1
|
Sun Y, Wang Z, Qiu S, Wang R. Therapeutic strategies of different HPV status in Head and Neck Squamous Cell Carcinoma. Int J Biol Sci 2021; 17:1104-1118. [PMID: 33867833 PMCID: PMC8040311 DOI: 10.7150/ijbs.58077] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 9th most common malignant tumor in the world. Based on the etiology, HNSCC has two main subtypes: human papillomavirus (HPV) -related and HPV-unrelated. HPV-positive HNSCC is more sensitive to treatment with favorable survival. Due to the different biological behaviors, individual therapy is necessary and urgently required to deduce the therapeutic intensity of HPV-positive disease and look for a more effective and toxicity-acceptable regimen for HPV-negative disease. EGFR amplification and PI3K/AKT/mTOR pathway aberrant activation are quite common in HPV-positive HNSCC. Besides, HPV infection alters immune cell infiltrating in HNSCC and encompasses a diverse and heterogeneous landscape with more immune infiltration. On the other hand, the chance of HPV-negative cancers harboring mutation on the P53 gene is significantly higher than that of HPV-positive disease. This review focuses on the updated preclinical and clinical data of HPV-positive and HPV-negative HNSCC and discusses the therapeutic strategies of different HPV status in HNSCC.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365001, P. R. China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, P.R. China
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| |
Collapse
|
2
|
Fujiwara T. Multidisciplinary oncolytic virotherapy for gastrointestinal cancer. Ann Gastroenterol Surg 2019; 3:396-404. [PMID: 31346579 PMCID: PMC6635679 DOI: 10.1002/ags3.12270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
Replication-selective tumor-specific viruses represent a novel approach for treating neoplastic diseases. These vectors are designed to induce virus-mediated lysis of tumor cells after selective intracellular virus propagation. For targeting cancer cells, the use of tissue- or cell-specific promoters that are expressed in diverse tumor types but silent in normal cells is required. Human telomerase is highly active in more than 85% of primary cancers, regardless of tissue origin, and its activity is closely correlated with human telomerase reverse transcriptase (hTERT) expression. We constructed an attenuated adenovirus 5 vector (telomelysin, OBP-301) in which the hTERT promoter element drives expression of E1 genes. As only tumor cells that express the telomerase can activate this promoter, the hTERT proximal promoter allows for preferential expression of viral genes in tumor cells, leading to selective viral replication and oncolytic cell death. Upon US Food and Drug Administration approval, a phase 1 dose-escalation study of intratumoral injection of telomelysin for various solid tumors has been completed to confirm the safety, tolerability, and feasibility of the agent. Moreover, we found that adenoviral E1B 55-kDa protein in telomelysin inhibits the radiation-induced DNA repair machinery. Thus, tumor cells infected with telomelysin could be rendered sensitive to ionizing radiation. Recently, we assessed the safety and efficacy of intratumoral injection of telomelysin with radiotherapy in esophageal cancer patients not suited for standard treatments. This review highlights some very promising clinical advances in cancer therapeutic technologies using telomerase-specific oncolytic virotherapy.
Collapse
Affiliation(s)
- Toshiyoshi Fujiwara
- Department of Gastroenterological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
3
|
Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression. BMC Cancer 2015; 15:464. [PMID: 26059686 PMCID: PMC4460641 DOI: 10.1186/s12885-015-1482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/02/2015] [Indexed: 12/05/2022] Open
Abstract
Background Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. Methods We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Results Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Conclusions Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Ma G, Kawamura K, Shan Y, Okamoto S, Li Q, Namba M, Shingyoji M, Tada Y, Tatsumi K, Hiroshima K, Shimada H, Tagawa M. Combination of adenoviruses expressing melanoma differentiation-associated gene-7 and chemotherapeutic agents produces enhanced cytotoxicity on esophageal carcinoma. Cancer Gene Ther 2014; 21:31-7. [PMID: 24434574 DOI: 10.1038/cgt.2013.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Abstract
We examined the combinatory antitumor effects of adenoviruses expressing human mda-7/IL-24 gene (Ad-mda-7) and chemotherapeutic agents on nine kinds of human esophageal carcinoma cells. All the carcinoma cells expressed the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24) receptor complexes, IL-20R2 and either IL-20R1 or IL-22R1, and were susceptible to Ad-mda-7, whereas fibroblasts were positive only for IL-20R2 gene and resistant to Ad-mda-7-mediated cytotoxicity. Sensitivity of these esophageal carcinoma cells to Ad-mda-7 was however lower than that to Ad expressing the wild-type p53 gene. We thereby investigated a possible combination of Ad-mda-7 and anticancer agents and found that Ad-mda-7 with 5-fluorouracil (5-FU), cisplatin, mitomycin C or etoposide produced greater cytotoxic effects than those by Ad-mda-7 or the agent alone. Half-maximal inhibitory concentration values of the agents in respective cells were decreased by the combination with Ad-mda-7. Cell cycle analyses showed that Ad-mda-7 and 5-FU increased G2/M-phase and S-phase populations, respectively, and the combination augmented sub-G1 populations. Ad-mda-7-treated cells showed cleavages of caspase-8, -9 and -3 and poly (ADP-ribose) polymerase, but the cleavage levels were not different from those of the combination-treated cells. Ad-mda-7 treatments upregulated Akt phosphorylation but suppressed IκB-α levels, whereas 5-FU treatments induced phosphorylation of p53 and extracellular signal-regulated protein kinases 1 and 2. Molecular changes caused by the combination were similar to those by Ad-mda-7 treatments, but the Ad-mda-7-mediated upregulation of Akt phosphorylation decreased with the combination. These data collectively suggest that Ad-mda-7 induced apoptosis despite Akt activation and that the combinatory antitumor effects with 5-FU were produced partly by downregulating the Ad-mda-7-induced Akt activation.
Collapse
Affiliation(s)
- G Ma
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - K Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Y Shan
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Okamoto
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Q Li
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - M Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Y Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - H Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - M Tagawa
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Ma JT, Han CB, Zhao JZ, Jing W, Zhou Y, Huang LET, Zou HW. Synergistic cytotoxic effects of recombinant human adenovirus p53 and radiation at various time points in A549 lung adenocarcinoma cells. Oncol Lett 2012; 4:529-533. [PMID: 22970051 DOI: 10.3892/ol.2012.747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/31/2012] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to evaluate the effects of recombinant human adenovirus p53 (rAd-p53; Gendicine) transfection and radiation at various time points following transfection. Cytotoxic effects and p53 protein expression levels were analyzed. rAd-p53 containing the human wild-type p53 gene was introduced into the human lung adenocarcinoma cell line A549, and cells were irradiated with a single dose of 6 MeV 4 Gy β rays. According to the time interval between rAd-p53 transfection and radiotherapy (RT), A549-transfected rAd-p53 cells were divided into 5 groups: radiation administered immediately after transfection (0 h-RT) group, after 3 h group (3 h-RT), after 6 h group (6 h-RT), after 24 h group (24 h-RT) and after 48 h group (48 h-RT). Cells with rAd-p53 transfection alone (Ad-p53) and with empty adenovirus (Ad) were included as the two control groups. Following 72 h of transfection, cell viability and growth were analyzed using MTT assays and flow cytometry, and p53 protein expression was analyzed using western blot analysis. From 0 h-RT to 48 h-RT, cell viability gradually decreased, while percentage of apoptotic cells and p53 protein expression gradually increased. The cell viability suppression rates in the 6 h-RT, 24 h-RT and 48 h-RT groups were 56.7±5.4, 60.8±6.0 and 68.9±6.6, respectively, which were significantly greater compared to that of the Ad-p53 (40.8±4.7), 0 h-RT (45.0±3.5) and 3 h-RT groups (47.0±4.3). No statistically significant differences were observed in the cell viability suppression rates among the 6 h-RT, 24 h-RT and 48 h-RT groups (P>0.05). Similar changes were observed in the percentage of apoptotic cells. The p53 protein expression level in the 6 h-RT group (0.856±0.092) was higher compared to that in the 3 h-RT group (0.643±0.089) (t=2.882; P=0.045), but not significantly different from that of the 24 h-RT group (1.193±0.202). The cell viability suppression rate and percentage of apoptotic cells was positively correlated with p53 protein expression in the A549 cells (P<0.05). Radiation may inhibit or damage p53 protein expression at the early stage of rAd-p53 transfection. To sensitize tumor cells to irradiation and achieve maximal cytotoxic effects, it is recommended to conduct RT at least 6 h following transfection with rAd-p53.
Collapse
Affiliation(s)
- Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | | | | | | | | | | | | |
Collapse
|
6
|
Combinatory cytotoxic effects produced by E1B-55kDa-deleted adenoviruses and chemotherapeutic agents are dependent on the agents in esophageal carcinoma. Cancer Gene Ther 2010; 17:803-13. [PMID: 20689571 PMCID: PMC2963731 DOI: 10.1038/cgt.2010.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We examined possible combinatory antitumor effects of replication-competent type 5 adenoviruses (Ad) lacking E1B-55kDa molecules (Ad-delE1B55) and chemotherapeutic agents in nine human esophageal carcinoma cells. Ad-delE1B55 produced cytotoxic effects on all the carcinoma cells and the cytotoxicity is not directly linked with the p53 status of the tumors or with the infectivity to respective tumors. A combinatory treatment with Ad-delE1B55 and an anticancer agent, 5-fluorouracil (5-FU), mitomycin C or etoposide, produced greater cytotoxic effects than that with either the Ad or the agent. Administration of 5-FU could minimally inhibit the viral replication and a simultaneous treatment with the Ad and 5-FU achieved better cytotoxicity than sequential treatments. We also confirmed the antitumor effects by the combination of Ad-delE1B55 with 5-FU in vivo. Cisplatin, however, did not achieve the combinatory effects in most of the cells tested. These data indicate that the Ad-delE1B55 produce combinatory antitumor effects with a chemotherapeutic agent irrespective of the administration schedule, but the effects depend on an agent in esophageal carcinoma.
Collapse
|