in China and abroad, and the leading cause of cancer death. It severely affects female health-related quality of life. Broad-complex, tramtrack, bric à brac (BTB) protein family was first discovered in drosophila as early as in 1993 by Godt D and peers, since then, more family members and their critical biological functions were uncovered. Moreover, researchers around the world have recently demonstrated that numerous signaling pathways connect BTB family members and human breast cancer. PURPOSE In this review, we critically discuss these findings regarding the essential mechanisms and functions of the BTB protein family in mediating the organic processes of human breast cancer. Meanwhile, we summarize the signaling pathways the BTB protein family participates in. And we address that BTB proteins regulate the growth, apoptosis, and other behaviors of breast cancer cells. We also point out the future directions for further studies in this field. METHODS The relevant online literatures have been reviewed for this article. CONCLUSION This review could offer an update on novel molecular targets for treating human breast cancer and new insights into BTB protein family research.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
3
|
Lee J, Bang JH, Ryu YC, Hwang BH. Multiple suppressing small interfering RNA for cancer treatment-Application to triple-negative breast cancer. Biotechnol J 2023; 18:e2300060. [PMID: 37478121 DOI: 10.1002/biot.202300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Certain cancers, such as triple-negative breast cancer (TNBC), pose a challenging prognosis due to the absence of identifiable hormone-related receptors and effective targeted therapies. Consequently, novel therapeutics are required for these cancers, offering minimal side effects and reduced drug resistance. Unexpectedly, siRNA-7, initially employed as a control, exhibited significant efficacy in inhibiting cell viability in MDA-MB-231 cells. Through a genome-wide search of seed sequences, the targets of siRNA-7 were identified as cancer-related genes, namely PRKCE, RBPJ, ZNF737, and CDC7 in MDA-MB-231 cells. The mRNA repression analysis confirmed the simultaneous suppression by siRNA-7. Combinatorial administration of single-targeting siRNAs demonstrated a comparable reduction in viability to that achieved by siRNA-7. Importantly, siRNA-7 selectively inhibited cell viability in MDA-MB-231 cells, while normal HDF-n cells remained unaffected. Furthermore, in a xenograft mouse model, siRNA-7 exhibited a remarkable 76% reduction in tumor volume without any loss in body weight. These findings position siRNA-7 as a promising candidate for a novel, safe, specific, and potent TNBC cancer therapeutic. Moreover, the strategy of multiple suppressing small interfering RNA holds potential for the treatment of various diseases associated with gene overexpression.
Collapse
Affiliation(s)
- Jaewook Lee
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jang Hyuk Bang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
4
|
Ahmed MSU, Lord BD, Adu Addai B, Singhal SK, Gardner K, Salam AB, Ghebremedhin A, White J, Mahmud I, Martini R, Bedi D, Lin H, Jones JD, Karanam B, Dean-Colomb W, Grizzle W, Wang H, Davis M, Yates CC. Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers (Basel) 2023; 15:cancers15082282. [PMID: 37190208 DOI: 10.3390/cancers15082282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients.
Collapse
Affiliation(s)
- Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Brittany D Lord
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Adu Addai
- School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deepa Bedi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Huixian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jacqueline D Jones
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | | | - Windy Dean-Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Oncology-Newnan, Newnan, GA 30265, USA
| | - William Grizzle
- Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Bocian A, Kędzierawski P, Kopczyński J, Wabik O, Wawruszak A, Kiełbus M, Miziak P, Stepulak A. Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients. J Clin Med 2023; 12:jcm12010370. [PMID: 36615173 PMCID: PMC9821773 DOI: 10.3390/jcm12010370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are histologically heterogenic invasive carcinomas of no specific type that lack distinctive histological characteristics. The prognosis for women with TNBC is poor. Regardless of the applied treatments, recurrences and deaths are observed 3-5 years after the diagnosis. Thus, new diagnostic markers and targets for personalized treatment are needed. The subject of our study-the Kaiso transcription factor has been found to correlate with the invasion and progression of breast cancer. The publicly available TCGA breast cancer cohort containing Illumina HiSeq RNAseq and clinical data was explored in the study. Additionally, Kaiso protein expression was assessed in formalin-fixed and paraffin-embedded tissue archive specimens using the tissue microarray technique. In this retrospective study, Kaiso protein expression (nuclear localization) was compared with several clinical factors in the cohort of 103 patients with TNBC with long follow-up time. In univariate and multivariate analysis, high Kaiso protein but not mRNA expression was correlated with better overall survival and disease-free survival, as well as with premenopausal age. The use of radiotherapy was correlated with better disease-free survival (DFS) and overall survival (OS). However, given the heterogeneity of TNBC and context-dependent molecular diversity of Kaiso signaling in cancer progression, these results must be taken with caution and require further studies.
Collapse
Affiliation(s)
- Artur Bocian
- Oncological Surgery Clinic, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Piotr Kędzierawski
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Radiotherapy Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Janusz Kopczyński
- Pathology Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Olga Wabik
- Pathology Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-814-486-350
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Salam H, Ahmed S, Bari MF, Bukhari U, Haider G, Najeeb S, Mughal N. Association of Kaiso and partner proteins in oral squamous cell carcinoma. J Taibah Univ Med Sci 2022; 18:802-811. [PMID: 36852243 PMCID: PMC9957818 DOI: 10.1016/j.jtumed.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives 1. Identification of protein expression and subcellular localization of E-cadherin (E-cad), p120 catenin (P120ctn), and Kaiso in oral cancer (OC). 2. To study the protein expression of cyclin D1 and c-Myc (Kaiso targets) and determine their relationship with the expression and localization of Kaiso. Methods Histological grading was performed in accordance with Broder's criteria. Expression and localization data for E-cad, p120ctn, Kaiso, cyclin D1, and c-Myc were acquired using immunohistochemistry. Data were analyzed using SPSS version 21. The chi-square test was used to measure the statistical significance of associations, with p < 0.05 as statistically significant. Results Of 47 OC cases, 36% showed low E-cad expression and 34% showed low p120ctn. Low Kaiso expression was recognized in 78% of tumor specimens. Aberrant cytoplasmic localization of p120ctn was seen in 80.8% cases. Cytoplasmic Kaiso localization was appreciated in 87% of tumor tissues, whereas 29.7% lacked any nuclear Kaiso. Kaiso expression was significantly associated with the expression of cyclin D1 but not with c-Myc. Conclusion The present study identified a change in the localization of Kaiso in OC. The significance of this in relation to OC and tumor prognosis needs to be investigated with further studies using larger sample sizes and more sensitive molecular tools.
Collapse
Key Words
- AJ, Adherens junction
- BTB/POZ, Broad complex
- ChIP, Chromatin immunoprecipitation
- DDRRL, Dow Diagnostic Research and Reference Laboratory
- DNA, Deoxyribonucleic acid
- DUHS, Dow University of Health Sciences
- E-cad, E-cadherin
- E-cadherin
- FFPE, Formalin-fixed paraffin embedded
- H&E, Hematoxylin and eosin
- HPV, Human papilloma virus
- IHC, Immunohistochemistry
- KBS, Kaiso-binding site
- Kaiso protein
- MBP, Methyl CpG DNA-binding proteins
- OC, Oral cancer
- Oral squamous cell carcinoma
- SES, Socioeconomic status
- TNM, Tumor
- Tramtrack, and Bric a brac/poxvirus and zinc finger
- ZBTB33 protein
- ZF, Zinc finger
- c-Myc, Cellular Myc proteins
- node, metastasis
- p120ctn, p120-catenin
- qPCR, Quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Pakistan,Corresponding address: Department of Oral Pathology, Dr Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Ojha campus, Pakistan.
| | - Shaheen Ahmed
- Department of Oral Surgery, Dow International Dental College, Dow University of Health Sciences, Pakistan
| | - Muhammad Furqan Bari
- Department of Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi
| | - Uzma Bukhari
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Pakistan
| | - Ghulam Haider
- Department of Biological and Biomedical Sciences, Agha Khan University, Pakistan
| | - Shariq Najeeb
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada,Department of Evidence Synthesis, Evidentia Dental Research, Calgary, Alberta, Canada
| | - Nouman Mughal
- Department of Surgery, Agha Khan University, Pakistan
| |
Collapse
|
7
|
Thapa B, Adhikari NP, Tiwari PB, Chapagain PP. A 5'-Flanking C/G Pair at the Core Region Enhances the Recognition and Binding of Kaiso to Methylated DNA. J Chem Inf Model 2022; 63:2095-2103. [PMID: 36563044 DOI: 10.1021/acs.jcim.2c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methyl CpG binding proteins (MBPs) are transcription factors that recognize the methylated CpG sites in DNA and mediate the DNA methylation signal into various downstream cellular processes. The C2H2 zinc finger (ZF) protein, Kaiso, also an MBP, preferentially binds to two symmetrically methylated CpG sites in DNA sequences via C-terminal C2H2 ZF domains and mediates the transcription regulation process. Investigation of the molecular mechanism of the recognition of methylated DNA (meDNA) by Kaiso is important to understand how this protein reads and translates this methylation signal into downstream transcription outcomes. Despite previous studies in Kaiso-meDNA interactions, detailed structural investigations on the sequence-specific interaction of Kaiso with the meDNA sequence are still lacking. In this work, we used molecular modeling and molecular dynamics (MD) simulation-based computational approaches to investigate the recognition of various methylated DNA sequences by Kaiso. Our MD simulation results show that the Kaiso-meDNA interaction is sequence specific. The recognition of meDNA by Kaiso is enhanced in the MeECad sequence compared to the MeCG2 sequence. Compared to the 5'-flanking T/A pair in MeCG2, both MeCG2_mutCG and MeECad sequences show that a C/G base pair allows GLU535 of Kaiso to preferably recognize and bind the core mCpG site. The core mCGmCG site is crucial for the recognition process and formation of a stable complex. Our results reveal that the 5'-flanking nucleotides are also important for the enhanced binding and recognition of methylated sites.
Collapse
Affiliation(s)
- Bidhya Thapa
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal.,Padma Kanya Multiple Campus, Tribhuvan University, Bagbazar, Kathmandu 44613, Nepal
| | - Narayan P Adhikari
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University, Washington, DC 20057, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
8
|
The Essential Role of Prolines and Their Conformation in Allosteric Regulation of Kaiso Zinc Finger DNA-Binding Activity by the Adjacent C-Terminal Loop. Int J Mol Sci 2022; 23:ijms232415494. [PMID: 36555132 PMCID: PMC9779254 DOI: 10.3390/ijms232415494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Kaiso is a methyl-DNA-binding protein containing three C2H2 zinc fingers with a C-terminal extension that participates in DNA binding. The linker between the last zinc finger and the DNA-binding portion of the extension contains two prolines that are highly conserved in vertebrates and in cognate ZBTB4 and ZBTB38 proteins. Prolines provide chain rigidity and can exist in cis and trans conformations that can be switched by proline isomerases, affecting protein function. We found that substitution of the conserved proline P588, but not of P577, to alanine, negatively affected KaisoDNA-binding according to molecular dynamics simulation and in vitro DNA-binding assays. Molecular dynamics simulations of the Kaiso DNA-binding domain with P588 either substituted to alanine or switched to the cis-conformation revealed similar alterations in the H-bonding network and uncovered allosteric effects leading to structural rearrangements in the entire domain that resulted in the weakening of DNA-binding affinity. The substitution of proline with a large hydrophobic residue led to the same negative effects despite its ability to partially rescue the intrinsic DNA-binding activity of the C-terminal loop. Thus, the presence of the C-terminal extension and cis-conformation of proline residues are essential for efficient Kaiso-DNA binding, which likely involves intramolecular tension squeezing the DNA chain.
Collapse
|
9
|
Increased slow dynamics defines ligandability of BTB domains. Nat Commun 2022; 13:6989. [PMID: 36384931 PMCID: PMC9668832 DOI: 10.1038/s41467-022-34599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Efficient determination of protein ligandability, or the propensity to bind small-molecules, would greatly facilitate drug development for novel targets. Ligandability is currently assessed using computational methods that typically consider the static structural properties of putative binding sites or by experimental fragment screening. Here, we evaluate ligandability of conserved BTB domains from the cancer-relevant proteins LRF, KAISO, and MIZ1. Using fragment screening, we discover that MIZ1 binds multiple ligands. However, no ligands are uncovered for the structurally related KAISO or LRF. To understand the principles governing ligand-binding by BTB domains, we perform comprehensive NMR-based dynamics studies and find that only the MIZ1 BTB domain exhibits backbone µs-ms time scale motions. Interestingly, residues with elevated dynamics correspond to the binding site of fragment hits and recently defined HUWE1 interaction site. Our data argue that examining protein dynamics using NMR can contribute to identification of cryptic binding sites, and may support prediction of the ligandability of novel challenging targets.
Collapse
|
10
|
Ahmed S, Khan S, Qureshi MA, Bukhari U, Anis M, Mughal MN. Expressional variations of Kaiso: an association with pathological characteristics and field cancerization of OSCC. BMC Cancer 2022; 22:990. [PMID: 36115941 PMCID: PMC9482199 DOI: 10.1186/s12885-022-10014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A group of genetically altered cells that have not transformed into a clinical or histologically identifiable state of malignancy but contains a higher risk of transforming into one is known as the field of cancerization. Numerous molecules are being investigated for their significance in the development of this phenomenon. One such protein of this family is Kaiso also known as ZBTB33 (Zinc Finger and BTB Domain containing 33). This protein belongs to the POZ-ZF family of transcription factors and may have functional tasks similar to its other siblings such as the growth and development of vertebrates and the pathogenesis of neoplastic diseases. Nevertheless, its role in the pathogenesis, progression, epithelial mesenchyal transition and field cancerization in case of oral cancer still needs exploration. Hence, this study was designed to explore the expressional differences between the mucosa of controls and those diagnosed with oral squamous cell carcinoma (OSCC).
Methods
Soft tissue samples were obtained from the main tumor, tumor periphery and opposite buccal mucosa of 50 oral cancer patients, whereas normal mucosa was taken from 50 volunteers undergoing elective tooth removal. The acquired samples were subjected to Immunohistochemical exploration for expression of Kaiso and E-Cadherin. The expression was measured using Image-J IHC profiler and summed as Optical density. The Optical density values were then subjected to statistical analysis.
Results
Results revealed a significant differential expression of Kaiso between the mucosal tissues taken from oral cancer patients and controls (p-value: < 0.0001), showing almost 50% down-regulation of Kaiso in all three tissue samples taken from oral cancer patients as compared to normal mucosa.
Conclusion
Kaiso has a significant difference of expression in the mucosa of oral cancer patients as compared to the mucosa of normal patients, making it a probable contributor to disease pathogenesis and field cancerization.
Collapse
|
11
|
Fleisher B, Werkman C, Jacobs B, Varkey J, Taha K, Ait-Oudhia S. KIFC1: A Reliable Prognostic Biomarker in Rb-positive Triple-negative Breast Cancer Patients Treated With Doxorubicin in Combination With Abemaciclib. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:525-532. [PMID: 36060015 PMCID: PMC9425577 DOI: 10.21873/cdp.10137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) prevalence and risk of relapse are greatest in African American (AA) patients. Doxorubicin (DOX) and abemaciclib (ABE) synergism in Rb-positive TNBC cells (MDA-MB-231), and antagonism in Rb-negative TNBC cells (MDA-MB-468) have been previously shown. Here, we assessed Kinesin-like protein 1 (KIFC1) as an ethnic-specific prognostic biomarker of the DOX+ABE combination for the Rb-status in TNBC. MATERIALS AND METHODS Literature search for TNBC prognostic biomarkers in the AA population was conducted. MDA-MB-231 and MDA-MB-468 cells were exposed over 72 h to four treatment arms: 1) control (medium without drug), 2) DOX at 50% inhibitory concentration in MDA-MB-231 (0.565 μM) and MDA-MB-468 (0.121 μM), 3) ABE alone (2 μM), and 4) DOX+ABE combination at their corresponding concentrations in each cell-line. KIFC1 protein expression and temporal changes were quantified in MDA-MB-231 cells using western blot. RESULTS KIFC1, Kaiso, and Annexin A2 are literature-identified AA-specific TNBC prognostic biomarkers. KIFC1 was found to be uncorrelated to other proposed biomarkers, suggesting it may predict risk independently of other TNBC biomarkers. In both cell lines, DOX alone did not significantly change KIFC1 expression relative to control. Conversely, ABE reduced KIFC1 expression in MDA-MB-231 but not in MDA-MB-468 cells. The combination DOX+ABE resulted in a greatest reduction in KIFC1 in MDA-MB-231 cells with a more rapid time-to-full inhibition of KIFC1 compared to ABE alone. CONCLUSION Change in KIFC1 expression is primarily driven by ABE in Rb-positive TNBC cells. DOX increases ABE speed to achieve a full inhibition of KIFC1 in Rb-positive, yet, without influencing its expression in Rb-negative TNBC cells.
Collapse
Affiliation(s)
- Brett Fleisher
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Carolin Werkman
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Brehanna Jacobs
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Justin Varkey
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Kareem Taha
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Inc, Kenilworth, NJ, U.S.A
| |
Collapse
|
12
|
Illarionova NB, Borisova MA, Bazhenova EY, Zabelina DS, Fursenko DV, Kulikov AV. Zbtb33 Gene Knockout Changes Transcription of the Fgf9, Fgfr3, c-Myc and FoxG1 Genes in the Developing Mouse Brain. Mol Biol 2021. [DOI: 10.1134/s0026893321020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 676] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys 2His 2 Zinc Finger Methyl-CpG Binding Proteins: Getting a Handle on Methylated DNA. J Mol Biol 2019:S0022-2836(19)30567-4. [PMID: 31628952 DOI: 10.1016/j.jmb.2019.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in the maintenance of genomic stability, preservation of cellular identity, and regulation of the transcriptional landscape needed to maintain cellular function. In an increasing number of disease conditions, DNA methylation patterns are inappropriately distributed in a manner that supports the disease phenotype. Methyl-CpG binding proteins (MBPs) are specialized transcription factors that read and translate methylated DNA signals into recruitment of protein assemblies that can alter local chromatin architecture and transcription. MBPs thus play a key intermediary role in gene regulation for both normal and diseased cells. Here, we highlight established and potential structure-function relationships for the best characterized members of the zinc finger (ZF) family of MBPs in propagating DNA methylation signals into downstream cellular responses. Current and future investigations aimed toward expanding our understanding of ZF MBP cellular roles will provide needed mechanistic insight into normal and disease state functions, as well as afford evaluation for the potential of these proteins as epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Amelia J Hodges
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Nicholas O Hudson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Robinson SC, Chaudhary R, Jiménez-Saiz R, Rayner LGA, Bayer L, Jordana M, Daniel JM. Kaiso-induced intestinal inflammation is preceded by diminished E-cadherin expression and intestinal integrity. PLoS One 2019; 14:e0217220. [PMID: 31199830 PMCID: PMC6568390 DOI: 10.1371/journal.pone.0217220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023] Open
Abstract
Chronic intestinal inflammation contributes to pathologies such as inflammatory bowel disease (IBD) and colon cancer. While the precise etiology remains controversial, IBD is believed to manifest as a result of various factors. We previously reported that intestinal-specific overexpression of the transcription factor Kaiso results in an intestinal inflammatory response; however, the cause of this inflammation is unknown. To elucidate the underlying mechanism(s) of the Kaiso-mediated intestinal inflammatory phenotype, we evaluated two independent transgenic mouse lines that express varying levels of Kaiso (KaisoTg). Histological analyses of KaisoTg mice revealed intestinal damage including thickening of the mucosa, intestinal “lesions” and crypt abscesses, which are reminiscent of IBD pathology. Additionally, higher Kaiso levels induced intestinal neutrophilia as early as 12 weeks, which worsened as the mice aged. Notably, the Kaiso-induced intestinal inflammation correlated with a leaky intestinal barrier and mis-regulation of E-cadherin expression and localization. Interestingly, Kaiso overexpression resulted in reduced proliferation but enhanced migration of intestinal epithelial cells prior to the onset of inflammation. Collectively, these data suggest that Kaiso plays a role in regulating intestinal epithelial cell integrity and function, dysregulation of which contributes to a chronic inflammatory phenotype as mice age.
Collapse
Affiliation(s)
| | - Roopali Chaudhary
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | | | - Luke Bayer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | - Juliet M. Daniel
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
17
|
Huang Q, Li S, Zhang L, Qiao X, Zhang Y, Zhao X, Xiao G, Li Z. CAPE- pNO 2 Inhibited the Growth and Metastasis of Triple-Negative Breast Cancer via the EGFR/STAT3/Akt/E-Cadherin Signaling Pathway. Front Oncol 2019; 9:461. [PMID: 31214503 PMCID: PMC6558049 DOI: 10.3389/fonc.2019.00461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Overexpressed epidermal growth factor receptor (EGFR) and overactivated epithelial-mesenchymal transition (EMT) in triple-negative breast cancer (TNBC) can enhance tumorigenesis and tumor recurrence and metastasis. Caffeic acid p-nitro-phenethyl ester (CAPE-pNO2) has various pharmacological activities in our previous research, but its effect on metastasis and growth of TNBC has not been studied. In this study, Caffeic acid phenethyl ester (CAPE) was as a positive control. in vitro, MTT, Transwell, wound healing, colony formation and cell adhesion assays were performed to examine the effect on viability, invasion, migration, colony formation and adhesion of MDA-MB-231 cells by CAPE-pNO2, the results indicated that CAPE-pNO2 significantly dose-dependently inhibited metastasis of MDA-MB-231 cells (p < 0.05). in vivo, TNBC xenograft mice were established by subcutaneously injected with MDA-MB-231 cells, and they were used to estimate the effect on metastasis and growth of CAPE-pNO2 after 38 days of treatment. HE staining and TUNEL staining were carried out in tumor tissues, results showed that CAPE-pNO2 obviously suppressed the tumor growth, induced cells apoptosis (p < 0.01) and decreased pulmonary and splenic metastatic tumor cells. The results of IHC demonstrated that the VEGFA and Ki-67 proteins expression were downregulated (p < 0.01) in tumor tissues. Furthermore, western blot analysis was used to quantify key metastasis- and growth-associated proteins expression in vitro and in vivo, the results suggested that CAPE-pNO2 downregulated the proteins expression of p-EGFR, p-STAT3, p-Akt, MMP-2, MMP-9, Survivin, and key EMT-related proteins (Vimentin and N-cadherin) (p < 0.01), and increased the expression of E-cadherin (p < 0.01) in vivo and in vitro. Besides, CAPE-pNO2 had a similar effect as erlotinib in regulating the EGFR downstream proteins in EGF-induced MDA-MB-231cells. Collectively, these results indicated that CAPE-pNO2 possessed inhibitory effect on the growth and metastasis of TNBC may via the EGFR/STAT3/Akt/E-cadherin signaling pathway, and CAPE-pNO2 is better than CAPE in inhibiting growth and metastasis.
Collapse
Affiliation(s)
- Qin Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Sai Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Liwen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xufang Qiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yanyan Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoyan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Guojun Xiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Pierre CC, Hercules SM, Yates C, Daniel JM. Dancing from bottoms up - Roles of the POZ-ZF transcription factor Kaiso in Cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:64-74. [PMID: 30419310 DOI: 10.1016/j.bbcan.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022]
Abstract
The POZ-ZF transcription factor Kaiso was discovered two decades ago as a binding partner for p120ctn. Since its discovery, roles for Kaiso in diverse biological processes (epithelial-to-mesenchymal transition, apoptosis, inflammation) and several signalling pathways (Wnt/β-catenin, TGFβ, EGFR, Notch) have emerged. While Kaiso's biological role in normal tissues has yet to be fully elucidated, Kaiso has been increasingly implicated in multiple human cancers including colon, prostate, ovarian, lung, breast and chronic myeloid leukemia. In the majority of human cancers investigated to date, high Kaiso expression correlates with aggressive tumor characteristics including proliferation and metastasis, and/or poor prognosis. More recently, interest in Kaiso stems from its apparent correlation with racial disparities in breast and prostate cancer incidence and survival outcomes in people of African Ancestry. This review discusses Kaiso's role in various cancers, and Kaiso's potential for driving racial disparities in incidence and/or outcomes in people of African ancestry.
Collapse
Affiliation(s)
- Christina C Pierre
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
19
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
20
|
Bassey-Archibong BI, Hercules SM, Rayner LGA, Skeete DHA, Smith Connell SP, Brain I, Daramola A, Banjo AAF, Byun JS, Gardner K, Dushoff J, Daniel JM. Kaiso is highly expressed in TNBC tissues of women of African ancestry compared to Caucasian women. Cancer Causes Control 2017; 28:1295-1304. [PMID: 28887687 PMCID: PMC5681979 DOI: 10.1007/s10552-017-0955-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
Purpose Triple-negative breast cancer (TNBC) is most prevalent in young women of African ancestry (WAA) compared to women of other ethnicities. Recent studies found a correlation between high expression of the transcription factor Kaiso, TNBC aggressiveness, and ethnicity. However, little is known about Kaiso expression and localization patterns in TNBC tissues of WAA. Herein, we analyze Kaiso expression patterns in TNBC tissues of African (Nigerian), Caribbean (Barbados), African American (AA), and Caucasian American (CA) women. Methods Formalin-fixed and paraffin embedded (FFPE) TNBC tissue blocks from Nigeria and Barbados were utilized to construct a Nigerian/Barbadian tissue microarray (NB-TMA). This NB-TMA and a commercially available TMA comprising AA and CA TNBC tissues (AA-CA-YTMA) were subjected to immunohistochemistry to assess Kaiso expression and subcellular localization patterns, and correlate Kaiso expression with TNBC clinical features. Results Nigerian and Barbadian women in our study were diagnosed with TNBC at a younger age than AA and CA women. Nuclear and cytoplasmic Kaiso expression was observed in all tissues analyzed. Analysis of Kaiso expression in the NB-TMA and AA-CA-YTMA revealed that nuclear Kaiso H scores were significantly higher in Nigerian, Barbadian, and AA women compared with CA women. However, there was no statistically significant difference in nuclear Kaiso expression between Nigerian versus Barbadian women, or Barbadian versus AA women. Conclusions High levels of nuclear Kaiso expression were detected in patients with a higher degree of African heritage compared to their Caucasian counterparts, suggesting a role for Kaiso in TNBC racial disparity. Electronic supplementary material The online version of this article (doi:10.1007/s10552-017-0955-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Desiree H A Skeete
- Department of Pathology, Queen Elizabeth Hospital (QEH), Bridgetown, Barbados.,Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | - Suzanne P Smith Connell
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados.,Department of Radiation Oncology, Queen Elizabeth Hospital (QEH), Bridgetown, Barbados
| | - Ian Brain
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Adetola Daramola
- Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Adekunbiola A F Banjo
- Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Jung S Byun
- Genetics Branch, National Institute of Health, Bethesda, MD, USA
| | - Kevin Gardner
- Genetics Branch, National Institute of Health, Bethesda, MD, USA
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
21
|
Loss of Kaiso expression in breast cancer cells prevents intra-vascular invasion in the lung and secondary metastasis. PLoS One 2017; 12:e0183883. [PMID: 28880889 PMCID: PMC5589175 DOI: 10.1371/journal.pone.0183883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 01/04/2023] Open
Abstract
The metastatic activity of breast carcinomas results from complex genetic changes in epithelial tumor cells and accounts for 90% of deaths in affected patients. Although the invasion of the local lymphatic vessels and veins by malignant breast tumor cells and their subsequent metastasis to the lung, has been recognized, the mechanisms behind the metastatic activity of breast tumor cells to other distal organs and the pathogenesis of metastatic cancer are not well understood. In this study, we utilized derivatives of the well-established and highly metastatic triple negative breast cancer (TNBC) cell line MDA-MB-231 (MDA-231) to study breast tumor metastasis in a mouse model. These MDA-231 derivatives had depleted expression of Kaiso, a POZ-ZF transcription factor that is highly expressed in malignant, triple negative breast cancers. We previously reported that Kaiso depletion attenuates the metastasis of xenografted MDA-231 cells. Herein, we describe the pathological features of the metastatic activity of parental (Kaisopositive) versus Kaisodepleted MDA-231 cells. Both Kaisopositive and Kaisodepleted MDA-231 cells metastasized from the original tumor in the mammary fat pad to the lung. However, while Kaisopositive cells formed large masses in the lung parenchyma, invaded large pulmonary blood vessels and formed secondary metastases and large tumors in the distal organs, Kaisodepleted cells metastasized only to the lung where they formed small metastatic lesions. Importantly, intravascular invasion and secondary metastases in distal organs were not observed in mice xenografted with Kaisodepleted cells. It thus appears that the lung may constitute a barrier for less invasive breast tumors such as the Kaisodepleted TNBC cells; this barrier may limit tumor growth and prevents Kaisodepleted TNBC cells from invading the pulmonary blood vessels and forming secondary metastases in distal organs.
Collapse
|
22
|
Robinson SC, Donaldson-Kabwe NS, Dvorkin-Gheva A, Longo J, He L, Daniel JM. The POZ-ZF transcription factor Znf131 is implicated as a regulator of Kaiso-mediated biological processes. Biochem Biophys Res Commun 2017; 493:416-421. [PMID: 28882591 DOI: 10.1016/j.bbrc.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022]
Abstract
Znf131 belongs to the family of POZ-ZF transcription factors, but, in contrast to most other characterized POZ-ZF proteins that function as transcriptional repressors, Znf131 acts as a transcriptional activator. Znf131 heterodimerizes with the POZ-ZF protein Kaiso, which itself represses a subset of canonical Wnt target genes, including the cell cycle regulator Cyclin D1. Herein, we report a possible role for Znf131 in Kaiso-mediated processes. Notably, we found that Znf131 associates with several Kaiso target gene promoters, including that of CCND1. ChIP analysis revealed that Znf131 indirectly associates with the CCND1 promoter in HCT116 and MCF7 cells via a region that encompasses the previously characterized +69 Kaiso Binding Site, hinting that the Znf131/Kaiso heterodimer may co-regulate Cyclin D1 expression. We also demonstrate that Kaiso inhibits Znf131 expression, raising the possibility that Kaiso and Znf131 act to fine-tune target gene expression. Together, our findings implicate Znf131 as a co-regulator of Kaiso-mediated biological processes.
Collapse
Affiliation(s)
| | | | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Joseph Longo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Lloyd He
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
23
|
Feng J. Upregulation of MicroRNA-4262 Targets Kaiso (ZBTB33) to Inhibit the Proliferation and EMT of Cervical Cancer Cells. Oncol Res 2017; 26:1215-1225. [PMID: 28800784 PMCID: PMC7844826 DOI: 10.3727/096504017x15021536183526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
More and more studies have reported that dysregulation of microRNAs (miRNAs) leads to the proliferation and EMT of multiple cancers. Recently, several reports have demonstrated that dysregulation of miR-4262 occurs in numerous cancers. However, its role and precise mechanism in human cervical cancer (CC) have not been well clarified. Hence, this study aimed to explore the biological roles and precise mechanisms of miR-4262 in CC cell lines. The level of miR-4262 was found to be significantly decreased in CC tissues and cell lines. Moreover, decreased expression of miR-4262 was closely related to increased expression of Kaiso (ZBTB33), which belongs to the BTB/POZ family, in CC tissues and cell lines. The proliferation and EMT of CC cells were inhibited by a miR-4262 mimic. However, downregulation of miR-4262 enhanced the proliferation and EMT of CC cells. Next, bioinformatics analysis predicted that miR-4262 might directly target the Kaiso gene. Besides, luciferase reporter assay had confirmed this result. Moreover, introduction of Kaiso in CC cells partially blocked the effects of miR-4262 mimic. In conclusion, miR-4262 suppressed the proliferation and EMT of CC cells by directly downregulating Kaiso.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gynecology, Cangzhou Central Hospital, Hebei, P.R. China
| |
Collapse
|