1
|
Rian K, Hidalgo MR, Çubuk C, Falco MM, Loucera C, Esteban-Medina M, Alamo-Alvarez I, Peña-Chilet M, Dopazo J. Genome-scale mechanistic modeling of signaling pathways made easy: A bioconductor/cytoscape/web server framework for the analysis of omic data. Comput Struct Biotechnol J 2021; 19:2968-2978. [PMID: 34136096 PMCID: PMC8170118 DOI: 10.1016/j.csbj.2021.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-scale mechanistic models of pathways are gaining importance for genomic data interpretation because they provide a natural link between genotype measurements (transcriptomics or genomics data) and the phenotype of the cell (its functional behavior). Moreover, mechanistic models can be used to predict the potential effect of interventions, including drug inhibitions. Here, we present the implementation of a mechanistic model of cell signaling for the interpretation of transcriptomic data as an R/Bioconductor package, a Cytoscape plugin and a web tool with enhanced functionality which includes building interpretable predictors, estimation of the effect of perturbations and assessment of the effect of mutations in complex scenarios.
Collapse
Affiliation(s)
- Kinza Rian
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Laboratory of Innovative Technologies (LTI), National School of Applied Sciences in Tangier, UAE, Morocco
| | - Marta R. Hidalgo
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Cankut Çubuk
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Matias M. Falco
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla 41013, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - Marina Esteban-Medina
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - Inmaculada Alamo-Alvarez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
- Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain
| |
Collapse
|
2
|
Cheng K, Feng L, Yu S, Yu C, Chi N. MicroRNA-769-5p Inhibits Pancreatic Ductal Adenocarcinoma Progression by Directly Targeting and Downregulating ETS Proto-Oncogene 1. Onco Targets Ther 2019; 12:11737-11750. [PMID: 32099382 PMCID: PMC6997441 DOI: 10.2147/ott.s218876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose MicroRNA-769-5p (miR-769) is aberrantly expressed and plays crucial roles in non-small cell lung cancer and melanoma. However, the expression pattern, biological role, and mechanisms of action of miR-769 in pancreatic ductal adenocarcinoma (PDAC) are yet to be fully elucidated. Therefore, we attempted to determine the potential regulatory function of miR-769 in PDAC progression and to explore the underlying mechanisms in detail. Methods In this study, reverse-transcription quantitative polymerase chain reaction was carried out to determine the expression profile of miR-769 in PDAC. A series of experiments, including a Cell Counting Kit-8 assay, flow-cytometric analysis, Transwell migration and invasion assays, and a xenograft animal model, were applied to test whether miR-769 affects the malignancy of PDAC. Results We found that miR-769 was significantly underexpressed in PDAC tissues and cell lines. The low miR-769 expression significantly correlated with the TNM stage and lymph node metastasis. Patients with PDAC harboring low miR-769 expression showed shorter overall survival than did the patients with high miR-769 expression. Forced upregulation of miR-769 suppressed PDAC cell proliferation, migration, and invasion in vitro; promoted apoptosis in vitro; and hindered tumor growth in vivo. Experiments on the mechanism identified ETS proto-oncogene 1 (ETS1) as a direct target gene of miR-769 in PDAC cells. Furthermore, ETS1 turned out to be upregulated in PDAC tissue samples, and the upregulation of ETS1 negatively correlated with miR-769 expression. Moreover, ETS1 knockdown simulated the tumor-suppressive effects of miR-769 overexpression on PDAC cells. Besides, ETS1 reintroduction attenuated the antitumor actions of miR-769 upregulation in PDAC cells. Conclusion Our findings indicate that miR-769 performs tumor-suppressive functions in PDAC by directly targeting ETS1, and this miRNA may represent a potential therapeutic target for the development of anticancer therapies.
Collapse
Affiliation(s)
- Kai Cheng
- Department of Gastroenterology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Lan Feng
- Department of Infectious Diseases, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Shuang Yu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Changhong Yu
- Department of Gastroenterology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Nannan Chi
- Department of Gastroenterology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| |
Collapse
|
3
|
Li S, Yan G, Yue M, Kang Z, Wang L. MicroRNA‑766 inhibits the malignant biological behaviours of pancreatic ductal adenocarcinoma by directly targeting ETS1. Mol Med Rep 2019; 19:1380-1387. [PMID: 30569091 DOI: 10.3892/mmr.2018.9770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/13/2018] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence indicates that numerous microRNAs (miRNAs) are altered in pancreatic ductal adenocarcinoma (PDAC), and their alterations significantly influence the malignant behaviour of PDAC. Therefore, identifying miRNAs associated with PDAC and their biological roles in the disease may provide promising therapeutic opportunities. Alteration of the expression of miRNA‑766 (miR‑766) has been previously reported in several types of human malignancy. However, to the best of our knowledge, whether miR‑766 exhibits different expression patterns in PDAC and its underlying functions in the progression of PDAC remain to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detect miR‑766 expression levels in PDAC tissues and cell lines. The effects of miR‑766 upregulation on PDAC cell proliferation and invasion were evaluated using MTT and invasion assays, respectively. The mechanisms underlying the role of miR‑766 in PDAC cells were explored using bioinformatics analysis, luciferase reporter assay, RT‑qPCR and western blot analysis. It was found that miR‑766 was significantly downregulated in PDAC tissues and cell lines. The detailed roles of miR‑766 in the progression of PDAC were characterised using Panc‑1 and Aspc‑1 cell lines. The results revealed that the upregulation of miR‑766 restricted the proliferation and invasion of PDAC cells. Through a series of experiments, it was found that E26 transformation specific‑1 (ETS1) was a direct target of miR‑766 in PDAC cells. Furthermore, ETS1 knockdown simulated the inhibitory effects of the overexpression of miR‑766 on PDAC cells, whereas the effects of miR‑766 restoration on the PDAC cells were reversed by overexpressing ETS1. In conclusion, the findings of the present study demonstrate that miR‑766 offers potential as a therapeutic target for patients with PDAC.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoqiang Yan
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Meng Yue
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhenhua Kang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
4
|
Wawruszak A, Kalafut J, Okon E, Czapinski J, Halasa M, Przybyszewska A, Miziak P, Okla K, Rivero-Muller A, Stepulak A. Histone Deacetylase Inhibitors and Phenotypical Transformation of Cancer Cells. Cancers (Basel) 2019; 11:cancers11020148. [PMID: 30691229 PMCID: PMC6406474 DOI: 10.3390/cancers11020148] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are a group of potent epigenetic drugs which have been investigated for their therapeutic potential in various clinical disorders, including hematological malignancies and solid tumors. Currently, several HDIs are already in clinical use and many more are on clinical trials. HDIs have shown efficacy to inhibit initiation and progression of cancer cells. Nevertheless, both pro-invasive and anti-invasive activities of HDIs have been reported, questioning their impact in carcinogenesis. The aim of this review is to compile and discuss the most recent findings on the effect of HDIs on the epithelial-mesenchymal transition (EMT) process in human cancers. We have summarized the impact of HDIs on epithelial (E-cadherin, β-catenin) and mesenchymal (N-cadherin, vimentin) markers, EMT activators (TWIST, SNAIL, SLUG, SMAD, ZEB), as well as morphology, migration and invasion potential of cancer cells. We further discuss the use of HDIs as monotherapy or in combination with existing or novel anti-neoplastic drugs in relation to changes in EMT.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
| | - Jakub Czapinski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St., 02-091 Warsaw, Poland.
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
| | - Karolina Okla
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland.
- Tumor Immunology Laboratory, Medical University of Lublin, Staszica 16 St., 20-081 Lublin, Poland.
| | - Adolfo Rivero-Muller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
- Faculty of Science and Engineering, Cell Biology, Abo Akademi University, Tykistokatu 6A, 20520 Turku, Finland.
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland.
| |
Collapse
|
5
|
Motalebzadeh J, Shabani S, Rezayati S, Shakournia N, Mirzaei R, Mahjoubi B, Hoseini K, Mahjoubi F. Prognostic Value of FBXO39 and ETS-1 but not BMI-1 in Iranian Colorectal Cancer Patients. Asian Pac J Cancer Prev 2018; 19:1357-1362. [PMID: 29802700 PMCID: PMC6031834 DOI: 10.22034/apjcp.2018.19.5.1357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Despite recent progress in diagnosis and treatment, it remains a major health problem and further studies are needed. We here investigated expression profiles of the FBXO39, ETS-1 and BMI-1 genes in CRCs to validate any possible diagnostic/prognostic significance. Material and Methods: Thirty six patients with locally advanced CRC admitted to Hazrate-Rasoul Hospital-Tehran were enrolled. Initially the expression pattern of FBXO39, ETS-1 and BMI-1 genes were determined using RT-PCR in CRC tumor and adjacent normal tissues then real-time RT-PCR was employed to quantify BMI-1 gene expression. Results: FBXO39 expression was restricted to tumor tissues. Interestingly, expression of this gene was detected in all stage-0 tumor samples. There was a significant relation between FBXO39 gene expression and lymph node involvement. The ETS-1 gene was expressed in 66% of all tumor tissues with p-value=0.03 for increase as compared to the adjacent normal samples. In addition, there was a significant relation between ETS-1 gene expression and tumor size and lymph node involvement. RT-PCR demonstrated BMI-1 gene expression in both tumor and normal tissues and quantification by real-time RT-PCR showed no association between BMI-1 levels and CRC clinicopathological features. Conclusion: Expression of FBXO39 and ETS-1 with lymph node involvement may be considered as an alarm for the occurrence of CRC metastasis, and therfore have prognostic value while BMI-1 appears without importance.
Collapse
Affiliation(s)
- Jamshid Motalebzadeh
- Department of Clinical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hui K, Wu S, Yue Y, Gu Y, Guan B, Wang X, Hsieh JT, Chang LS, He D, Wu K. RASAL2 inhibits tumor angiogenesis via p-AKT/ETS1 signaling in bladder cancer. Cell Signal 2018; 48:38-44. [PMID: 29702203 DOI: 10.1016/j.cellsig.2018.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/08/2023]
Abstract
Muscle-invasive or metastatic bladder cancer (BCa) is a life-threatening disease for patients, and tumor angiogenesis is believed to play a critical role in the progression of BCa. However, its underlying mechanism of tumor angiogenesis is still poorly understood. In this study, we discovered that RASAL2, a RAS GTPase activating protein, could inhibit BCa angiogenesis based on our shRNA/siRNA knockdown or ectopic cDNA expression experiments. Mechanistically, RASAL2 downregulation could enhance the phosphorylation of AKT and then subsequently upregulate the expression of ETS1 and VEGFA. Furthermore, there was a negative correlation between RASAL2 and VEGFA or CD31 expression in subcutaneous xenograft and human BCa specimens. Taken together, we provide a new insight into the molecular mechanism of BCa progression, in which RASAL2 can be a new therapeutic target.
Collapse
Affiliation(s)
- Ke Hui
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Shiqi Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yangyang Yue
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yanan Gu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Bing Guan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas 75235, TX, USA
| | - Luke S Chang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
7
|
Genomic Variations in Pancreatic Cancer and Potential Opportunities for Development of New Approaches for Diagnosis and Treatment. Int J Mol Sci 2017; 18:ijms18061201. [PMID: 28587243 PMCID: PMC5486024 DOI: 10.3390/ijms18061201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/30/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic cancer has a very poor prognosis with an overall five-year survival rate of less than 5% and an average median survival time of six months. This is largely due to metastatic disease, which is already present in the majority of patients when diagnosed. Although our understanding of the molecular events underlying multi-step carcinogenesis in pancreatic cancer has steadily increased, translation into more effective therapeutic approaches has been inefficient in recent decades. Therefore, it is imperative that novel and targeted approaches are designed to facilitate the early detection and treatment of pancreatic cancer. Presently, there are numerous ongoing studies investigating the types of genomic variations in pancreatic cancer and their impact on tumor initiation and growth, as well as prognosis. This has led to the development of therapeutics to target these genetic variations for clinical benefit. Thus far, there have been minimal clinical successes directly targeting these genomic alterations; however research is ongoing to ultimately discover an innovative approach to tackle this devastating disease. This review will discuss the genomic variations in pancreatic cancer, and the resulting potential diagnostic and therapeutic implications.
Collapse
|
8
|
Li C, Wang Z, Chen Y, Zhou M, Zhang H, Chen R, Shi F, Wang C, Rui Z. Transcriptional silencing of ETS-1 abrogates epithelial-mesenchymal transition resulting in reduced motility of pancreatic cancer cells. Oncol Rep 2014; 33:559-65. [PMID: 25421630 PMCID: PMC4306275 DOI: 10.3892/or.2014.3613] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays crucial roles in a spectrum of malignancies. ETS-1 has gained attention in cancer research for its importance in cell migration, invasion and proliferation. In the present study, we focused on the effect of ETS-1 on epithelial-mesenchymal transition (EMT), which is characterized by reduced E-cadherin expression and increased N-cadherin expression. We found that ETS-1 mRNA expression was positively correlated with N-cadherin and negatively correlated with E-cadherin mRNA expression in five pancreatic cancer cell lines. To elucidate the functionality of ETS-1 on EMT in pancreatic cancer cells, we constructed a green fluorescent protein (GFP)-expressing plasmid carrying ETS-1 short hairpin RNA (shRNA), and transfected Panc-1 cells with the plasmid. We detected reduced N-cadherin and vascular endothelial growth factor yet higher E-cadherin expression in the ETS-1-silenced cells compared with the control group. In addition, we observed reduced cell migration and increased adhesion in these cells. Our data showed that ETS-1 actively functioned as a regulator of EMT in Panc-1 cells, and provide additional evidence supporting a fundamental role for ETS-1 in metastatic pancreatic cancer cells. These results suggest that analysis of ETS-1 expression levels may provide an avenue for evaluating prognosis in pancreatic cancer.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhonghan Wang
- Department of Internal Medicine, Nanjing Government Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yan Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Zhou
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zongdao Rui
- Department of General Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Wan SM, Peng P, Guan T. Ets-1 regulates its target genes mainly by DNA methylation in human ovarian cancer. J OBSTET GYNAECOL 2013; 33:877-81. [DOI: 10.3109/01443615.2013.820268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Zhang W, Zhao J, Lee JF, Gartung A, Jawadi H, Lambiv WL, Honn KV, Lee MJ. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. J Biol Chem 2013; 288:32126-32137. [PMID: 24064218 PMCID: PMC3820853 DOI: 10.1074/jbc.m113.495218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/18/2013] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P)-regulated chemotaxis plays critical roles in various physiological and pathophysiological conditions. S1P-regulated chemotaxis is mediated by the S1P family of G-protein-coupled receptors. However, molecular details of the S1P-regulated chemotaxis are incompletely understood. Cultured human lung adenocarcinoma cell lines abundantly express S1P receptor subtype 3 (S1P3), thus providing a tractable in vitro system to characterize molecular mechanism(s) underlying the S1P3 receptor-regulated chemotactic response. S1P treatment enhances CD44 expression and induces membrane localization of CD44 polypeptides via the S1P3/Rho kinase (ROCK) signaling pathway. Knockdown of CD44 completely diminishes the S1P-stimulated chemotaxis. Promoter analysis suggests that the CD44 promoter contains binding sites of the ETS-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) transcriptional factor. ChIP assay confirms that S1P treatment stimulates the binding of ETS-1 to the CD44 promoter region. Moreover, S1P induces the expression and nuclear translocation of ETS-1. Knockdown of S1P3 or inhibition of ROCK abrogates the S1P-induced ETS-1 expression. Furthermore, knockdown of ETS-1 inhibits the S1P-induced CD44 expression and cell migration. In addition, we showed that S1P3/ROCK signaling up-regulates ETS-1 via the activity of JNK. Collectively, we characterized a novel signaling axis, i.e., ROCK-JNK-ETS-1-CD44 pathway, which plays an essential role in the S1P3-regulated chemotactic response.
Collapse
Affiliation(s)
- Wenliang Zhang
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Jiawei Zhao
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Jen-Fu Lee
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Allison Gartung
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | | | | | - Kenneth V Honn
- From the Department of Pathology,; the Bioactive Lipid Research Program,; the Karmanos Cancer Institute
| | - Menq-Jer Lee
- From the Department of Pathology,; the Bioactive Lipid Research Program,; the Karmanos Cancer Institute; the Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
11
|
Wang ZH, Wang CL, Chen R, Zhou M, Chen Y. Construction of plasmids carrying shRNAs targeting the ETS1 gene and their stable transfection of PANC-1 cell line. Shijie Huaren Xiaohua Zazhi 2013; 21:2820-2825. [DOI: 10.11569/wcjd.v21.i27.2820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct plasmids carrying shRNAs targeting the ETS1 gene and to obtain a PANC-1 cell line stably transfected with the most efficient constructed plasmid.
METHODS: Three plasmids carrying shRNAs (shRNA-1, shRNA-2, shRNA-3) targeting the ETS1 gene were constructed, and the most efficient one was identified by Western blot and then transfected into PANC-1 cell line. The stably transfected cell line was selected in the presence of G418. The expression of the ETS1 protein was detected by Western blot.
RESULTS: The plasmids carrying shRNAs were successfully constructed. The plasmid carrying shRNA-1 had the highest efficiency. The expression of ETS1 protein in the stably transfected cell line was efficiently knocked down.
CONCLUSION: Plasmids carrying shRNAs targeting the ETS1 gene and the stably transfected PANC-1 cell line have been successfully constructed.
Collapse
|
12
|
Verschoor ML, Verschoor CP, Singh G. Ets-1 global gene expression profile reveals associations with metabolism and oxidative stress in ovarian and breast cancers. Cancer Metab 2013; 1:17. [PMID: 24280356 PMCID: PMC4178218 DOI: 10.1186/2049-3002-1-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background The Ets-1 proto-oncogene is frequently upregulated in cancer cells, with known involvement in cancer angiogenesis, metastasis, and more recently energy metabolism. In this study we have performed various bioinformatic analyses on existing microarray data to further clarify the role of Ets-1 in ovarian cancer, and validated these results with functional assays. Methods Functional pathway analyses were conducted on existing microarray data comparing 2008 and 2008-Ets1 ovarian cancer cells. Methods included over-representation analysis, functional class scoring and pathway topology, and network representations were visualized in Cytoscape. Oxidative stress regulation was examined in ovarian cancer cells by measuring protein expression and enzyme activity of glutathione peroxidases, as well as intracellular reactive oxygen species using dichlorofluorescin fluorescence. A stable Ets-1 knockdown MDA-MB-231 cell line was created using short hairpin RNA, and glycolytic dependence of these cells was measured following treatment with 2-deoxy-D-glucose and Hoechst nuclear staining to determine cell number. High-resolution respirometry was performed to measure changes in basal oxygen flux between MDA-MB-231 cells and MDA-Ets1KD variants. Results Enrichments in oxidoreductase activity and various metabolic pathways were observed upon integration of the different analyses, suggesting that Ets-1 is important in their regulation. As oxidative stress is closely associated with these pathways, we functionally validated our observations by showing that Ets-1 overexpression resulted in decreased reactive oxygen species with increased glutathione peroxidase expression and activity, thereby regulating cellular oxidative stress. To extend our findings to another cancer type, we developed an Ets-1 knockdown breast cancer cell model, which displayed decreased glycolytic dependence and increased oxygen consumption following Ets-1 knockdown confirming our earlier findings. Conclusions Collectively, this study confirms the important role of Ets-1 in the regulation of cancer energy metabolism in ovarian and breast cancers. Furthermore, Ets-1 is a key regulator of oxidative stress in ovarian cancer cells by mediating alterations in glutathione antioxidant capacity.
Collapse
Affiliation(s)
- Meghan L Verschoor
- Department of Medical Science, McMaster University, 1280 Main Street W, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | |
Collapse
|
13
|
Hua P, Feng W, Rezonzew G, Chumley P, Jaimes EA. The transcription factor ETS-1 regulates angiotensin II-stimulated fibronectin production in mesangial cells. Am J Physiol Renal Physiol 2012; 302:F1418-29. [PMID: 22357921 DOI: 10.1152/ajprenal.00477.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.
Collapse
Affiliation(s)
- Ping Hua
- Division of Nephrology, University of Alabama at Birmingham, 1530 3rd Ave. South, Birmingham, AL 35294-1150, USA
| | | | | | | | | |
Collapse
|
14
|
Wang C, Zhang H, Chen Y, Shi F, Chen B. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1. Int J Nanomedicine 2012; 7:781-7. [PMID: 22393285 PMCID: PMC3289442 DOI: 10.2147/ijn.s28509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. METHODS The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. RESULTS In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. CONCLUSION Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.
Collapse
Affiliation(s)
- Cailian Wang
- Department of Oncology, Zhongda Hospital, Nanjing, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Zhang JS, Koenig A, Harrison A, Ugolkov AV, Fernandez-Zapico ME, Couch FJ, Billadeau DD. Mutant K-Ras increases GSK-3β gene expression via an ETS-p300 transcriptional complex in pancreatic cancer. Oncogene 2011; 30:3705-15. [PMID: 21441955 DOI: 10.1038/onc.2011.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycogen synthase kinase-3 beta (GSK-3β) is overexpressed in a number of human malignancies and has been shown to contribute to tumor cell proliferation and survival. Although regulation of GSK-3β activity has been extensively studied, the mechanisms governing GSK-3β gene expression are still unknown. Using pancreatic cancer as a model, we find that constitutively active Ras signaling increases GSK-3β gene expression via the canonical mitogen-activated protein kinase signaling pathway. Analysis of the mechanism revealed that K-Ras regulates the expression of this kinase through two highly conserved E-twenty six (ETS) binding elements within the proximal region. Furthermore, we demonstrate that mutant K-Ras enhances ETS2 loading onto the promoter, and ETS requires its transcriptional activity to increase GSK-3β gene transcription in pancreatic cancer cells. Lastly, we show that ETS2 cooperates with p300 histone acetyltransferase to remodel chromatin and promote GSK-3β expression. Taken together, these results provide a general mechanism for increased expression of GSK-3β in pancreatic cancer and perhaps other cancers, where Ras signaling is deregulated.
Collapse
Affiliation(s)
- J-S Zhang
- Department of Immunology and Division of Oncology Research, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Verschoor ML, Wilson LA, Singh G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 2011; 88:204-19. [PMID: 20393586 DOI: 10.1139/y09-135] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondria are unique cellular organelles that contain their own genome and, in conjunction with the nucleus, are able to transcribe and translate genes encoding components of the electron transport chain (ETC). To do so, the mitochondria must communicate with the nucleus via the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), which are produced as a byproduct of aerobic respiration within the mitochondria. Mitochondrial signaling is proposed to be altered in cancer cells, where the mitochondria are frequently found to harbor mutations within their genome and display altered functional characteristics leading to increased glycolysis. As signaling molecules, ROS oxidize and inhibit MAPK phosphatases resulting in enhanced proliferation and survival, an effect particularly advantageous to cancer cells. In terms of transcriptional regulation, ROS affect the phosphorylation, activation, oxidation, and DNA binding of transcription factors such as AP-1, NF-kappaB, p53, and HIF-1alpha, leading to changes in target gene expression. Increased ROS production by defective cancer cell mitochondria also results in the upregulation of the transcription factor Ets-1, a factor that has been increasingly associated with aggressive cancers.
Collapse
Affiliation(s)
- Meghan L Verschoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
17
|
Ets-1 expression and gemcitabine chemoresistance in pancreatic cancer cells. Cell Mol Biol Lett 2010; 16:101-13. [PMID: 21225469 PMCID: PMC6276009 DOI: 10.2478/s11658-010-0043-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 12/10/2010] [Indexed: 12/15/2022] Open
Abstract
Gemcitabine, a novel pyrimidine nucleoside analog, has become the standard chemotherapeutic agent for pancreatic cancer patients. The clinical impact of gemcitabine remains modest owing to the high degree of inherent and acquired resistance. There are various lines of evidence that confirm the role of Ets-1, a proto-oncoprotein, in tumor invasion, progression, and chemoresistance. This study examines a hypothesis that implicates Ets-1 in the development of gemcitabine-resistance in pancreatic cancer cells. Ets-1 protein expression was assessed in parental pancreatic cancer cells and their gemcitabine-resistant clones. Western blot analysis revealed elevated levels of Ets-1 protein expression in gemcitabine-resistant PANC1GemRes (4.8-fold increase; P < 0.05), MIA PaCa2GemRes (3.2-fold increase; P < 0.05), and Capan2GemRes (2.1-fold increase; P < 0.05) cells as compared to their parental counterparts. A time course analysis was conducted to determine the change in Ets-1 expression in the parental cells after incubation with gemcitabine. Reverse transcriptase quantitative real-time PCR (RT-qPCR) and Western blot analysis revealed a significant increase in Ets-1 expression. All the three parental cells incubated with gemcitabine showed elevated Ets-1 protein expression at 6 h. By 24 h, the expression level had decreased. Using small interfering RNA (siRNA) against Ets-1 in gemcitabine-resistant cells, we demonstrated a reversal in gemcitabine chemosensitivity and also detected a marked reduction in the expression of the Ets-1 target genes MMP1 and uPA. Our novel finding demonstrates the significance of Ets-1 in the development of gemcitabine chemoresistance in pancreatic cancer cells. Based on these results, a new siRNA-based therapeutic strategy targeting the Ets-1 genes can be designed to overcome chemoresistance.
Collapse
|
18
|
Verschoor ML, Wilson LA, Verschoor CP, Singh G. Ets-1 regulates energy metabolism in cancer cells. PLoS One 2010; 5:e13565. [PMID: 21042593 PMCID: PMC2962648 DOI: 10.1371/journal.pone.0013565] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/24/2010] [Indexed: 12/19/2022] Open
Abstract
Cancer cells predominantly utilize glycolysis for ATP production even in the presence of abundant oxygen, an environment that would normally result in energy production through oxidative phosphorylation. Although the molecular mechanism for this metabolic switch to aerobic glycolysis has not been fully elucidated, it is likely that mitochondrial damage to the electron transport chain and the resulting increased production of reactive oxygen species are significant driving forces. In this study, we have investigated the role of the transcription factor Ets-1 in the regulation of mitochondrial function and metabolism. Ets-1 was over-expressed using a stably-incorporated tetracycline-inducible expression vector in the ovarian cancer cell line 2008, which does not express detectable basal levels of Ets-1 protein. Microarray analysis of the effects of Ets-1 over-expression in these ovarian cancer cells shows that Ets-1 up-regulates key enzymes involved in glycolysis and associated feeder pathways, fatty acid metabolism, and antioxidant defense. In contrast, Ets-1 down-regulates genes involved in the citric acid cycle, electron transport chain, and mitochondrial proteins. At the functional level, we have found that Ets-1 expression is directly correlated with cellular oxygen consumption whereby increased expression causes decreased oxygen consumption. Ets-1 over-expression also caused increased sensitivity to glycolytic inhibitors, as well as growth inhibition in a glucose-depleted culture environment. Collectively our findings demonstrate that Ets-1 is involved in the regulation of cellular metabolism and response to oxidative stress in ovarian cancer cells.
Collapse
Affiliation(s)
- Meghan L. Verschoor
- Department of Research, Juravinski Cancer Centre, Hamilton, Ontario, Canada
- Department of Medical Science, McMaster University, Hamilton, Ontario, Canada
| | - Leigh A. Wilson
- Department of Research, Juravinski Cancer Centre, Hamilton, Ontario, Canada
| | - Chris P. Verschoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Research, Juravinski Cancer Centre, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
The role of ets factors in tumor angiogenesis. JOURNAL OF ONCOLOGY 2010; 2010:767384. [PMID: 20454645 PMCID: PMC2863161 DOI: 10.1155/2010/767384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/06/2010] [Accepted: 03/02/2010] [Indexed: 12/14/2022]
Abstract
Angiogenesis is a critical component of tumor growth. A number of growth factors, including VEGF, FGF, and HGF, have been implicated as angiogenic growth factors that promote tumor angiogenesis in different types of cancer. Ets-1 is the prototypic member of the Ets transcription factor family. Ets-1 is known to be a downstream mediator of angiogenic growth factors. Expression of Ets-1 in a variety of different tumors is associated with increased angiogenesis. A role for other selected members of the Ets transcription factor family has also been shown to be important for the development of tumor angiogenesis. Because Ets factors also express a number of other important genes involved in cell growth, they contribute not only to tumor growth, but to disease progression. Targeting Ets factors in mouse tumor models through the use of dominant-negative Ets proteins or membrane permeable peptides directed at competitively inhibiting the DNA binding domain has now demonstrated the therapeutic potential of inhibiting selected Ets transcription factors to limit tumor growth and disease progression.
Collapse
|
20
|
Lulli V, Romania P, Riccioni R, Boe A, Lo-Coco F, Testa U, Marziali G. Transcriptional silencing of the ETS1 oncogene contributes to human granulocytic differentiation. Haematologica 2010; 95:1633-41. [PMID: 20435626 DOI: 10.3324/haematol.2010.023267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ets-1 is a widely expressed transcription factor implicated in several biological processes including hematopoiesis, where it contributes to the regulation of cellular differentiation. The functions of Ets-1 are regulated by transcription factors as well as by phosphorylation events: phosphorylation of threonine 38 activates Ets-1, whereas phosphorylation of a cluster of serines within exon VII reduces DNA binding activity. This study focuses on the role of Ets-1 during granulocytic differentiation of NB4 promyelocytic and HL60 myeloblastic leukemia cell lines induced by all-trans retinoic acid. DESIGN AND METHODS Ets-1 expression was measured by real-time reverse transcriptase polymerase chain reaction and western blotting. The role of Ets-1 during all-trans retinoic acid-induced differentiation was analyzed by using a transdominant negative molecule or small interfering RNA. RESULTS NB4 and HL60 cell lines expressed high levels of p51 Ets-1, while the splice variant isoform that lacks exon VII (p42) was almost undetectable. The addition of all-trans retinoic acid reduced p51 Ets-1 levels and induced inhibitory phosphorylation of the remaining protein. Expression of Ets-1 was also reduced during dimethylsulfoxide-induced differentiation and during granulocytic differentiation of human CD34(+) hematopoietic progenitor cells but not in NB4.R2 and HL60R cells resistant to all-trans retinoic acid. In line with these observations, transduction of a transdominant negative molecule of Ets-1, which inhibited DNA binding and transcriptional activity of the wild-type Ets-1, significantly increased chemical-induced differentiation. Consistently, Ets-1 knockdown by small interfering RNA increased the number of mature neutrophils upon addition of all-trans retinoic acid. Interestingly, p51 Ets-1 over-expression was frequently observed in CD34(+) hematopoietic progenitor cells derived from patients with acute myeloid leukemia, as compared to its expression in normal CD34(+) cells. CONCLUSIONS Our results indicated that a decreased expression of Ets-1 protein generalizes to granulocytic differentiation and may represent a crucial event for granulocytic maturation.
Collapse
Affiliation(s)
- Valentina Lulli
- Dept. of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Holterman CE, Franovic A, Payette J, Lee S. ETS-1 oncogenic activity mediated by transforming growth factor alpha. Cancer Res 2010; 70:730-40. [PMID: 20068146 DOI: 10.1158/0008-5472.can-09-2090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inappropriate expression of Ets-1 is observed in a variety of human cancers, and its forced expression in cultured cells results in transformation, autonomous proliferation, and tumor formation. The basis by which Ets-1 confers autonomous growth, one of the primary hallmarks of cancer cells and a critical component of persistent proliferation, has yet to be fully explained. Using a variety of cancer cell lines, we show that inhibition of Ets-1 blocks tumor formation and cell proliferation in vivo and autonomous growth in culture. A screen of multiple diffusible growth factors revealed that inhibition of Ets-1 results in the specific downregulation of transforming growth factor alpha (TGFalpha), the proximal promoter region of which contains multiple ETS family DNA binding sites that can be directly bound and regulated by Ets-1. Notably, rescuing TGFalpha expression in Ets-1-silenced cells was sufficient to restore tumor cell proliferation in vivo and autonomous growth in culture. These results reveal a previously unrecognized mechanism by which Ets-1 oncogenic activity can be explained in human cancer through its ability to regulate the important cellular mitogen TGFalpha.
Collapse
Affiliation(s)
- Chet E Holterman
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
22
|
E1B-55kD-deleted oncolytic adenovirus armed with canstatin gene yields an enhanced anti-tumor efficacy on pancreatic cancer. Cancer Lett 2009; 285:89-98. [PMID: 19481338 DOI: 10.1016/j.canlet.2009.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/02/2009] [Accepted: 05/06/2009] [Indexed: 11/20/2022]
Abstract
Conditionally-replicating adenovirus (CRAd) therapy is currently being tested against pancreatic cancer and has shown some promise. To improve the efficacy, a novel virus CRAd-Cans was designed by deletion of E1B-55kDa gene for selective replication in tumor cells, as well as carrying a new angiogenesis inhibitor gene, canstatin. CRAd-Cans mediated higher expression of canstatin in BxPC-3 pancreatic cancer cell line compared to the replication-deficient adenovirus Ad5-Cans. The modified CRAd-Cans manifested the same selective replication and cytocidal effects in pancreatic cancer cells as ONYX-015 in vitro, yet showed greater reduction of tumor growth in nude mice with markedly prolonged survival rate in vivo (P<0.05), compared to that of either ONYX-015 or Ad5-Cans. Pathological examination revealed viral replication, decreased microvessel density and increased cancer cell apoptosis in CRAd-Cans-treated xenografts. The results suggest that the novel oncolytic virus CRAd-Cans, showing synergistic effects of oncolytic therapy and anti-angiogenesis therapy, is a new promising therapeutics for pancreatic cancer.
Collapse
|