1
|
Bruno PS, Arshad A, Gogu MR, Waterman N, Flack R, Dunn K, Darie CC, Neagu AN. Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer. Life (Basel) 2025; 15:126. [PMID: 39860065 PMCID: PMC11766951 DOI: 10.3390/life15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein-protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania;
| | - Natalie Waterman
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Rylie Flack
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Kimberly Dunn
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
2
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
3
|
Muro I, Qualman AC, Kovacs EJ, Idrovo JP. Burn-Induced Apoptosis in the Livers of Aged Mice Is Associated With Caspase Cleavage of Bcl-xL. J Surg Res 2023; 290:147-155. [PMID: 37267704 PMCID: PMC10330893 DOI: 10.1016/j.jss.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Older adult burn victims have poorer outcomes than younger burn victims. The liver is critical for the recovery of patients with burns. Postburn hepatic apoptosis in young individuals compromises liver integrity; however, this pathway has not yet been studied in older individuals. Because aged animals with burns suffer significant liver damage, we hypothesized that apoptosis is altered in these animals and may affect liver function. Understanding postburn hepatic apoptosis and its effects on liver function in aged animals may help improve outcomes in older patients. METHODS We compared the protein and gene expression levels in young and aged mice after a 15% total-body-surface-area burn. Liver and serum samples were collected at different time points after injury. RESULTS Caspase-9 expression in liver tissue was downregulated by 47% in young animals and upregulated by 62% in aged animals 9 h postburn (P < 0.05). The livers of aged mice showed a Bcl-extra-large (Bcl-xL) transcription increase only after 6 h; however, the livers of young mice exhibited 4.3-fold, 14.4-fold, and 7.8-fold Bcl-xL transcription increases at 3, 6, and 9 h postburn, respectively (P < 0.05). The livers of young mice showed no changes in Caspase-9, Caspase-3, or Bcl-xL protein levels during the early postburn period. In contrast, the livers of aged mice contained cleaved caspase-9, reduced full-length caspase-3, and an accumulation of ΔN-Bcl-x at 6 and 9 h postburn (P < 0.05). p21 expression decreased in aged mice; however, it was significantly increased in the liver tissue of young mice postburn (P < 0.05). Serum amyloid A1 and serum amyloid A2 serum protein levels were 5.2- and 3.1-fold higher in young mice than in aged mice, respectively, at 6 and 9 h postburn (P < 0.05). CONCLUSIONS Livers of aged mice exhibited different apoptotic processes compared to those of young mice early after burn injury. Collectively, burn-induced liver apoptosis in aged mice compromises hepatic serum protein production.
Collapse
Affiliation(s)
- Israel Muro
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Andrea C Qualman
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Elizabeth J Kovacs
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado; Division of Burn Research, Division of Alcohol Research, Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Juan-Pablo Idrovo
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado.
| |
Collapse
|
4
|
Mouratidou C, Pavlidis ET, Katsanos G, Kotoulas SC, Mouloudi E, Tsoulfas G, Galanis IN, Pavlidis TE. Hepatic ischemia-reperfusion syndrome and its effect on the cardiovascular system: The role of treprostinil, a synthetic prostacyclin analog. World J Gastrointest Surg 2023; 15:1858-1870. [PMID: 37901735 PMCID: PMC10600776 DOI: 10.4240/wjgs.v15.i9.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatic ischemia-reperfusion syndrome has been the subject of intensive study and experimentation in recent decades since it is responsible for the outcome of several clinical entities, such as major hepatic resections and liver transplantation. In addition to the organ's post reperfusion injury, this syndrome appears to play a central role in the dysfunction of distant tissues and systems. Thus, continuous research should be directed toward finding effective therapeutic options to improve the outcome and reduce the postoperative morbidity and mortality rates. Treprostinil is a synthetic analog of prostaglandin I2, and its experimental administration has shown encouraging results. It has already been approved by the Food and Drug Administration in the United States for pulmonary arterial hypertension and has been used in liver transplantation, where preliminary encouraging results showed its safety and feasibility by using continuous intravenous administration at a dose of 5 ng/kg/min. Treprostinil improves renal and hepatic function, diminishes hepatic oxidative stress and lipid peroxidation, reduces hepatictoll-like receptor 9 and inflammation, inhibits hepatic apoptosis and restores hepatic adenosine triphosphate (ATP) levels and ATP synthases, which is necessary for functional maintenance of mitochondria. Treprostinil exhibits vasodilatory properties and antiplatelet activity and regulates proinflammatory cytokines; therefore, it can potentially minimize ischemia-reperfusion injury. Additionally, it may have beneficial effects on cardiovascular parameters, and much current research interest is concentrated on this compound.
Collapse
Affiliation(s)
| | - Efstathios T Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | | | - Eleni Mouloudi
- Intensive Care Unit, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Ioannis N Galanis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
5
|
Buț MG, Jîtcă G, Imre S, Vari CE, Ősz BE, Jîtcă CM, Tero-Vescan A. The Lack of Standardization and Pharmacological Effect Limits the Potential Clinical Usefulness of Phytosterols in Benign Prostatic Hyperplasia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1722. [PMID: 37111945 PMCID: PMC10142909 DOI: 10.3390/plants12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of benign prostatic hyperplasia (BPH) markedly increases with age. Phytotherapeutic approaches have been developed over time owing to the adverse side effects of conventional medications such as 5-reductase inhibitors and α1-adrenergic receptor antagonists. Therefore, dietary supplements (DS) containing active compounds that benefit BPH are widely available. Phytosterols (PSs) are well recognized for their role in maintaining blood cholesterol levels; however, their potential in BPH treatment remains unexplored. This review aims to provide a general overview of the available data regarding the clinical evidence and a good understanding of the detailed pharmacological roles of PSs-induced activities at a molecular level in BPH. Furthermore, we will explore the authenticity of PSs content in DS used by patients with BPH compared to the current legislation and appropriate analytical methods for tracking DS containing PSs. The results showed that PSs might be a useful pharmacological treatment option for men with mild to moderate BPH, but the lack of standardized extracts linked with the regulation of DS containing PSs and experimental evidence to elucidate the mechanisms of action limit the use of PSs in BPH. Moreover, the results suggest multiple research directions in this field.
Collapse
Affiliation(s)
- Mădălina-Georgiana Buț
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - Camil Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Bianca Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Carmen-Maria Jîtcă
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| |
Collapse
|
6
|
Murad F, Garcia-Saez AJ. Bcl-xL inhibits tBid and Bax via distinct mechanisms. Faraday Discuss 2021; 232:86-102. [PMID: 34528939 DOI: 10.1039/d0fd00045k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proteins of the Bcl-2 family are key regulators of apoptosis. They form a complex interaction network in the cytosol and in cellular membranes, whose outcome determines mitochondrial permeabilization and commitment to death. However, we still do not understand how the action of the different family members is orchestrated to regulate apoptosis. Here, we combined quantitative analysis of the interactions and the localization dynamics of the family representatives Bcl-xL, Bax and tBid, in living cells. We discovered that Bax and tBid are able to constitutively shuttle between cytosol and mitochondria in the absence of other Bcl-2 proteins. Bcl-xL clearly stabilized tBid at mitochondria, where they formed tight complexes. In contrast, Bcl-xL promoted Bax retrotranslocation to the cytosol without affecting its shuttling rate, but by forming weak inhibitory mitochondrial complexes. Furthermore, analysis of phospho-mimetics of Bcl-xL suggested that phosphorylation regulates the function of Bcl-xL via multiple mechanisms. Altogether, our findings support a model in which the Bcl-2 network not only modulates protein/protein interactions among the family members, but also their respective intracellular localization dynamics, to regulate apoptosis.
Collapse
Affiliation(s)
- Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Ana J Garcia-Saez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. .,Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther 2021; 230:107943. [PMID: 34182005 DOI: 10.1016/j.pharmthera.2021.107943] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Cell death by apoptosis and permanent cell cycle arrest by senescence serve as barriers to the development of cancer. Chemotherapeutic agents not only induce apoptosis, they can also induce senescence known as therapy-induced senescence (TIS). There are, however, controversies whether TIS improves or worsens therapeutic outcome. Unlike apoptosis, which permanently removes cancer cells, senescent cells are metabolically active, and can contribute to tumor progression and relapse. If senescent cells are not cleared by the immune system or if cancer cells escape senescence, they may acquire resistance to apoptotic stimuli and become highly aggressive. Thus, there have been significant efforts in developing senolytics, drugs that target these pro-survival molecules to eliminate senescent cells. The anti-apoptotic Bcl-2 family proteins not only protect against cell death by apoptosis, but they also allow senescent cells to survive. While combining senolytics with chemotherapeutic drugs is an attractive approach, there are also limitations. Moreover, members of the Bcl-2 family have distinct effects on apoptosis and senescence. The purpose of this review article is to discuss recent literatures on how members of the Bcl-2 family orchestrate the interplay between apoptosis and senescence, and the challenges and progress in targeting these Bcl-2 family proteins for cancer therapy.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
8
|
Lv J, Zou X, Yu C, Ou W, Sun C. Effects of propofol on cardiac function and miR-494 expression in rats with hepatic ischemia/reperfusion injury. J Int Med Res 2021; 49:300060521990988. [PMID: 33682507 PMCID: PMC7944537 DOI: 10.1177/0300060521990988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of propofol on cardiac function and miR-494 expression in rats with hepatic ischemia/reperfusion (I/R) injury. METHODS Forty healthy adult male Sprague-Dawley rats were allocated to the sham operation group and three hepatic I/R injury groups. The I/R injury groups included I/R injury only (I/R group), treatment with propofol (propofol group), and treatment with propofol + overexpressed miR-494 (propofol+miR-494 group). Apoptosis of myocardial cells and changes in cardiac function indices, including left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular posterior wall thickness, as well as changes in miR-494, were monitored. RESULTS The apoptotic rate of myocardial cells in the I/R group was higher, cardiac function was deteriorated, and miR-494 levels were elevated compared with the sham group. The apoptotic rate was lower, cardiac function was improved, and miR-494 levels were suppressed in the propofol group compared with the I/R group. The apoptotic rate was higher, cardiac function was deteriorated, and miR-494 levels were elevated in the propofol+miR-494 group compared with the propofol group. CONCLUSION Propofol plays a vital role in preventing myocardial cell apoptosis and improvement of cardiac function by suppressing miR-494 in a hepatic I/R injury rat model.
Collapse
Affiliation(s)
- Jie Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaohua Zou
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Ou
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Schille JT, Nolte I, Beck J, Jilani D, Roolf C, Pews-Davtyan A, Rolfs A, Henze L, Beller M, Brenig B, Junghanss C, Schütz E, Murua Escobar H. PDA Indolylmaleimides Induce Anti-Tumor Effects in Prostate Carcinoma Cell Lines Through Mitotic Death. Front Vet Sci 2021; 7:558135. [PMID: 33553272 PMCID: PMC7855975 DOI: 10.3389/fvets.2020.558135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Castrate resistant prostate cancer in men shares several characteristics with canine prostate cancer (PCa). Due to current insufficient therapies, evaluating novel therapeutic agents for late-stage PCa is of considerable interest for both species. PDA indolylmaleimides showed anticancer effects in several neoplastic cell lines. Herein, a comparative characterization of PDA-66 and PDA-377 mediated effects was performed in human and canine PCa cell lines, which is also the first detailed characterization of these agents on cells derived from solid tumors in general. While PDA-377 showed only weak growth inhibition on human PCa cell lines, PDA-66 inhibited proliferation and induced apoptosis in human and canine cell lines with concentrations in the low micromolar range. Morphological characterization and whole transcriptome sequencing revealed that PDA-66 induces mitotic death through its microtubule-depolymerizing ability. PDA-66 appears to be a worthwhile anti-mitotic agent for further evaluation. The similarities in cellular and molecular response observed in the cell lines of both origins form a solid basis for the use of canine PCa in vivo models to gain valuable interchangeable data to the advantage of both species.
Collapse
Affiliation(s)
- Jan Torben Schille
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany.,Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Daria Jilani
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany.,Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Catrin Roolf
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | | | | | - Larissa Henze
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis, University of Rostock, Rostock, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | - Ekkehard Schütz
- Chronix Biomedical, Göttingen, Germany.,Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Abstract
Bcl-xL is a pro-survival protein of the Bcl2 family found in the mitochondrial membrane. Bcl-xL supports growth, development, and maturation of neurons, and it also prevents neuronal death during neurotoxic stimulation. This article reviews the mechanisms and upstream signaling that regulate the activity and abundance of Bcl-xL. Our team and others have reported that oxidative stress is a key regulator of intracellular Bcl-xL balance in neurons. Oxidative stress regulates synthesis, degradation, and activity of Bcl-xL and therefore neuronal function. During apoptosis, pro-apoptotic Bcl2 proteins such as Bax and Bak translocate to and oligomerize in the mitochondrial membrane. Formation of oligomers causes release of cytochrome c and activation of caspases that lead to neuronal death. Bcl-xL binds directly to pro-apoptotic Bcl2 proteins to block apoptotic signaling. Although anti-apoptotic roles of Bcl-xL have been well documented, an increasing number of studies in recent decades show that protein binding partners of Bcl-xL are not limited to Bcl2 proteins. Bcl-xL forms a complex with F1Fo ATP synthase, DJ-1, DRP1, IP3R, and the ryanodine receptor. These proteins support physiological processes in neurons such as growth and development and prevent neuronal damage by regulating mitochondrial ATP production, synapse formation, synaptic vesicle recycling, neurotransmission, and calcium signaling. However, under conditions of oxidative stress, Bcl-xL undergoes proteolytic cleavage thus lowering the abundance of functional Bcl-xL in neurons. Additionally, oxidative stress alters formation of Bcl-xL-mediated multiprotein complexes by regulating post-translational phosphorylation. Finally, oxidative stress regulates transcription factors that target the Bcl-x gene and alter accessibility of microRNA to mRNA influencing mRNA levels of Bcl-xL. In this review, we discussed how Bcl-xL supports the normal physiology of neurons, and how oxidative stress contributes to pathology by manipulating the dynamics of Bcl-xL production, degradation, and activity.
Collapse
Affiliation(s)
- Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Katheryn Broman
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Development of Conformational Antibodies to Detect Bcl-xL's Amyloid Aggregates in Metal-Induced Apoptotic Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21207625. [PMID: 33076337 PMCID: PMC7589975 DOI: 10.3390/ijms21207625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022] Open
Abstract
Bcl-xL, a member of the Bcl-2 family, is a pro-survival protein involved in apoptosis regulation. We have previously reported the ability of Bcl-xL to form various types of fibers, from native to amyloid conformations. Here, we have mimicked the effect of apoptosis-induced caspase activity on Bcl-xL by limited proteolysis using trypsin. We show that cleaved Bcl-xL (ΔN-Bcl-xL) forms fibers that exhibit the features of amyloid structures (BclxLcf37). Moreover, three monoclonal antibodies (mAbs), produced by mouse immunization and directed against ΔN-Bcl-xL or Bcl-xL fibers, were selected and characterized. Our results show that these mAbs specifically target ΔN-Bcl-xL in amyloid fibers in vitro. Upon metal-stress-induced apoptosis, these mAbs are able to detect the presence of Bcl-xL in amyloid aggregates in neuroblastoma SH-SY5Y cell lines. In conclusion, these specific mAbs directed against amyloidogenic conformations of Bcl-xL constitute promising tools for studying, in vitro and in cellulo, the contribution of Bcl-xL in apoptosis. These mAbs may further help in developing new diagnostics and therapies, considering Bcl-xL as a strategic target for treating brain lesions relevant to stroke and neurodegenerative diseases.
Collapse
|
12
|
Borrás C, Mas-Bargues C, Román-Domínguez A, Sanz-Ros J, Gimeno-Mallench L, Inglés M, Gambini J, Viña J. BCL-xL, a Mitochondrial Protein Involved in Successful Aging: From C. elegans to Human Centenarians. Int J Mol Sci 2020; 21:ijms21020418. [PMID: 31936510 PMCID: PMC7014191 DOI: 10.3390/ijms21020418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 01/07/2023] Open
Abstract
B-Cell Lymphoma-extra-large (BCL-xL) is involved in longevity and successful aging, which indicates a role for BCL-xL in cell survival pathway regulation. Beyond its well described role as an inhibitor of apoptosis by preventing cytochrome c release, BCL-xL has also been related, indirectly, to autophagy and senescence pathways. Although in these latter cases, BCL-xL has dual roles, either activating or inhibiting, depending on the cell type and the specific conditions. Taken together, all these findings suggest a precise mechanism of action for BCL-xL, able to regulate the crosstalk between apoptosis, autophagy, and senescence, thus promoting cell survival or cell death. All three pathways can be both beneficial or detrimental depending on the circumstances. Thus, targeting BCL-xL would in turn be a "double-edge sword" and therefore, additional studies are needed to better comprehend this dual and apparently contradictory role of BCL-XL in longevity.
Collapse
Affiliation(s)
- Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
- Correspondence:
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain;
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| |
Collapse
|
13
|
de Jong MRW, Langendonk M, Reitsma B, Herbers P, Nijland M, Huls G, van den Berg A, Ammatuna E, Visser L, van Meerten T. WEE1 Inhibition Enhances Anti-Apoptotic Dependency as a Result of Premature Mitotic Entry and DNA Damage. Cancers (Basel) 2019; 11:cancers11111743. [PMID: 31703356 PMCID: PMC6895818 DOI: 10.3390/cancers11111743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Genomically unstable cancers are dependent on specific cell cycle checkpoints to maintain viability and prevent apoptosis. The cell cycle checkpoint protein WEE1 is highly expressed in genomically unstable cancers, including diffuse large B-cell lymphoma (DLBCL). Although WEE1 inhibition effectively induces apoptosis in cancer cells, the effect of WEE1 inhibition on anti-apoptotic dependency is not well understood. We show that inhibition of WEE1 by AZD1775 induces DNA damage and pre-mitotic entry in DLBCL, thereby enhancing dependency on BCL-2 and/or MCL-1. Combining AZD1775 with anti-apoptotic inhibitors such as venetoclax (BCL-2i) or S63845 (MCL-1i) enhanced sensitivity in a cell-specific manner. In addition, we demonstrate that both G2/M cell cycle arrest and DNA damage induction put a similar stress on DLBCL cells, thereby enhancing anti-apoptotic dependency. Therefore, genotoxic or cell cycle disrupting agents combined with specific anti-apoptotic inhibitors may be very effective in genomic unstable cancers such as DLBCL and therefore warrants further clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Rikje Willemijn de Jong
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands; (A.v.d.B.); (L.V.)
| | - Myra Langendonk
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands; (A.v.d.B.); (L.V.)
| | - Bart Reitsma
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
| | - Pien Herbers
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
| | - Marcel Nijland
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands; (A.v.d.B.); (L.V.)
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands; (A.v.d.B.); (L.V.)
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands (M.L.); (B.R.); (P.H.); (M.N.); (G.H.); (E.A.)
- Correspondence: ; Tel.: +31-503-611-761
| |
Collapse
|
14
|
Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ 2019; 27:1036-1051. [PMID: 31367011 DOI: 10.1038/s41418-019-0396-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondria are highly dynamic organelles and respond to stress by changing their fission-fusion cycle, undergoing mitophagy, or releasing apoptotic proteins to initiate cell death. The molecular mechanisms that sense different stresses and coordinate distinct effectors still await full characterization. Here, we show that PGAM5, which exists in an equilibrium between dimeric and multimeric states, dephosphorylates BCL-xL to inhibit apoptosis or FUNDC1 to activate mitofission and mitophagy in response to distinct stresses. In vinblastine-treated cells, PGAM5 dephosphorylates BCL-xL at Ser62 to restore BCL-xL sequestration of BAX and BAK and thereby resistance to apoptosis. Selenite-induced oxidative stress increases the multimerization of PGAM5, resulting in its dissociation from BCL-xL, which causes increased BCL-xL phosphorylation and apoptosis. Once freed, the more multimeric and active PGAM5 dephosphorylates FUNDC1 to initiate mitofission and mitophagy. The reciprocal interaction of PGAM5 with FUNDC1 and BCL-xL, controlled by PGAM5 multimerization, serves as a molecular switch between mitofission/mitophagy and apoptosis.
Collapse
|
15
|
Nutritional Regulators of Bcl-xL in the Brain. Molecules 2018; 23:molecules23113019. [PMID: 30463183 PMCID: PMC6278276 DOI: 10.3390/molecules23113019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/12/2023] Open
Abstract
B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic Bcl-2 protein found in the mitochondrial membrane. Bcl-xL is reported to support normal brain development and protects neurons against toxic stimulation during pathological process via its roles in regulation of mitochondrial functions. Despite promising evidence showing neuroprotective properties of Bcl-xL, commonly applied molecular approaches such as genetic manipulation may not be readily applicable for human subjects. Therefore, findings at the bench may be slow to be translated into treatments for disease. Currently, there is no FDA approved application that specifically targets Bcl-xL and treats brain-associated pathology in humans. In this review, we will discuss naturally occurring nutrients that may exhibit regulatory effects on Bcl-xL expression or activity, thus potentially providing affordable, readily-applicable, easy, and safe strategies to protect the brain.
Collapse
|
16
|
Teitz T, Fang J, Goktug AN, Bonga JD, Diao S, Hazlitt RA, Iconaru L, Morfouace M, Currier D, Zhou Y, Umans RA, Taylor MR, Cheng C, Min J, Freeman B, Peng J, Roussel MF, Kriwacki R, Guy RK, Chen T, Zuo J. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med 2018. [PMID: 29514916 PMCID: PMC5881471 DOI: 10.1084/jem.20172246] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Asli N Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Justine D Bonga
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shiyong Diao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Robert A Hazlitt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Luigi Iconaru
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marie Morfouace
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Robyn A Umans
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael R Taylor
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Burgess Freeman
- Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, TN
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
17
|
Nakajima W, Sharma K, Lee JY, Maxim NT, Hicks MA, Vu TT, Luu A, Yeudall WA, Tanaka N, Harada H. DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. Oncotarget 2017; 7:36353-36365. [PMID: 27166195 PMCID: PMC5095005 DOI: 10.18632/oncotarget.9217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/24/2016] [Indexed: 02/04/2023] Open
Abstract
Noxa, a BH3-only pro-apoptotic BCL-2 family protein, causes apoptosis by specifically interacting with the anti-apoptotic protein MCL-1 to induce its proteasome-mediated degradation. We show here that the DNA damaging agents cisplatin and etoposide upregulate Noxa expression, which is required for the phosphorylation of MCL-1 at Ser64/Thr70 sites, proteasome-dependent degradation, and apoptosis. Noxa-induced MCL-1 phosphorylation at these sites occurs at the mitochondria and is primarily regulated by CDK2. MCL-1 and CDK2 form a stable complex and Noxa binds to this complex to facilitate the phosphorylation of MCL-1. When Ser64 and Thr70 of MCL-1 are substituted with alanine, the mutated MCL-1 is neither phosphorylated nor ubiquitinated, and becomes more stable than the wild-type protein. As a consequence, this mutant can inhibit apoptosis induced by Noxa overexpression or cisplatin treatment. These results indicate that Noxa-mediated MCL-1 phosphorylation followed by MCL-1 degradation is critical for apoptosis induced by DNA damaging agents through regulation of the Noxa/MCL-1/CDK2 complex.
Collapse
Affiliation(s)
- Wataru Nakajima
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Kanika Sharma
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - June Young Lee
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nicolas T Maxim
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark A Hicks
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Thien-Trang Vu
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Angela Luu
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - W Andrew Yeudall
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Hisashi Harada
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
18
|
Increased activity of both CDK1 and CDK2 is necessary for the combinatorial activity of WEE1 inhibition and cytarabine. Leuk Res 2017; 64:30-33. [PMID: 29175378 DOI: 10.1016/j.leukres.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 12/24/2022]
Abstract
Inhibition of WEE1 is emerging as a promising chemosensitization strategy in many cancers including acute leukemia. Our lab and others have demonstrated that a small-molecule inhibitor of WEE1, AZD1775, sensitizes acute leukemia cells to cytarabine; however, a mechanism of combinatorial activity has remained elusive. Thus, we sought to determine the relative contribution of WEE1 targets CDK1 and CDK2 to the combinatorial activity of AZD1775 and cytarabine. To accomplish this, we expressed "WEE1 resistant" CDK1 (CDK1-AF) and CDK2 (CDK2-AF) constructs in a T-ALL cell line. Expression of CDK1/2-AF together, but neither alone, enhanced the anti-proliferative effects, DNA damage and apoptosis induced by cytarabine. Furthermore, pharmacologic inhibition of CDK1 alone or CDK1 and CDK2 together reduced the combinatorial activity of AZD1775 and cytarabine. Thus, increased activity of both CDK1 and CDK2 in response to WEE1 inhibition is necessary for the combinatorial activity of AZD1775 and cytarabine. This suggests the role of WEE1 in cells with accumulated DNA damage extends beyond regulation of CDK1 and the G2/M checkpoint and highlights the importance of WEE1 in mediating progression through the cell cycle.
Collapse
|
19
|
Wang X, Tang D, Shen P, Xu H, Qiu H, Wu T, Gao X. Analysis of DNA methylation in chondrocytes in rats with knee osteoarthritis. BMC Musculoskelet Disord 2017; 18:377. [PMID: 28859619 PMCID: PMC5579940 DOI: 10.1186/s12891-017-1739-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a degenerative knee disease commonly found in the ageing population. DNA methylation works with histone acetylation to participate in aging. Alterations of DNA methylation may involve the joint chondrocyte degeneration in KOA. The aim of this study is to detect DNA methylation changes in chondrocytes of rats with KOA. METHODS The rat KOA model was established with the Hulth method (n = 10), while rats receiving sham operation served as the control (n = 10). At 16 weeks after modeling, the knee joint tissue was collected from half of the rats in each group for Micro-CT scanning, Haematoxylin& Eosin (HE) staining, ABH/OG staining, immunohistochemistry for Bax, Bcl-2 and Fas, and TUNNEL staining. Meanwhile, the articular cartilage was collected from the other half to detect promoter methylation in target genes with the MethylTarget approach. RESULTS Micro-CT scanning, HE staining, ABH/OG staining, immunohistochemistry, and TUNNEL staining all showed more severe cartilage injury in the KOA group than in the control group, indicating successful establishment of KOA model. The methylation rate in the KOA group was significantly decreased for C/ebpα-2 (within a CpG island -452 bp to the initiation codon on chromosome 1 91,363,511), Cdk2 (within a CpG island -55 bp to the initiation codon on chromosome 7 3,132,362), Bak1 (within a CpG island 6452 bp to the initiation codon on chromosome 20 5,622,277), and Fas (within a CpG island on the entire chromosome 1 gene), compared with the sham group (P = 0.005, 0.008, 0.022 and 0.027, respectively). CONCLUSION The chondrocyte apoptosis and significantly reduced methylation levels of C/ebpα-2, Cdk2, Bak1, and Fas may participate in the pathogenesis of KOA. However, the exact mechanisms remain to be determined.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.,Spine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Dezhi Tang
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Peng Shen
- Department of Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.,Spine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hao Xu
- Spine Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hongfu Qiu
- Department of Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Tao Wu
- Department of Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Xiang Gao
- Department of Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| |
Collapse
|
20
|
Tian X, Liu M, Zhu Q, Tan J, Liu W, Wang Y, Chen W, Zou Y, Cai Y, Han Z, Huang X. Down-regulation of liver-intestine cadherin enhances noscapine-induced apoptosis in human colon cancer cells. Expert Rev Anticancer Ther 2017. [PMID: 28622054 DOI: 10.1080/14737140.2017.1344097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xia Tian
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Meng Liu
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Qingxi Zhu
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Weijie Liu
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Yanfen Wang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Yanli Zou
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Yishan Cai
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| | - Xiaodong Huang
- Department of Gastroenterology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China
| |
Collapse
|
21
|
Minutoli L, Rinaldi M, Marini H, Irrera N, Crea G, Lorenzini C, Puzzolo D, Valenti A, Pisani A, Adamo EB, Altavilla D, Squadrito F, Micali A. Apoptotic Pathways Linked to Endocrine System as Potential Therapeutic Targets for Benign Prostatic Hyperplasia. Int J Mol Sci 2016; 17:ijms17081311. [PMID: 27529214 PMCID: PMC5000708 DOI: 10.3390/ijms17081311] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation, primarily within the transition zone of the prostate. Apoptosis and inflammation play important roles in the control of cell growth and in the maintenance of tissue homeostasis. Disturbances in molecular mechanisms of apoptosis machinery have been linked to BPH. Increased levels of the glycoprotein Dickkopf-related protein 3 in BPH cause an inhibition of the apoptosis machinery through a reduction in B cell lymphoma (Bcl)-2 associated X protein (Bax) expression. Inhibitors of apoptosis proteins influence cell death by direct inhibition of caspases and modulation of the transcription factor nuclear factor-κB. Current pharmacotherapy targets either the static component of BPH, including finasteride and dutasteride, or the dynamic component of BPH, including α-adrenoceptor antagonists such as tamsulosin and alfuzosin. Both these classes of drugs significantly interfere with the apoptosis machinery. Furthermore, phytotherapic supplements and new drugs may also modulate several molecular steps of apoptosis.
Collapse
Affiliation(s)
- Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Mariagrazia Rinaldi
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Herbert Marini
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Giovanni Crea
- Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Cesare Lorenzini
- Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Antonina Pisani
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Elena B Adamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", 98125 Messina, Italy.
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
22
|
Abstract
Cisplatin is a widely used chemotherapeutic agent, yet its efficacy is limited by nephrotoxicity. The severity of nephrotoxicity is associated with the extent of kidney cell death. Previously, we found that cisplatin-induced kidney cell death was dependent on Cdk2 activation, and inhibition of Cdk2 protected cells from cisplatin-induced apoptosis. Using an in vitro kination assay, we showed that Cdk2 phosphorylated Bcl-xL, an anti-apoptotic member of Bcl-2 family proteins, at serine 73. We also found that this phosphorylated Bcl-xL participated in cell death, as a phosphomimetic mutant of Bcl-xL at the serine 73 site (S73D-Bcl-xL) activated caspases. We now find that S73D-Bcl-xL was cleaved at D61 and D76, which are putative caspase cleavage sites, to generate 15-kDa and 12-kDa fragments. Unlike full-length Bcl-xL, these cleavage products of Bcl-xL were previously reported to be pro-apoptotic. We sought to determine whether these Bcl-xL fragments were necessary for the induction of cell death by S73D-Bcl-xL. Mutation of these caspase cleavage sites prevented the formation of the 15-kDa and 12-kDa Bcl-xL cleavage products, but apoptosis still persisted in a S73D modified Bcl-xL. Our findings show that Cdk2 phosphorylation of Bcl-xL at Ser73, but not the Bcl-xL cleavage products, is necessary and sufficient to induce cell death.
Collapse
|