1
|
Hamidi-Sofiani V, Rakhshi R, Moradi N, Zeynali P, Nakhaie M, Behboudi E. Oncolytic viruses and pancreatic cancer. Cancer Treat Res Commun 2022; 31:100563. [PMID: 35460973 DOI: 10.1016/j.ctarc.2022.100563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Today, the pancreatic cancer prognosis is poor and genetic technology is developing to treat various types of cancers. Scientists are actively looking for a new technique to design a therapeutic strategy to treat pancreatic cancer. Several oncolytic viruses are known to be valuable tools for pancreatic cancer treatment. Recent Studies demonstrate their effectiveness and safety in various administration routes such as direct intratumoral, intracutaneous, intravascular, and other routes. METHOD In this study, all studies conducted in the past 20 years have been reviewed. Reputable scientific databases including Irandoc, Scopus, Google Scholar and PubMed, are searched for the keywords of Pancreatic cancer, oncolytic, viruses and treatment and the latest information about them is obtained. RESULTS Engineering the oncolytic viruses' genome and insertion of intended transgenes including cytokines or shRNAs, has caused promising promotions in pancreatic cancer treatment. Some oncolytic viruses inhibit tumors directly and some through activation of immune responses. CONCLUSION This approach showed some signs of success in efficiency like immune system activation in the tumor environment, effective virus targeting in the tumor cells by systemic administration, and enhanced patient survival in comparison with the control group. But of course, until now, using these oncolytic viruses alone has not been effective in elimination of tumors.
Collapse
Affiliation(s)
| | - Reza Rakhshi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Niloufar Moradi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parisa Zeynali
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
2
|
Fatima M, Iqbal Ahmed MM, Batool F, Riaz A, Ali M, Munch-Petersen B, Mutahir Z. Recombinant deoxyribonucleoside kinase from Drosophila melanogaster can improve gemcitabine based combined gene/chemotherapy for targeting cancer cells. Bosn J Basic Med Sci 2019; 19:342-349. [PMID: 30903745 DOI: 10.17305/bjbms.2019.4136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022] Open
Abstract
A recombinant deoxyribonucleoside kinase from Drosophila melanogaster with a deletion of the last 20 amino acid residues (named DmdNKΔC20) was hypothesized as a potential therapeutic tool for gene therapy due to its broad substrate specificity and better catalytic efficiency towards nucleosides and nucleoside analogs. This study was designed to evaluate the effect of DmdNKΔC20 for sensitizing human cancer cell lines to gemcitabine and to further investigate its role in reversal of acquired drug resistance in gemcitabine-resistant cancer cell line. The DmdNKΔC20 gene was delivered to three different cancer cell lines, including breast, colon and liver cancer cells, using lipid-mediated transfection reagent. After transfection, gene expression of DmdNKΔC20 was confirmed by quantitative reverse transcription PCR (qRT-PCR) and the combined effect of DmdNKΔC20 and gemcitabine based cytotoxicity was observed by cell viability assay. We further evolved a gemcitabine-resistant breast cancer cell line (named MCF7-R) through directed evolution in the laboratory, which showed 375-fold more resistance compared with parental MCF7 cells. Upon transfection with DmdNKΔC20 gene, MCF7-R cells showed 83-fold higher sensitivity to gemcitabine compared with the control group of MCF7-R cells. Moreover, we observed 79% higher expression of p21 protein in transfected MCF7-R cells, which may indicate induction of apoptosis. Our findings highlight the importance and therapeutic potential of DmdNKΔC20 in combined gene/chemotherapy approach to target a wide range of cancers, particularly gemcitabine-resistant cancers.
Collapse
Affiliation(s)
- Mahak Fatima
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
3
|
Sahoo S, Ravi Kumar RK, Nicolay B, Mohite O, Sivaraman K, Khetan V, Rishi P, Ganesan S, Subramanyan K, Raman K, Miles W, Elchuri SV. Metabolite systems profiling identifies exploitable weaknesses in retinoblastoma. FEBS Lett 2018; 593:23-41. [PMID: 30417337 DOI: 10.1002/1873-3468.13294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Abstract
Retinoblastoma (RB) is a childhood eye cancer. Currently, chemotherapy, local therapy, and enucleation are the main ways in which these tumors are managed. The present work is the first study that uses constraint-based reconstruction and analysis approaches to identify and explain RB-specific survival strategies, which are RB tumor specific. Importantly, our model-specific secretion profile is also found in RB1-depleted human retinal cells in vitro and suggests that novel biomarkers involved in lipid metabolism may be important. Finally, RB-specific synthetic lethals have been predicted as lipid and nucleoside transport proteins that can aid in novel drug target development.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | | | - Brandon Nicolay
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Agios Pharmaceutical, 88 Sidney Street, Cambridge, MA, USA
| | - Omkar Mohite
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Suganeswari Ganesan
- Department of Histopathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Karthik Raman
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Wayne Miles
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sailaja V Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
4
|
Parker WB, Sorscher EJ. Use of E. coli Purine Nucleoside Phosphorylase in the Treatment of Solid Tumors. Curr Pharm Des 2017; 23:CPD-EPUB-86774. [PMID: 29119917 PMCID: PMC6224313 DOI: 10.2174/1381612823666171109101851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The selective expression of non-human genes in tumor tissue to activate non-toxic compounds (Gene Directed Prodrug Enzyme Therapy, GDEPT) is a novel strategy designed for killing tumor cells in patients with little or no systemic toxicity. Numerous non-human genes have been evaluated, but none have yet been successful in the clinic. METHODS Unlike human purine nucleoside phosphorylase (PNP), E. coli PNP accepts adenine containing nucleosides as substrates, and is therefore able to selectively activate non-toxic purine analogs in tumor tissue. Various in vitro and in vivo assays have been utilized to evaluate E. coli PNP as a potential activating enzyme. RESULTS We and others have demonstrated excellent in vitro and in vivo anti-tumor activity with various GDEPT strategies utilizing E. coli PNP to activate purine nucleoside analogs. A phase I clinical trial utilizing recombinant adenoviral vector for delivery of E. coli PNP to solid tumors followed by systemic administration of fludarabine phosphate (NCT01310179; IND# 14271) has recently been completed. In this trial, significant anti-tumor activity was demonstrated with negligible toxicity related to the therapy. The mechanism of cell kill (inhibition of RNA and protein synthesis) is distinct from all currently used anticancer drugs and all experimental compounds under development. The approach has demonstrated excellent ability to kill neighboring tumor cells that do not express E. coli PNP, is active against non-proliferating and proliferating tumors cells (as well as tumor stem cells, stroma), and is therefore very effective against solid tumors with a low growth fraction. CONCLUSION The unique attributes distinguish this approach from other GDEPT strategies and are precisely those required to mediate significant improvements in antitumor therapy.
Collapse
|
5
|
Cacciapuoti G, Bagarolo ML, Martino E, Scafuri B, Marabotti A, Porcelli M. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP. J Cell Biochem 2015; 117:1126-35. [PMID: 26477689 DOI: 10.1002/jcb.25396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 11/08/2022]
Abstract
The combination of the gene of purine nucleoside phosphorylase (PNP) from Escherichia coli and fludarabine represents one of the most promising systems in the gene therapy of solid tumors. The use of fludarabine in gene therapy is limited by the lack of an enzyme that is able to efficiently activate this prodrug which, consequently, has to be administered in high doses that cause serious side effects. In an attempt to identify enzymes with a better catalytic efficiency than E. coli PNP towards fludarabine to be used as a guidance on how to improve the activity of the bacterial enzyme, we have selected 5'-deoxy-5'-methylthioadenosine phosphorylase (SsMTAP) and 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII), two PNPs isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. Substrate specificity and catalytic efficiency of SsMTAP and SsMTAPII for fludarabine were analyzed by kinetic studies and compared with E. coli PNP. SsMTAP and SsMTAPII share with E. coli PNP a comparable low affinity for the arabinonucleoside but are better catalysts of fludarabine cleavage with k(cat)/K(m) values that are 12.8-fold and 6-fold higher, respectively, than those reported for the bacterial enzyme. A computational analysis of the interactions of fludarabine in the active sites of E. coli PNP, SsMTAP, and SsMTAPII allowed to identify the crucial residues involved in the binding with this substrate, and provided structural information to improve the catalytic efficiency of E. coli PNP by enzyme redesign.
Collapse
Affiliation(s)
- Giovanna Cacciapuoti
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| | - Maria Libera Bagarolo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| | - Elisa Martino
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - Anna Marabotti
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - Marina Porcelli
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| |
Collapse
|
6
|
Polvani S, Tarocchi M, Tempesti S, Mello T, Ceni E, Buccoliero F, D'Amico M, Boddi V, Farsi M, Nesi S, Nesi G, Milani S, Galli A. COUP-TFII in pancreatic adenocarcinoma: clinical implication for patient survival and tumor progression. Int J Cancer 2014; 134:1648-58. [PMID: 24122412 DOI: 10.1002/ijc.28502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/10/2013] [Accepted: 09/06/2013] [Indexed: 12/16/2023]
Abstract
Despite the accumulating knowledge of alterations in pancreatic cancer molecular pathways, no substantial improvements in the clinical prognosis have been made and this malignancy continues to be a leading cause of cancer death in the Western World. The orphan nuclear receptor COUP-TFII is a regulator of a wide range of biological processes and it may exert a pro-oncogenic role in cancer cells; interestingly, indirect evidences suggest that the receptor could be involved in pancreatic cancer. The aim of this study was to evaluate the expression of COUP-TFII in human pancreatic tumors and to unveil its role in the regulation of pancreatic tumor growth. We evaluated COUP-TFII expression by immunohistochemistry on primary samples. We analyzed the effect of the nuclear receptor silencing in human pancreatic cancer cells by means of shRNA expressing cell lines. We finally confirmed the in vitro results by in vivo experiments on nude mice. COUP-TFII is expressed in 69% of tested primary samples and correlates with the N1 and M1 status and clinical stage; Kaplan-Meier and Cox regression analysis show that it may be an independent prognostic factor of worst outcome. In vitro silencing of COUP-TFII reduces the cell growth and invasiveness and it strongly inhibits angiogenesis, an effect mediated by the regulation of VEGF-C. In nude mice, COUP-TFII silencing reduces tumor growth by 40%. Our results suggest that COUP-TFII might be an important regulator of the behavior of pancreatic adenocarcinoma, thus representing a possible new target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kaminski PA, Labesse G. Phosphodeoxyribosyltransferases, designed enzymes for deoxyribonucleotides synthesis. J Biol Chem 2013; 288:6534-41. [PMID: 23325804 DOI: 10.1074/jbc.m112.446492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of nucleoside analogues and 2'-deoxynucleoside triphosphates (dNTP) have been synthesized to interfere with DNA metabolism. However, in vivo the concentration and phosphorylation of these analogues are key limiting factors. In this context, we designed enzymes to switch nucleobases attached to a deoxyribose monophosphate. Active chimeras were made from two distantly related enzymes: a nucleoside deoxyribosyltransferase from lactobacilli and a 5'-monophosphate-2'-deoxyribonucleoside hydrolase from rat. Then their unprecedented activity was further extended to deoxyribose triphosphate, and in vitro biosyntheses could be successfully performed with several base analogues. These new enzymes provide new tools to synthesize dNTP analogues and to deliver them into cells.
Collapse
|
8
|
Long-term in vivo monitoring of mouse and human hematopoietic stem cell engraftment with a human positron emission tomography reporter gene. Proc Natl Acad Sci U S A 2013; 110:1857-62. [PMID: 23319634 DOI: 10.1073/pnas.1221840110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Positron emission tomography (PET) reporter genes allow noninvasive whole-body imaging of transplanted cells by detection with radiolabeled probes. We used a human deoxycytidine kinase containing three amino acid substitutions within the active site (hdCK3mut) as a reporter gene in combination with the PET probe [(18)F]-L-FMAU (1-(2-deoxy-2-(18)fluoro-β-L-arabinofuranosyl)-5-methyluracil) to monitor models of mouse and human hematopoietic stem cell (HSC) transplantation. These mutations in hdCK3mut expanded the substrate capacity allowing for reporter-specific detection with a thymidine analog probe. Measurements of long-term engrafted cells (up to 32 wk) demonstrated that hdCK3mut expression is maintained in vivo with no counter selection against reporter-labeled cells. Reporter cells retained equivalent engraftment and differentiation capacity being detected in all major hematopoietic lineages and tissues. This reporter gene and probe should be applicable to noninvasively monitor therapeutic cell transplants in multiple tissues.
Collapse
|
9
|
Bossow S, Grossardt C, Temme A, Leber MF, Sawall S, Rieber EP, Cattaneo R, von Kalle C, Ungerechts G. Armed and targeted measles virus for chemovirotherapy of pancreatic cancer. Cancer Gene Ther 2011; 18:598-608. [PMID: 21701532 DOI: 10.1038/cgt.2011.30] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
No curative therapy is currently available for locally advanced or metastatic pancreatic cancer. Therefore, new therapeutic approaches must be considered. Measles virus (MV) vaccine strains have shown promising oncolytic activity against a variety of tumor entities. For specific therapy of pancreatic cancer, we generated a fully retargeted MV that enters cells exclusively through the prostate stem cell antigen (PSCA). Besides a high-membrane frequency on prostate cancer cells, this antigen is expressed on pancreatic adenocarcinoma, but not on non-neoplastic tissue. PSCA expression levels differ within heterogeneous tumor bulks and between human pancreatic cell lines, and we could show specific infection of pancreatic adenocarcinoma cell lines with both high- and low-level PSCA expression. Furthermore, we generated a fully retargeted and armed MV-PNP-anti-PSCA to express the prodrug convertase purine nucleoside phosphorylase (PNP). PNP, which activates the prodrug fludarabine effectively, enhanced the oncolytic efficacy of the virus on infected and bystander cells. Beneficial therapeutic effects were shown in a pancreatic cancer xenograft model. Moreover, in the treatment of gemcitabine-resistant pancreatic adenocarcinoma cells, no cross-resistance to both MV oncolysis and activated prodrug was detected.
Collapse
Affiliation(s)
- S Bossow
- Department of Translational Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Polvani S, Calamante M, Foresta V, Ceni E, Mordini A, Quattrone A, D'Amico M, Luchinat C, Bertini I, Galli A. Acycloguanosyl 5'-thymidyltriphosphate, a thymidine analogue prodrug activated by telomerase, reduces pancreatic tumor growth in mice. Gastroenterology 2011; 140:709-720.e9. [PMID: 21044629 DOI: 10.1053/j.gastro.2010.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/27/2010] [Accepted: 10/22/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Gemcitabine is the standard of care for metastatic and nonresectable pancreatic tumors. Phase II and III trials have not demonstrated efficacy of recently developed reagents, compared with gemcitabine alone; new chemotherapic agents are needed. Ninety percent of pancreatic tumors have telomerase activity, and expression correlates with tumor stage. We developed a thymidine analogue prodrug, acycloguanosyl 5'-thymidyltriphosphate (ACV-TP-T), that is metabolized by telomerase and releases the active form of acyclovir. We investigated the antitumor efficacy of ACV-TP-T in vitro and in vivo. METHODS We evaluated proliferation and apoptosis of human pancreatic cancer cells (PANC-1, MiaPaca2, BxPc3, PL45, and Su.86.86) incubated with ACV-TP-T. The presence of ACV-TP-T and its metabolite inside the cells were analyzed by mass spectrometry. In vivo efficacy was evaluated in nude mice carrying PANC-1 or MiaPaca2 pancreatic xenograft tumors. RESULTS The prodrug of ACV-TP-T was actively metabolized inside pancreatic cancer cells into the activated form of acyclovir; proliferation was reduced, apoptosis was increased, and the cell cycle was altered in pancreatic cancer incubated with ACV-TP-T, compared with controls. Administration of ACV-TP-T to mice reduced growth, increased apoptosis, and reduced proliferation and vascularization of pancreatic xenograft tumors. CONCLUSIONS ACV-TP-T, a thymidine analogue that is metabolized by telomerase and releases the active form of acyclovir, reduces proliferation and induces apoptosis of human pancreatic cancer cell lines in vitro and pancreatic xenograft tumors in mice.
Collapse
Affiliation(s)
- Simone Polvani
- FiorGen, Farmacogenomic Foundation, Sesto Fiorentino, Firenze, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hébrard C, Cros-Perrial E, Clausen AR, Dumontet C, Piskur J, Jordheim LP. Bacterial deoxyribonucleoside kinases are poor suicide genes in mammalian cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:1068-75. [PMID: 20183574 DOI: 10.1080/15257770903368393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transfer of deoxyribonucleoside kinases (dNKs) into cancer cells increases the activity of cytotoxic nucleoside analogues. It has been shown that bacterial dNKs, when introduced into Escherichia coli, sensitize this bacterium toward nucleoside analogues. We studied the possibility of using bacterial dNKs, for example deoxyadenosine kinases (dAKs), to sensitize human cancer cells to gemcitabine. Stable and transient transfections of bacterial dNKs into human cells showed that these were much less active than human and fruitfly dNKs. The fusion of dAK from Bacillus cereus to the green fluorescent protein induced a modest sensitization. Apparently, bacterial dNKs did not get properly expressed or are unstable in the mammalian cell.
Collapse
Affiliation(s)
- Claire Hébrard
- INSERM U590, Laboratoire de Cytologie Analytique, Faculte de Medecine Rockefeller, Universite Claude Bernard Lyon I, Lyon, France
| | | | | | | | | | | |
Collapse
|
12
|
Kuzmin D, Gogvadze E, Kholodenko R, Grzela DP, Mityaev M, Vinogradova T, Kopantzev E, Malakhova G, Suntsova M, Sokov D, Ivics Z, Buzdin A. Novel strong tissue specific promoter for gene expression in human germ cells. BMC Biotechnol 2010; 10:58. [PMID: 20716342 PMCID: PMC2929213 DOI: 10.1186/1472-6750-10-58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/17/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. RESULTS Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS) was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102), where it demonstrated high promoter activity (approximately twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter). To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD) suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate approximately 60% was observed only in germ-derived cells (Tera-1), whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293). In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X). The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. CONCLUSIONS We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12), and an important role--in the rest two cell lines.
Collapse
Affiliation(s)
- Denis Kuzmin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|