1
|
Gao J, Li F. Heterochromatin repeat organization at an individual level: Rex1BD and the 14-3-3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats. Bioessays 2024; 46:e2400030. [PMID: 38679759 DOI: 10.1002/bies.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position-dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position-dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14-3-3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14-3-3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position-dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, New York, USA
| | - Fei Li
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
2
|
Corbeski I, Horn V, van der Valk RA, le Paige U, Dame RT, van Ingen H. Microscale Thermophoresis Analysis of Chromatin Interactions. Methods Mol Biol 2024; 2819:357-379. [PMID: 39028515 DOI: 10.1007/978-1-0716-3930-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Velten Horn
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- CSL Behring, Hattersheim, Germany
| | - Ramon A van der Valk
- Kavli Institute of NanoScience, Department of Bionanoscience, Faculty of Applied Sciences, TU Delft, Delft, The Netherlands
| | - Ulric le Paige
- Structure and Dynamics of Biomolecules, Department of Chemistry, Ecole Normale Supérieure - Paris Sciences et Lettres, Paris, France
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Monteagudo-Mesas P, Brönner C, Kohvaei P, Amedi H, Canzar S, Halic M. Ccr4-Not complex reduces transcription efficiency in heterochromatin. Nucleic Acids Res 2022; 50:5565-5576. [PMID: 35640578 PMCID: PMC9177971 DOI: 10.1093/nar/gkac403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Heterochromatic silencing is thought to occur through a combination of transcriptional silencing and RNA degradation, but the relative contribution of each pathway is not known. In this study, we analyzed RNA Polymerase II (RNA Pol II) occupancy and levels of nascent and steady-state RNA in different mutants of Schizosaccharomyces pombe, in order to quantify the contribution of each pathway to heterochromatic silencing. We found that transcriptional silencing consists of two components, reduced RNA Pol II accessibility and, unexpectedly, reduced transcriptional efficiency. Heterochromatic loci showed lower transcriptional output compared to euchromatic loci, even when comparable amounts of RNA Pol II were present in both types of regions. We determined that the Ccr4-Not complex and H3K9 methylation are required for reduced transcriptional efficiency in heterochromatin and that a subset of heterochromatic RNA is degraded more rapidly than euchromatic RNA. Finally, we quantified the contribution of different chromatin modifiers, RNAi and RNA degradation to each silencing pathway. Our data show that several pathways contribute to heterochromatic silencing in a locus-specific manner and reveal transcriptional efficiency as a new mechanism of silencing.
Collapse
Affiliation(s)
| | - Cornelia Brönner
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Parastou Kohvaei
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Haris Amedi
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Matkovic R, Morel M, Lanciano S, Larrous P, Martin B, Bejjani F, Vauthier V, Hansen MMK, Emiliani S, Cristofari G, Gallois-Montbrun S, Margottin-Goguet F. TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nat Commun 2022; 13:66. [PMID: 35013187 PMCID: PMC8748822 DOI: 10.1038/s41467-021-27650-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
The Human Silencing Hub (HUSH) complex constituted of TASOR, MPP8 and Periphilin recruits the histone methyl-transferase SETDB1 to spread H3K9me3 repressive marks across genes and transgenes in an integration site-dependent manner. The deposition of these repressive marks leads to heterochromatin formation and inhibits gene expression, but the underlying mechanism is not fully understood. Here, we show that TASOR silencing or HIV-2 Vpx expression, which induces TASOR degradation, increases the accumulation of transcripts derived from the HIV-1 LTR promoter at a post-transcriptional level. Furthermore, using a yeast 2-hybrid screen, we identify new TASOR partners involved in RNA metabolism including the RNA deadenylase CCR4-NOT complex scaffold CNOT1. TASOR and CNOT1 synergistically repress HIV expression from its LTR. Similar to the RNA-induced transcriptional silencing complex found in fission yeast, we show that TASOR interacts with the RNA exosome and RNA Polymerase II, predominantly under its elongating state. Finally, we show that TASOR facilitates the association of RNA degradation proteins with RNA polymerase II and is detected at transcriptional centers. Altogether, we propose that HUSH operates at the transcriptional and post-transcriptional levels to repress HIV proviral expression.
Collapse
Affiliation(s)
- Roy Matkovic
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | - Marina Morel
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | - Pauline Larrous
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Benjamin Martin
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Fabienne Bejjani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Virginie Vauthier
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, 6525 AM, Nijmegen, The Netherlands
| | - Stéphane Emiliani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | | | | |
Collapse
|
5
|
Damiani E, Duran MN, Mohan N, Rajendran P, Dashwood RH. Targeting Epigenetic 'Readers' with Natural Compounds for Cancer Interception. J Cancer Prev 2020; 25:189-203. [PMID: 33409252 PMCID: PMC7783241 DOI: 10.15430/jcp.2020.25.4.189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Natural compounds from diverse sources, including botanicals and commonly consumed foods and beverages, exert beneficial health effects via mechanisms that impact the epigenome and gene expression during disease pathogenesis. By targeting the so-called epigenetic 'readers', 'writers', and 'erasers', dietary phytochemicals can reverse abnormal epigenome signatures in cancer cells and preneoplastic stages. Thus, such agents provide avenues for cancer interception via prevention or treatment/therapeutic strategies. To date, much of the focus on dietary agents has been directed towards writers (e.g., histone acetyltransferases) and erasers (e.g., histone deacetylases), with less attention given to epigenetic readers (e.g., BRD proteins). The drug JQ1 was developed as a prototype epigenetic reader inhibitor, selectively targeting members of the bromodomain and extraterminal domain (BET) family, such as BRD4. Clinical trials with JQ1 as a single agent, or in combination with standard of care therapy, revealed antitumor efficacy but not without toxicity or resistance. In pursuit of second-generation epigenetic reader inhibitors, attention has shifted to natural sources, including dietary agents that might be repurposed as 'JQ1-like' bioactives. This review summarizes the current status of nascent research activity focused on natural compounds as inhibitors of BET and other epigenetic 'reader' proteins, with a perspective on future directions and opportunities.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Munevver N. Duran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Papanastasiou M, Mullahoo J, DeRuff KC, Bajrami B, Karageorgos I, Johnston SE, Peckner R, Myers SA, Carr SA, Jaffe JD. Chasing Tails: Cathepsin-L Improves Structural Analysis of Histones by HX-MS. Mol Cell Proteomics 2019; 18:2089-2098. [PMID: 31409669 PMCID: PMC6773551 DOI: 10.1074/mcp.ra119.001325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
The N-terminal regions (tails) of histone proteins are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications present on these regions contribute to transcriptional regulation. Considering their biological significance, relatively few structural details have been established for histone tails, mainly because of their inherently disordered nature. Although hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed in this context, presumably because of the poor N-terminal coverage provided by pepsin. Inspired from histone-clipping events, we profiled the activity of cathepsin-L under HX-MS quench conditions and characterized its specificity employing the four core histones (H2A, H2B, H3 and H4). Cathepsin-L demonstrated cleavage patterns that were substrate- and pH-dependent. Cathepsin-L generated overlapping N-terminal peptides about 20 amino acids long for H2A, H3, and H4 proving its suitability for the analysis of histone tails dynamics. We developed a comprehensive HX-MS method in combination with pepsin and obtained full sequence coverage for all histones. We employed our method to analyze histones H3 and H4. We observe rapid deuterium exchange of the N-terminal tails and cooperative unfolding (EX1 kinetics) in the histone-fold domains of histone monomers in-solution. Overall, this novel strategy opens new avenues for investigating the dynamic properties of histones that are not apparent from the crystal structures, providing insights into the structural basis of the histone code.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis Karageorgos
- Biomolecular Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD;; Institute for Bioscience and Biotechnology Research, Rockville, MD
| | | | - Ryan Peckner
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
7
|
Akoury E, Ma G, Demolin S, Brönner C, Zocco M, Cirilo A, Ivic N, Halic M. Disordered region of H3K9 methyltransferase Clr4 binds the nucleosome and contributes to its activity. Nucleic Acids Res 2019; 47:6726-6736. [PMID: 31165882 PMCID: PMC6649693 DOI: 10.1093/nar/gkz480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Heterochromatin is a distinctive chromatin structure that is essential for chromosome segregation, genome stability and regulation of gene expression. H3K9 methylation (H3K9me), a hallmark of heterochromatin, is deposited by the Su(var)3-9 family of proteins; however, the mechanism by which H3K9 methyltransferases bind and methylate the nucleosome is poorly understood. In this work we determined the interaction of Clr4, the fission yeast H3K9 methyltransferase, with nucleosomes using nuclear magnetic resonance, biochemical and genetic assays. Our study shows that the Clr4 chromodomain binds the H3K9me3 tail and that both, the chromodomain and the disordered region connecting the chromodomain and the SET domain, bind the nucleosome core. We show that interaction of the disordered region with the nucleosome core is independent of H3K9me and contributes to H3K9me in vitro and in vivo. Moreover, we show that those interactions with the nucleosome core are contributing to de novo deposition of H3K9me and to establishment of heterochromatin.
Collapse
Affiliation(s)
- Elias Akoury
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
- Department of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität LMU, Butenandtstrasse 5-13, 81377 Munich, Germany
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Guoli Ma
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Segolene Demolin
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Cornelia Brönner
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Manuel Zocco
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium
| | - Alexandre Cirilo
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Nives Ivic
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
- Department of Physical Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Mario Halic
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität LMU, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
9
|
Weaver TM, Morrison EA, Musselman CA. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules 2018; 23:molecules23102614. [PMID: 30322003 PMCID: PMC6222470 DOI: 10.3390/molecules23102614] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Bilokapic S, Strauss M, Halic M. Cryo-EM of nucleosome core particle interactions in trans. Sci Rep 2018; 8:7046. [PMID: 29728587 PMCID: PMC5935684 DOI: 10.1038/s41598-018-25429-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022] Open
Abstract
Nucleosomes, the basic unit of chromatin, are repetitively spaced along DNA and regulate genome expression and maintenance. The long linear chromatin molecule is extensively condensed to fit DNA inside the nucleus. How distant nucleosomes interact to build tertiary chromatin structure remains elusive. In this study, we used cryo-EM to structurally characterize different states of long range nucleosome core particle (NCP) interactions. Our structures show that NCP pairs can adopt multiple conformations, but, commonly, two NCPs are oriented with the histone octamers facing each other. In this conformation, the dyad of both nucleosome core particles is facing the same direction, however, the NCPs are laterally shifted and tilted. The histone octamer surface and histone tails in trans NCP pairs remain accessible to regulatory proteins. The overall conformational flexibility of the NCP pair suggests that chromatin tertiary structure is dynamic and allows access of various chromatin modifying machineries to nucleosomes.
Collapse
Affiliation(s)
- Silvija Bilokapic
- Department of Biochemistry, Gene Center, University of Munich LMU, 81377, Munich, Germany
| | - Mike Strauss
- Cryo-EM facility, Max Planck for Biochemistry, 82152, Martiensried, Germany
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich LMU, 81377, Munich, Germany.
| |
Collapse
|
11
|
Structural rearrangements of the histone octamer translocate DNA. Nat Commun 2018; 9:1330. [PMID: 29626188 PMCID: PMC5889399 DOI: 10.1038/s41467-018-03677-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/05/2018] [Indexed: 01/28/2023] Open
Abstract
Nucleosomes, the basic unit of chromatin, package and regulate expression of eukaryotic genomes. Nucleosomes are highly dynamic and are remodeled with the help of ATP-dependent remodeling factors. Yet, the mechanism of DNA translocation around the histone octamer is poorly understood. In this study, we present several nucleosome structures showing histone proteins and DNA in different organizational states. We observe that the histone octamer undergoes conformational changes that distort the overall nucleosome structure. As such, rearrangements in the histone core α-helices and DNA induce strain that distorts and moves DNA at SHL 2. Distortion of the nucleosome structure detaches histone α-helices from the DNA, leading to their rearrangement and DNA translocation. Biochemical assays show that cross-linked histone octamers are immobilized on DNA, indicating that structural changes in the octamer move DNA. This intrinsic plasticity of the nucleosome is exploited by chromatin remodelers and might be used by other chromatin machineries.
Collapse
|
12
|
Wang C, Zhu B, Xiong J. Recruitment and reinforcement: maintaining epigenetic silencing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:515-522. [PMID: 29564598 DOI: 10.1007/s11427-018-9276-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.
Collapse
Affiliation(s)
- Chengzhi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Corbeski I, Horn V, van der Valk RA, le Paige UB, Dame RT, van Ingen H. Microscale Thermophoresis Analysis of Chromatin Interactions. Methods Mol Biol 2018; 1837:177-197. [PMID: 30109612 DOI: 10.1007/978-1-4939-8675-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique that has seen increasing application in the study of biomolecular interactions thanks to its solution-based nature, its rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events. Here, we describe the use of MST in the study of chromatin interactions, with emphasis on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB; the sequential binding of core histone complexes to histone chaperone APLF; the impact of the nucleosomal context on the recognition of histone modifications; and the binding of a LANA-derived peptide to nucleosome core. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.
Collapse
Affiliation(s)
- Ivan Corbeski
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Velten Horn
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Ulric B le Paige
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry and Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
14
|
Histone octamer rearranges to adapt to DNA unwrapping. Nat Struct Mol Biol 2017; 25:101-108. [PMID: 29323273 PMCID: PMC5800490 DOI: 10.1038/s41594-017-0005-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/03/2017] [Indexed: 11/12/2022]
Abstract
Nucleosomes, the basic unit of chromatin, package and regulate expression of eukaryotic genomes. Although the structure of the intact nucleosome has been studied, little is known about structures of its partially unwrapped, transient intermediates. In this study, we present 9 cryo EM structures of distinct conformations of nucleosome and subnucleosome particles. Our structures show that initial DNA breathing induces conformational changes in the histone octamer, particularly in histone H3, that propagate through the nucleosome and prevent symmetrical DNA opening. Rearrangements in the H2A–H2B dimer strengthen interaction with the unwrapping DNA and promote nucleosome stability. In agreement, cross-linked H2A–H2B that can not accommodate to the unwrapping of the DNA is not stably maintained in the nucleosome. H2A–H2B release and DNA unwrapping occur simultaneously indicating that DNA is essential in stabilizing the dimer in the nucleosome. Our structures reveal intrinsic nucleosomal plasticity that is required for nucleosome stability and might be exploited by extrinsic protein factors.
Collapse
|
15
|
Wilson MD, Costa A. Cryo-electron microscopy of chromatin biology. Acta Crystallogr D Struct Biol 2017; 73:541-548. [PMID: 28580916 PMCID: PMC5458496 DOI: 10.1107/s2059798317004430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 11/17/2022] Open
Abstract
The basic unit of chromatin, the nucleosome core particle (NCP), controls how DNA in eukaryotic cells is compacted, replicated and read. Since its discovery, biochemists have sought to understand how this protein-DNA complex can help to control so many diverse tasks. Recent electron-microscopy (EM) studies on NCP-containing assemblies have helped to describe important chromatin transactions at a molecular level. With the implementation of recent technical advances in single-particle EM, our understanding of how nucleosomes are recognized and read looks to take a leap forward. In this review, the authors highlight recent advances in the architectural understanding of chromatin biology elucidated by EM.
Collapse
Affiliation(s)
- Marcus D. Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
16
|
Tailing and degradation of Argonaute-bound small RNAs protect the genome from uncontrolled RNAi. Nat Commun 2017; 8:15332. [PMID: 28541282 PMCID: PMC5458512 DOI: 10.1038/ncomms15332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
RNAi is a conserved mechanism in which small RNAs induce silencing of complementary targets. How Argonaute-bound small RNAs are targeted for degradation is not well understood. We show that the adenyl-transferase Cid14, a member of the TRAMP complex, and the uridyl-transferase Cid16 add non-templated nucleotides to Argonaute-bound small RNAs in fission yeast. The tailing of Argonaute-bound small RNAs recruits the 3'-5' exonuclease Rrp6 to degrade small RNAs. Failure in degradation of Argonaute-bound small RNAs results in accumulation of 'noise' small RNAs on Argonaute and targeting of diverse euchromatic genes by RNAi. To protect themselves from uncontrolled RNAi, cid14Δ cells exploit the RNAi machinery and silence genes essential for RNAi itself, which is required for their viability. Our data indicate that surveillance of Argonaute-bound small RNAs by Cid14/Cid16 and the exosome protects the genome from uncontrolled RNAi and reveal a rapid RNAi-based adaptation to stress conditions.
Collapse
|
17
|
Brönner C, Salvi L, Zocco M, Ugolini I, Halic M. Accumulation of RNA on chromatin disrupts heterochromatic silencing. Genome Res 2017; 27:1174-1183. [PMID: 28404620 PMCID: PMC5495069 DOI: 10.1101/gr.216986.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play a conserved role in regulating gene expression, chromatin dynamics, and cell differentiation. They serve as a platform for RNA interference (RNAi)–mediated heterochromatin formation or DNA methylation in many eukaryotic organisms. We found in Schizosaccharomyces pombe that heterochromatin is lost at transcribed regions in the absence of RNA degradation. We show that heterochromatic RNAs are retained on chromatin, form DNA:RNA hybrids, and need to be degraded by the Ccr4-Not complex or RNAi to maintain heterochromatic silencing. The Ccr4-Not complex is localized to chromatin independently of H3K9me and degrades chromatin-associated transcripts, which is required for transcriptional silencing. Overexpression of heterochromatic RNA, but not euchromatic RNA, leads to chromatin localization and loss of silencing of a distant ade6 reporter in wild-type cells. Our results demonstrate that chromatin-bound RNAs disrupt heterochromatin organization and need to be degraded in a process of heterochromatin formation.
Collapse
Affiliation(s)
- Cornelia Brönner
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Luca Salvi
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Manuel Zocco
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Ilaria Ugolini
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| |
Collapse
|