1
|
Fatma M, Parveen S, Mir SS. Unraveling the kinase code: Role of protein kinase in lung cancer pathogenesis and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189309. [PMID: 40169080 DOI: 10.1016/j.bbcan.2025.189309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Lung cancer is a prominent cause of cancer-related deaths globally, prompting exploration into the molecular pathways governing cancer cell signaling. Recent insights highlight the critical role of kinases in carcinogenesis and metastasis, particularly in non-small cell lung cancer (NSCLC), where protein kinases significantly contribute to drug resistance. These diverse enzymes catalyze protein phosphorylation and are implicated in cancer through misregulated expression, amplification, aberrant phosphorylation, mutations, and chromosomal translocations. Amplifications of kinases serve as important diagnostic, prognostic, and predictive biomarkers across various cancers. Notably, the Phosphatidylinositol 3-kinase (PI3K)/AKT pathway is crucial for the survival and proliferation of tumor cells. Novel therapeutic approaches are being explored to precisely target these pathways. Peptide-based therapies offer specificity and reduced toxicity compared to conventional treatments, while gene therapy targets abnormal genetic expressions. Advances in nanotechnology and CRISPR/Cas9 systems enhance gene delivery methods, holding promise for targeting specific molecular pathways in lung cancer treatment and minimizing systemic toxicity.
Collapse
Affiliation(s)
- Mariyam Fatma
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.
| |
Collapse
|
2
|
Wiggers CRM, Yüzügüldü B, Tadros NG, Heavican-Foral TB, Cho EY, Eisenbies ZC, Ozdemir M, Kulp SB, Chae YC, Gutierrez A, Lohr JG, Knoechel B. Genome-wide CRISPR screen identifies IRF1 and TFAP4 as transcriptional regulators of Galectin-9 in T cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2025; 11:eads8351. [PMID: 40106574 PMCID: PMC11922064 DOI: 10.1126/sciadv.ads8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Galectin-9 is overexpressed in a variety of cancers and associated with worse clinical outcome in some cancers. However, the regulators driving Galectin-9 expression are unknown. Here, we defined the transcriptional regulators and epigenetic circuitry of Galectin-9 in pediatric T cell acute lymphoblastic leukemia (T-ALL), as an example of a disease with strong Galectin-9 expression, in which higher expression was associated with lower overall survival. By performing a genome-wide CRISPR screen, we identified the transcription factors IRF1 and TFAP4 as key regulators for Galectin-9 expression by binding its regulatory elements. Whereas IRF1 was observed exclusively on the promoter, TFAP4 binding was detected at an enhancer solely in T-ALL cells associated with higher Galectin-9 levels. Together, our results show that IRF1 is responsible and indispensable for Galectin-9 expression and TFAP4 further fine-tunes its expression. Our approach, a flow-based genome-wide CRISPR screen complemented by transcription factor binding and enhancer mapping, creates innovative opportunities for understanding and manipulating epigenetic transcriptional regulation in cancer.
Collapse
Affiliation(s)
- Caroline R. M. Wiggers
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Burak Yüzügüldü
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nathanial G. Tadros
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tayla B. Heavican-Foral
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eugene Y. Cho
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Merve Ozdemir
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steffen B. Kulp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yun-Cheol Chae
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alejandro Gutierrez
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jens G. Lohr
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
4
|
Li H, Hou J, Fu Y, Zhao Y, Liu J, Guo D, Lei R, Wu Y, Tang L, Fan S. miR-603 promotes cell proliferation and differentiation by targeting TrkB in acute promyelocytic leukemia. Ann Hematol 2023; 102:3357-3367. [PMID: 37726492 DOI: 10.1007/s00277-023-05441-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Arsenic trioxide (ATO) treatment effectively prolongs the overall survival of patients with acute promyelocytic leukemia (APL). Mutations in the oncogene PML::RARA were found in patients with ATO-resistant and relapsed APL. However, some relapsed patients do not have such mutations. Here, we performed microarray analysis of samples from newly diagnosed and relapsed APL, and found different microRNA (miRNA) expression patterns between these two groups. Among the differentially expressed miRNAs, miR-603 was expressed at the lowest level in relapsed patients. The expression of miR-603 and its predicted target tropomyosin-related kinase B (TrkB) were determined by PCR and Western blot. Proliferation was measured using an MTT assay, while apoptosis, cell cycle and CD11b expression were analyzed using flow cytometry. In APL patients, the expression of miR-603 was negatively correlated with that of TrkB. miR-603 directly targeted TrkB and downregulated TrkB expression in the APL cell line NB4. miR-603 increased cell proliferation by promoting the differentiation and inhibiting the apoptosis of NB4 cells. This study shows that the miR-603/ TrkB axis may be a potent therapeutic target for relapsed APL.
Collapse
Affiliation(s)
- Huibo Li
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jinxiao Hou
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
- Hematology Department, the Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Yueyue Fu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yanqiu Zhao
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Jie Liu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Dan Guo
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ruiqi Lei
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yiting Wu
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Linqing Tang
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Shengjin Fan
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
5
|
Pattwell SS, Arora S, Nuechterlein N, Zager M, Loeb KR, Cimino PJ, Holland NC, Reche-Ley N, Bolouri H, Almiron Bonnin DA, Szulzewsky F, Phadnis VV, Ozawa T, Wagner MJ, Haffner MC, Cao J, Shendure J, Holland EC. Oncogenic role of a developmentally regulated NTRK2 splice variant. SCIENCE ADVANCES 2022; 8:eabo6789. [PMID: 36206341 PMCID: PMC9544329 DOI: 10.1126/sciadv.abo6789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Temporally regulated alternative splicing choices are vital for proper development, yet the wrong splice choice may be detrimental. Here, we highlight a previously unidentified role for the neurotrophin receptor splice variant TrkB.T1 in neurodevelopment, embryogenesis, transformation, and oncogenesis across multiple tumor types in humans and mice. TrkB.T1 is the predominant NTRK2 isoform across embryonic organogenesis, and forced overexpression of this embryonic pattern causes multiple solid and nonsolid tumors in mice in the context of tumor suppressor loss. TrkB.T1 also emerges as the predominant NTRK isoform expressed in a wide range of adult and pediatric tumors, including those harboring tropomyosin receptor kinase fusions. Affinity purification-mass spectrometry proteomic analysis reveals distinct interactors with known developmental and oncogenic signaling pathways such as Wnt, transforming growth factor-β, Sonic Hedgehog, and Ras. From alterations in splicing factors to changes in gene expression, the discovery of isoform specific oncogenes with embryonic ancestry has the potential to shape the way we think about developmental systems and oncology.
Collapse
Affiliation(s)
- Siobhan S. Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Division of Pediatrics, Department Hematology/Oncology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | - Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Michael Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Keith R. Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Patrick J. Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Nikolas C. Holland
- Center for Neural Science, New York University, 4 Washington Place, #809, New York, NY 10003, USA
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | | | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Damian A. Almiron Bonnin
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | | | - Tatsuya Ozawa
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Michael J. Wagner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington, 825 Eastlake Ave E., Seattle, WA 98109, USA
| | - Michael C. Haffner
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Junyue Cao
- Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Tezcanli Kaymaz B, Selvi Gunel N, Sogutlu F, Ozates Ay NP, Baran Y, Gunduz C, Biray Avci C. Investigating the potential therapeutic role of targeting STAT3 for overcoming drug resistance by regulating energy metabolism in chronic myeloid leukemia cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:904-912. [PMID: 36033954 PMCID: PMC9392574 DOI: 10.22038/ijbms.2022.64138.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Objectives STATs are one of the initial targets of emerging anti-cancer agents due to their regulatory roles in survival, apoptosis, drug response, and cellular metabolism in CML. Aberrant STAT3 activity promotes malignancy, and acts as a metabolic switcher in cancer cell metabolism, contributing to resistance to TKI nilotinib. To investigate the possible therapeutic effects of targeting STAT3 to overcome nilotinib resistance by evaluating various cellular responses in both sensitive and nilotinib resistant CML cells and to test the hypothesis that energy metabolism modulation could be a mechanism for re-sensitization to nilotinib in resistant cells. Materials and Methods By using RNAi-mediated STAT3 gene silencing, cell viability and proliferation assays, apoptotic analysis, expressional regulations of STAT mRNA transcripts, STAT3 total, pTyr705, pSer727 protein expression levels, and metabolic activity as energy metabolism was determined in CML model K562 cells, in vitro. Results Targeting STAT3 sensitized both parental and especially nilotinib resistant cells by decreasing leukemic cell survival; inducing leukemic cell apoptosis, and decreasing STAT3 mRNA and protein expression levels. Besides, cell energy phenotype was modulated by switching energy metabolism from aerobic glycolysis to mitochondrial respiration in resistant cells. RNAi-mediated STAT3 silencing accelerated the sensitization of leukemia cells to nilotinib treatment, and STAT3-dependent energy metabolism regulation could be another underlying mechanism for regaining nilotinib response. Conclusion Targeting STAT3 is an efficient strategy for improving the development of novel CML therapeutics for regaining nilotinib response, and re-sensitization of resistant cells could be mediated by induced apoptosis and regulation in energy metabolism.
Collapse
Affiliation(s)
- Burcin Tezcanli Kaymaz
- Department of Medical Biology, Ege University Medicine Faculty, 35100, Izmir, Turkey ,Corresponding author: Burçin Tezcanlı Kaymaz. Ege University Medical School, Medical Biology Department-İzmir, Turkey Tel: 0232 390 22 98; ;
| | - Nur Selvi Gunel
- Department of Medical Biology, Ege University Medicine Faculty, 35100, Izmir, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Ege University Medicine Faculty, 35100, Izmir, Turkey
| | | | - Yusuf Baran
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, 35433, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Ege University Medicine Faculty, 35100, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medicine Faculty, 35100, Izmir, Turkey
| |
Collapse
|
7
|
Demir M, Cizmecioglu O. ZAP70 Activation Compensates for Loss of Class IA PI3K Isoforms Through Activation of the JAK-STAT3 Pathway. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:391-404. [PMID: 35530641 PMCID: PMC9066532 DOI: 10.21873/cdp.10122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Tyrosine kinases have crucial functions in cell signaling and proliferation. The phosphatidylinositol 3-kinase (PI3K) pathway is frequently deregulated in human cancer and is an essential regulator of cellular proliferation. We aimed to determine which tyrosine kinases contribute to resistance elicited by PI3K silencing and inhibition. MATERIALS AND METHODS To mimic catalytic inactivation of p110α/β, specific p110α (BYL719) and p110β (KIN193) inhibitors were used in addition to genetic knock-out in in vitro assays. Cell viability was assessed using crystal violet staining, whereas cellular transformation ability was analyzed by soft-agar growth assays. RESULTS Activated zeta chain of T-cell receptor-associated protein kinase 70 (ZAP70) generated resistance to PI3K inhibition. This resistance was via activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) axis. We demonstrated that activated ZAP70 has a high transforming capability associated with the formation of malignant phenotype in untransformed cells and has the potential to be a tumor-initiating factor in cancer cells. CONCLUSION ZAP70 may be a potent driver of proliferation and transformation in untransformed cells and is implicated in resistance to PI3K inhibitors in cancer cells.
Collapse
Affiliation(s)
- Melike Demir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
8
|
Long A, Crouse A, Kesterson RA, Might M, Wallis D. Functional characterization and potential therapeutic avenues for variants in the NTRK2 gene causing developmental and epileptic encephalopathies. Am J Med Genet B Neuropsychiatr Genet 2022; 189:37-47. [PMID: 34889524 DOI: 10.1002/ajmg.b.32882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023]
Abstract
Variants within the Neurotrophic Tyrosine Kinase Receptor Type 2 (NTRK2) gene have been discovered to play a role in developmental and epileptic encephalopathies, a group of debilitating conditions for which little is known about cause or treatment. Here, we determine the functional consequences of two variants: p.Tyr434Cys (Y434C) (located in the transmembrane domain) and p.Thr720Ile (T720I) (located in the catalytic domain). Wild-type and variant cDNAs were constructed and transfected into HEK293 cells. In cell culture, variant Y434C exhibited ligand-independent activation of tropomyosin-related kinase B (TRKB) signaling with an associated abnormal response to brain-derived neurotrophic factor (BDNF) stimulation and increased levels of phosphorylated extracellular signal-regulated kinase (ERK) and ETS like-1 protein (ELK1) activity. Expression of variant T720I resulted in decreased TRKB signaling with reduced mTor activity as determined by decreased levels of phosphorylated S6. With the deleterious mechanisms characterized, we utilized mediKanren (a novel artificial intelligence tool) to identify therapeutics to compensate for the pathological effects. Downregulation of TRKB through inhibition with mediKanren-predicted compound 1NM-PP1 led to decreased MEK activity. Upregulation of TRKB signaling by mediKanren-predicted valproic acid led to subsequent increase of mTor activity. Overall, our results provide further characterization of the pathogenicity of these two variants in the NTRK2 gene. Indeed, Y434C is the first patient-specific NTRK2 variant with demonstrated hypermorphic activity. Furthermore, we observed that variants Y434C and T720I result in distinct functional consequences that require distinct therapeutic strategies. These data suggest the possibility that unique mutations within different regions of the NTRK2 gene results in separate clinical presentations, representing distinct genetic disorders requiring unique therapeutics.
Collapse
Affiliation(s)
- Ashlee Long
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Crouse
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew Might
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Cao L, Xia X, Kong Y, Jia F, Yuan B, Li R, Li Q, Wang Y, Cui M, Dai Z, Zheng H, Christensen J, Zhou Y, Wu X. Deregulation of tumor suppressive ASXL1-PTEN/AKT axis in myeloid malignancies. J Mol Cell Biol 2021; 12:688-699. [PMID: 32236560 PMCID: PMC7749738 DOI: 10.1093/jmcb/mjaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations of epigenetic regulators are pervasive in human tumors. ASXL1 is frequently mutated in myeloid malignancies. We previously found that ASXL1 forms together with BAP1 a complex that can deubiquitinylate mono-ubiquitinylated lysine 119 on histone H2A (H2AK119ub1), a Polycomb repressive mark. However, a complete mechanistic understanding of ASXL1 in transcriptional regulation and tumor suppression remains to be defined. Here, we find that depletion of Asxl1 confers murine 32D cells to IL3-independent growth at least partly due to sustained activation of PI3K/AKT signaling. Consistently, Asxl1 is critical for the transcriptional activation of Pten, a key negative regulator of AKT activity. Then we confirm that Asxl1 is specifically enriched and required for H2AK119 deubiquitylation at the Pten promoter. Interestingly, ASXL1 and PTEN expression levels are positively correlated in human blood cells and ASXL1 mutations are associated with lower expression levels of PTEN in human myeloid malignancies. Furthermore, malignant cells with ASXL1 downregulation or mutations exhibit higher sensitivity to the AKT inhibitor MK2206. Collectively, this study has linked the PTEN/AKT signaling axis to deregulated epigenetic changes in myeloid malignancies. It also provides a rationale for mechanism-based therapy for patients with ASXL1 mutations.
Collapse
Affiliation(s)
- Lei Cao
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xianyou Xia
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yu Kong
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fengqin Jia
- National Demonstration Center for Experimental Basic Medical Science Education, Tianjin Medical University, Tianjin 300070, China
| | - Bo Yuan
- National Demonstration Center for Experimental Basic Medical Science Education, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Qian Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yuxin Wang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Mingrui Cui
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhongye Dai
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Huimin Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jesper Christensen
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xudong Wu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
10
|
Alsuwaidi L, Hachim M, Senok A. Novel Markers in Pediatric Acute Lymphoid Leukemia: The Role of ADAM6 in B Cell Leukemia. Front Cell Dev Biol 2021; 9:706129. [PMID: 34249950 PMCID: PMC8269160 DOI: 10.3389/fcell.2021.706129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
Background The extensive genetic heterogeneity found in the B cell precursor acute lymphoblastic leukemia (BCP-ALL) subtype of childhood ALL represents a potential repository of biomarkers. To explore this potential, we have carried out in silico analysis of publicly available ALL datasets to identify genetic biomarkers for childhood BCP-ALL, which could be used either individually or in combination as markers for early detection, risk stratification, and prognosis. Methods To explore novel genes that show promising clinical and molecular signatures, we examined the cBioPortal online tool for publicly available datasets on lymphoid cancers. Three studies on lymphoblastic and lymphoid leukemia with 1706 patients and 2144 samples of which were identified. Only B-Lymphoblastic Leukemia/Lymphoma samples (n = 1978) were selected for further analysis. Chromosomal changes were assessed to determine novel genomic loci to analyze clinical and molecular profiles for the leukemia of lymphoid origin using cBioPortal tool. Results ADAM6 gene homozygous deletions (HOM:DEL) were present in 59.60% of the profiled patients and were associated with poor ten years of overall patients’ survival. Moreover, patients with ADAM6 HOM:DEL showed a distinguished clinical and molecular profile with higher Central Nervous System (CNS) sites of relapse. In addition, ADAM6 HOM:DEL was significantly associated with unique microRNAs gene expression patterns. Conclusion ADAM6 has the potential to be a novel biomarker for the development and progress of BCP- ALL.
Collapse
Affiliation(s)
- Laila Alsuwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Wang J, Feng Q, Liang D, Shi J. MiRNA-26a inhibits myocardial infarction-induced apoptosis by targeting PTEN via JAK/STAT pathways. Cells Dev 2021; 165:203661. [PMID: 33993982 DOI: 10.1016/j.cdev.2021.203661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Acute myocardial infarction (MI) is a common cause of the morbidity and mortality of cardiovascular diseases in the world. Acute MI lead to cardiovascular output after formation of myocardial ischemia and circulatory arrest in coronary heart diseases. However, the mechanisms underlying MI injury are poorly understood. We explored the part played by miR-26a in myocardial infarction (MI). MATERIAL AND METHODS Decreased miR-26a expression in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) was observed, as well as in the infarcted heart of MI mouse model, compared to untreated NMVCs and healthy mouse heart tissue, respectively. Conversely, the upregulation of phosphatase and tensin homolog (PTEN) was observed in H2O2-treated NMVCs, and in infarcted hearts. An MTT assay and BrdU staining showed that H2O2 treatment attenuated cell viability in NMVCs, whereas miR-26a overexpression increased cell viability. Both TUNEL assay and flow cytometry (FC) displayed that miR-26a expression suppressed H2O2-induced cell apoptosis. Besides, miR-26a overexpression suppressed the upregulation of PTEN expression in H2O2-treated NMVCs by directly binding to PTEN 3'-UTR. RESULTS PI3K/Akt and JAK/STAT signal transduction pathways were found to be regulated through cross-talk between miR-26a and PTEN. Furthermore, agomiR-26a treatment in MI mouse model considerably suppressed the size of the infarcted regions, and improved cardiac activity. CONCLUSIONS MiR-26a expression in MI cardiac tissues was downregulated in response to H2O2 stress, whereas it could still protect against cell death by modulation of the PI3K/Akt and JAK/STAT signal transduction pathways by directly targeting PTEN.
Collapse
Affiliation(s)
- Jianzhong Wang
- Intersive Care Unit, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Qilong Feng
- Departments of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dongke Liang
- Department of Anesthesiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Junfeng Shi
- Cardiovascular Medicine Department, XD Group Hospital, Xi'an, Shaanxi 710077, China.
| |
Collapse
|
12
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
13
|
Smith AM, Zhang CRC, Cristino AS, Grady JP, Fink JL, Moore AS. PTEN deletion drives acute myeloid leukemia resistance to MEK inhibitors. Oncotarget 2019; 10:5755-5767. [PMID: 31645898 PMCID: PMC6791388 DOI: 10.18632/oncotarget.27206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Kinases such as MEK are attractive targets for novel therapy in cancer, including acute myeloid leukaemia (AML). Acquired and inherent resistance to kinase inhibitors, however, is becoming an increasingly important challenge for the clinical success of such therapeutics, and often arises from mutations in the drug-binding domain of the target kinase. To identify possible causes of resistance to MEK inhibition, we generated a model of resistance by long-term treatment of AML cells with AZD6244 (selumetinib). Remarkably, resistance to MEK inhibition was due to acquired PTEN haploinsufficiency, rather than mutation of MEK. Resistance via this mechanism was confirmed using CRISPR/Cas9 technology targeting exon 5 of PTEN. While PTEN loss has been previously implicated in resistance to a number of other therapeutic agents, this is the first time that it has been shown directly and in AML.
Collapse
Affiliation(s)
- Amanda M Smith
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Christine R C Zhang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Alexandre S Cristino
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Griffith Institute for Drug Discovery, Brisbane Innovation Park, Nathan, Australia
| | - John P Grady
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Garvan Institute of Medical Research, Darlinghurst, Australia
| | - J Lynn Fink
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Oncology Services Group, Queensland Children's Hospital, South Brisbane, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
14
|
Wang X, Xu Z, Chen X, Ren X, Wei J, Zhou S, Yang X, Zeng S, Qian L, Wu G, Gong Z, Yan Y. A tropomyosin receptor kinase family protein, NTRK2 is a potential predictive biomarker for lung adenocarcinoma. PeerJ 2019; 7:e7125. [PMID: 31245181 PMCID: PMC6585899 DOI: 10.7717/peerj.7125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Neurotrophic receptor tyrosine kinase 2 (NTRK2) is a member of the tropomyosin receptor kinase family associated with the tumor development. However, the detailed function of NTRK2 in lung cancer, especially in lung adenocarcinoma (LUAD), is still not fully understood. Here, we investigated the effects of NTRK2 on LUAD biology. Through analyzing bioinformatics data derived from several databases, such as Oncomine, Gene Expression Profiling Interactive Analysis and UALCAN, we found that NTRK2 expression was significantly decreased in LUAD tissues. Clinical data acquired from Wanderer database, which is linked to The Cancer Genome Atlas database, demonstrated that the expression and methylation site of NTRK2 were significantly related to the clinical characteristics and prognosis of LUAD. Furthermore, NTRK2 expression was increased remarkably after treatment with the protein kinase B (AKT) inhibitor MK2206 and the anticancer agent actinomycin D. Functional enrichment analysis of NTRK2-associated coexpression genes was further conducted. Together, our results suggested that downregulated NTRK2 might be used in the diagnostic and prognostic evaluation of LUAD patients, or as a potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, Hunan, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyi Zhou
- Department of General Surgery, Hunan Provincial People’s Hospital Xingsha Branch (People’s Hospital of Changsha County), Changsha, Hunan, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
16
|
Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. Int J Mol Sci 2018; 19:ijms19071878. [PMID: 29949919 PMCID: PMC6073309 DOI: 10.3390/ijms19071878] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.
Collapse
|
17
|
Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, Guo Q, Sun L, Yin X, Zhang Y, Li X. Roles of STAT3 in leukemia (Review). Int J Oncol 2018; 53:7-20. [PMID: 29749432 DOI: 10.3892/ijo.2018.4386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Leukemia is a type of hematopoietic malignancy, and the incidence rate in the United States and European Union increases by an average of 0.6 to 0.7% annually. The incidence rate in China is approximately 5.17/100,000 individuals, and the mortality rate is 3.94/100,000 individuals. Leukemia is the most common tumor affecting children and adults under 35 years of age, and is one of the major diseases leading to the death of adolescents. Signal transducer and activator of transcription 3 (STAT3) is a vital regulatory factor of signal transduction and transcriptional activation, and once activated, the phosphorylated form of STAT3 (p-STAT3) is transferred into the nucleus to regulate the transcription of target genes, and plays important roles in cell proliferation, differentiation, apoptosis and other physiological processes. An increasing number of studies have confirmed that the abnormal activation of STAT3 is involved in the development of tumors. In this review, the roles of STAT3 in the pathogenesis, diagnosis, treatment and prognosis of leukemia are discussed in the aspects of cell proliferation, differentiation and apoptosis, with the aim to further clarify the roles of STAT3 in leukemia, and shed light into possible novel targets and strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yin Shi
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xintao Qu
- Department of Bone and Joint Surgery Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xunqiang Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yunhong Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
18
|
Watanabe-Smith K, Godil J, Agarwal A, Tognon C, Druker B. Analysis of acquired mutations in transgenes arising in Ba/F3 transformation assays: findings and recommendations. Oncotarget 2017; 8:12596-12606. [PMID: 28208123 PMCID: PMC5355038 DOI: 10.18632/oncotarget.15392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/12/2017] [Indexed: 12/21/2022] Open
Abstract
The identification and functional validation of potentially oncogenic mutations in leukemia is an essential step toward a future of personalized targeted therapy. To assess the oncogenic capacity of individual mutations, reliable and scalable in vitro experimental approaches are required. Since 1988, researchers have used the IL-3 dependent Ba/F3 transformation assay to validate the oncogenic potential of mutations to drive factor-independent growth. Here we report a previously unrecognized phenomenon whereby Ba/F3 cells, engineered to express weakly transforming mutations, present with additional acquired mutations in the expressed transgene following factor withdrawal. Using four mutations with known transformative capacity in three cytokine receptors (CSF2RB, CSF3R and IL7R), we demonstrate that the mutated receptors are highly susceptible to acquiring additional mutations. These acquired mutations of unknown functional significance are selected by factor withdrawal but appear to exist prior to the removal of growth factor. This anomaly has the potential to confound efforts to both validate and characterize oncogenic mutations in leukemia, particularly when it is not standard practice to sequence validate cDNAs from transformed Ba/F3 lines. We present specific recommendations to detect and mitigate this phenomenon in future research using Ba/F3 transformation assays, along with methods to make the Ba/F3 assay more quantitative.
Collapse
Affiliation(s)
- Kevin Watanabe-Smith
- Cancer Biology Program, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA
| | - Jamila Godil
- Honors College, College of Science, Oregon State University, Corvallis, OR, USA
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.,Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Cristina Tognon
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.,Howard Hughes Medical Institute, Portland, OR, USA
| | - Brian Druker
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.,Howard Hughes Medical Institute, Portland, OR, USA
| |
Collapse
|