1
|
Guo J, Bai R, Luo R, Lin L, Zheng Y. Angiostatin: a promising therapeutic target for atopic dermatitis. Arch Dermatol Res 2025; 317:616. [PMID: 40119948 DOI: 10.1007/s00403-025-04126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Angiostatin, a 38-45 KDa proteolytic fragment derived from plasminogen, has garnered significant attention for its dual roles in inhibiting angiogenesis and modulating inflammation. We employed bidirectional Mendelian randomization (MR), meta-analysis, and colocalization to investigate the causal relationship between angiostatin and atopic dermatitis (AD) using three angiostatin and two AD datasets. Additionally, we analyzed global epidemiological trends (1990-2021) and performed transcriptomic profiling of AD. MR analyses revealed a protective effect of angiostatin on AD risk (combined odds ratio: 0.9437, 95% confidence interval [CI]: 0.9198-0.9683, p < 0.0001), while reverse analyses showed no association (standardized mean difference: -0.0029, 95% CI: -0.0516-0.0459, p = 0.9084). Colocalization indicated no shared causal variants (H4 probabilities < 80%). Epidemiological trends highlighted declining age-standardized AD rates despite rising case numbers. Transcriptomic analyses implicated NF-κB, PI3K-Akt, and JAK-STAT pathways in AD pathogenesis. These findings position angiostatin as a dual-action therapeutic candidate, offering novel opportunities to simultaneously target vascular remodeling and immune dysregulation in AD. Translational research is warranted to harness its clinical potential.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruiting Luo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liyan Lin
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2025; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
3
|
Xie Y, Jiang H. The exploration of mitochondrial-related features helps to reveal the prognosis and immunotherapy methods of colorectal cancer. Cancer Rep (Hoboken) 2024; 7:e1914. [PMID: 37903487 PMCID: PMC10809275 DOI: 10.1002/cnr2.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cancer cell survival, proliferation, and metabolism are all intertwined with mitochondria. However, a complete description of how the features of mitochondria relate to the tumor microenvironment (TME) and immunological landscape of colorectal cancer (CRC) has yet to be made. We performed subgroup analysis on CRC patient data obtained from the databases using non-negative matrix factorization (NMF) clustering. Construct a prognostic model using the mitochondrial-related gene (MRG) risk score, and then compare it to other models for accuracy. Comprehensive analyses of the risk score, in conjunction with the TME and immune landscape, were performed, and the relationship between the model and different types of cell death, radiation and chemotherapy, and drug resistance was investigated. Results from immunohistochemistry and single-cell sequencing were utilized to verify the model genes, and a drug sensitivity analysis was conducted to evaluate possible therapeutic medicines. The pan-cancer analysis is utilized to further investigate the role of genes in a wider range of malignancies. METHODS AND RESULTS We found that CRC patients based on MRG were divided into two groups with significant differences in survival outcomes and TME between groups. The predictive power of the risk score was further shown by building a prognostic model and testing it extensively in both internal and external cohorts. Multiple immune therapeutic responses and the expression of immunological checkpoints demonstrate that the risk score is connected to immunotherapy success. The correlation analysis of the risk score provide more ideas and guidance for prognostic models in clinical treatment. CONCLUSION The TME, immune cell infiltration, and responsiveness to immunotherapy in CRC were all thoroughly evaluated on the basis of MRG features. The comparative validation of multiple queues and models combined with clinical data ensures the effectiveness and clinical practicality of MRG features. Our studies help clinicians create individualized treatment programs for individuals with cancer.
Collapse
Affiliation(s)
- Yun‐hui Xie
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| | - Hui‐zhong Jiang
- College of GraduateGuizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
4
|
Taghizadeh-Hesary F, Akbari H, Bahadori M, Behnam B. Targeted Anti-Mitochondrial Therapy: The Future of Oncology. Genes (Basel) 2022; 13:1728. [PMID: 36292613 PMCID: PMC9602426 DOI: 10.3390/genes13101728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Like living organisms, cancer cells require energy to survive and interact with their environment. Mitochondria are the main organelles for energy production and cellular metabolism. Recently, investigators demonstrated that cancer cells can hijack mitochondria from immune cells. This behavior sheds light on a pivotal piece in the cancer puzzle, the dependence on the normal cells. This article illustrates the benefits of new functional mitochondria for cancer cells that urge them to hijack mitochondria. It describes how functional mitochondria help cancer cells' survival in the harsh tumor microenvironment, immune evasion, progression, and treatment resistance. Recent evidence has put forward the pivotal role of mitochondria in the metabolism of cancer stem cells (CSCs), the tumor components responsible for cancer recurrence and metastasis. This theory highlights the mitochondria in cancer biology and explains how targeting mitochondria may improve oncological outcomes.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| | - Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 4739-19395, Iran
- Traditional Medicine School, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Moslem Bahadori
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, Germantown, MD 20874, USA
| |
Collapse
|
5
|
Mayorga González DC, Ramírez Parra M, Aristizábal Gutiérrez FA. Señuelo dirigido a HIF-1 potencializa efectos citotóxicos de dos agentes quimioterapéuticos en MDA-MB-231. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2020. [DOI: 10.15446/rev.colomb.biote.v22n2.73114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Procesos oncogénicos como proliferación incontrolable, resistencia apoptótica, aumento de mecanismos angiogénicos y evasión inmune son regulados generalmente por factores de transcripción, como HIF-1. Por tanto, se ha señalado a esta molécula como un blanco terapéutico prometedor. Para explorar esta posibilidad, un oligonucleótido tipo “señuelo” dirigido a HIF-1α (ODN) fue diseñado para evaluar su eficiencia en esquema tanto monoterapéutico, como en combinación con dos agentes quimioterapéuticos en un modelo in vitro de cáncer de seno. Después de comprobar, mediante citometría de flujo e inmunofluorescencia, la localización del blanco, el señuelo fue transfectado en la línea celular MDA-MB-231. Se estableció la IC-50 de HIF-1α ODN, Cisplatino y Taxol con el método de Resazurina. Mecanismos de muerte celular fueron evaluados con el método de TUNEL. Por último, se estableció el índice de combinación (IC) de cada uno de los quimio-agentes en combinación con el ODN. Se evidencio que HIF-1α ODN causa un efecto citotóxico en MDA-MB-231 de hasta un 90% hacia las 72h pos-tratamiento. Este efecto no se observa tanto en los controles del ensayo, como en el cultivo primario de células no tumorales (FIBRO), siendo este agente altamente selectivo hacia células tumorales, al activar mecanismos pro-apoptóticos. A su vez, HIF-1α ODN potencializa la actividad tumorogénica de Cisplatino y Taxol en la línea celular tumoral. Por tanto, HIF-1α ODN demostró tener actividad selectiva potencialmente antitumoral, al disminuir la proliferación celular e inducir apoptosis; optimizando de forma sinérgica, la eficacia de fármacos quimioterapéuticos de alto espectro, en tratamientos combinados.
Collapse
|
6
|
Feng Y, Hang W, Sang Z, Li S, Xu W, Miao Y, Xi X, Huang Q. Identification of exosomal and non‑exosomal microRNAs associated with the drug resistance of ovarian cancer. Mol Med Rep 2019; 19:3376-3392. [PMID: 30864705 PMCID: PMC6471492 DOI: 10.3892/mmr.2019.10008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) serve important roles in drug‑resistance; however, exosomal miRNAs associated with drug‑resistance in ovarian cancer (OC) have not been reported to date. The current study aimed to analyze the drug resistance‑associated exosomal miRNAs in original OC cells and their derived exosomes using microarray data downloaded from the Gene Expression Omnibus database (series GSE76449). The chemosensitive OC cell lines SKOV3_ip1, A2780_PAR and HEYA8, as well as the chemoresistant cell lines SKOV3_TR, A2780_CP20 and HEYA8_MDR, were investigated. Differentially expressed miRNAs (DE‑miRNAs) were identified using the limma method, and their mRNA targets were predicted using the miRWalk and LinkedOmics database. Functions of target genes were analyzed with DAVID tool, while TCGA data were used to explore the survival association of identified miRNAs. According to the results, 28 DE‑miRNAs were found to be common in exosomal and original samples of A2780_CP20 cells, among which the functions of 5 miRNAs were predicted (including miR‑146b‑5p, miR‑509‑5p, miR‑574‑3p, miR‑574‑5p and miR‑760). In addition, 16 and 35 DE‑miRNAs were detected for HEYA8_MDR and SKOV3_TR, respectively, with the functions of 4 of these miRNAs predicted for each cell line (HEYA8_MDR: miR‑30a‑3p, miR‑30a‑5p, miR‑612 and miR‑617; SKOV3_TR: miR‑193a‑5p, miR‑423‑3p, miR‑769‑5p and miR‑922). It was also reported that miR‑183‑5p was the only one common miRNA among the three cell lines. Furthermore, miR‑574‑3p, miR‑30a‑5p and miR‑922 may regulate CUL2 to mediate HIF‑1 cancer signaling pathway, while miR‑183‑5p may modulate MECP2, similar to miR‑760, miR‑30a‑5p and miR‑922, to influence cell proliferation. Finally, the downregulated miR‑612 may promote the expression of TEAD3 via the Hippo signaling pathway, and this miRNA was associated with poor prognosis. In conclusion, the findings of the present study suggested several underlying miRNA targets for improving the chemotherapy sensitivity of OC.
Collapse
Affiliation(s)
- Yiwen Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Wenzhao Hang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Zhenyu Sang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Shuangdi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Wei Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Yi Miao
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Qian Huang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
7
|
Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett 2018; 16:687-702. [PMID: 29963134 PMCID: PMC6019900 DOI: 10.3892/ol.2018.8733] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
When Folkman first suggested a theory about the association between angiogenesis and tumor growth in 1971, the hypothesis of targeting angiogenesis to treat cancer was formed. Since then, various studies conducted across the world have additionally confirmed the theory of Folkman, and numerous efforts have been made to explore the possibilities of curing cancer by targeting angiogenesis. Among them, anti-angiogenic gene therapy has received attention due to its apparent advantages. Although specific problems remain prior to cancer being fully curable using anti-angiogenic gene therapy, several methods have been explored, and progress has been made in pre-clinical and clinical settings over previous decades. The present review aimed to provide up-to-date information concerning tumor angiogenesis and gene delivery systems in anti-angiogenic gene therapy, with a focus on recent developments in the study and application of the most commonly studied and newly identified anti-angiogenic candidates for anti-angiogenesis gene therapy, including interleukin-12, angiostatin, endostatin, tumstatin, anti-angiogenic metargidin peptide and endoglin silencing.
Collapse
Affiliation(s)
- Tinglu Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Tingyue Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| |
Collapse
|
8
|
Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy. J Control Release 2017; 253:82-96. [PMID: 28285930 DOI: 10.1016/j.jconrel.2017.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment has been widely exploited as an active participant in tumor progression. Extensive reports have defined the dual role of tumor-associated macrophages (TAMs) in tumor development. The protumoral effect exerted by the M2 phenotype has been correlated with a negative outcome in most solid tumors. The high infiltration of immune cells in the hypoxic cores of advanced solid tumors leads to a chain reaction of stimuli that enhances the expression of protumoral genes, thrives tumor malignancy, and leads to the emergence of drug resistance. Many studies have shown therapeutic targeting systems, solely to TAMs or tumor hypoxia, however, novel therapeutics that target both features are still warranted. In the present review, we discuss the role of hypoxia in tumor development and the clinical outcome of hypoxia-targeted therapeutics, such as hypoxia-inducible factor (HIF-1) inhibitors and hypoxia-activated prodrugs. Furthermore, we review the state-of-the-art of macrophage-based cancer therapy. We thoroughly discuss the development of novel therapeutics that simultaneously target TAMs and tumor hypoxia. Nano-based systems have been highlighted as interesting strategies for dual modality treatments, with somewhat improved tissue extravasation. Such approach could be seen as a promising strategy to overcome drug resistance and enhance the efficacy of chemotherapy in advanced solid and metastatic tumors, especially when exploiting cell-based nanotherapies. Finally, we provide an in-depth opinion on the importance of exploiting the tumor microenvironment in cancer therapy, and how this could be translated to clinical practice.
Collapse
|
9
|
Patel A, Sant S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnol Adv 2016; 34:803-812. [PMID: 27143654 PMCID: PMC4947437 DOI: 10.1016/j.biotechadv.2016.04.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
In recent years, there has been great progress in the understanding of tumor biology and its surrounding microenvironment. Solid tumors create regions with low oxygen levels, generally termed as hypoxic regions. These hypoxic areas offer a tremendous opportunity to develop targeted therapies. Hypoxia is not a random by-product of the cellular milieu due to uncontrolled tumor growth; rather it is a constantly evolving participant in overall tumor growth and fate. This article reviews current trends and recent advances in drug therapies and delivery systems targeting hypoxia in the tumor microenvironment. In the first part, we give an account of important physicochemical changes and signaling pathways activated in the hypoxic microenvironment. This is then followed by various treatment strategies including hypoxia-sensitive signaling pathways and approaches to develop hypoxia-targeted drug delivery systems.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
10
|
Ma L, Li G, Zhu H, Dong X, Zhao D, Jiang X, Li J, Qiao H, Ni S, Sun X. 2-Methoxyestradiol synergizes with sorafenib to suppress hepatocellular carcinoma by simultaneously dysregulating hypoxia-inducible factor-1 and -2. Cancer Lett 2014; 355:96-105. [PMID: 25218350 DOI: 10.1016/j.canlet.2014.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/26/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Sorafenib is the approved systemic drug of choice for advanced hepatocellular carcinoma (HCC), but has demonstrated limited benefits because of drug resistance. 2-Methoxyestradiol (2ME2) has been shown to be a promising anticancer drug against various types of cancers and acts by dysregulating hypoxia-inducible factor (HIF)-1. Hypoxic cancer cells are extremely resistant to therapies since they elicit strong survival ability due to the cellular adaptive response to hypoxia, which is controlled by HIF-1 and HIF-2. The present study has demonstrated that sorafenib downregulated the expression of HIF-1α, making the hypoxic response switch from HIF-1α- to HIF-2α-dependent pathways, resulting in upregulation of HIF-2α, which contributes to the insensitivity of hypoxic HCC cells to sorafenib. HIF-2α played a dominant role in regulating VEGF, thus sorafenib in turn increased the expression of VEGF (a downstream molecule of both HIF-1 and HIF-2) and cyclin D1 (a downstream molecule of HIF-2), but reduced the expression of LDHA (a downstream molecule of HIF-1), in hypoxic HCC cells. 2ME2 significantly reduced the expression of both HIF-1α and HIF-2α, and their downstream molecules, VEGF, LDHA and cyclin D1, rendering hypoxic HCC cells to increased sensitivity to 2ME2. 2ME2 also inhibited the nuclear translocation of HIF-1α and HIF-2α proteins, but had no effect on their mRNA expression. 2M2 synergized with sorafenib to suppress the proliferation and induction of apoptosis of HCC cells in vitro and in vivo, and inhibited tumoral angiogenesis. These results indicate that 2ME2 given in combination with sorafenib acts synergistically for treating HCC.
Collapse
MESH Headings
- 2-Methoxyestradiol
- Active Transport, Cell Nucleus/drug effects
- Angiogenesis Inhibitors/administration & dosage
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/drug effects
- Cyclin D1/metabolism
- Dose-Response Relationship, Drug
- Drug Synergism
- Estradiol/administration & dosage
- Estradiol/analogs & derivatives
- Hep G2 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Isoenzymes/metabolism
- L-Lactate Dehydrogenase/metabolism
- Lactate Dehydrogenase 5
- Liver Neoplasms/blood supply
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic
- Niacinamide/administration & dosage
- Niacinamide/analogs & derivatives
- Phenylurea Compounds/administration & dosage
- RNA Interference
- Signal Transduction/drug effects
- Sorafenib
- Time Factors
- Transfection
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Li Ma
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Urologic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Guangxin Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Huaqiang Zhu
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xuesong Dong
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dali Zhao
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xian Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Haiquan Qiao
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shaobin Ni
- Department of Urologic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
11
|
Zhao D, Zhai B, He C, Tan G, Jiang X, Pan S, Dong X, Wei Z, Ma L, Qiao H, Jiang H, Sun X. Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell Signal 2014; 26:1030-1039. [PMID: 24486412 DOI: 10.1016/j.cellsig.2014.01.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/05/2014] [Accepted: 01/22/2014] [Indexed: 12/16/2022]
Abstract
Sorafenib, the first-line systemic drug for advanced hepatocellular carcinoma (HCC), has demonstrated limited benefits with very low response rates. Thus it is essential to investigate the underlying mechanisms for the resistance to sorafenib and seek potential strategy to enhance its efficacy. Hypoxic cells inside solid tumors are extremely resistant to therapies as their survival ability is increased due to the cellular adaptive response to hypoxia, which is controlled by hypoxia-inducible factor (HIF)-1 and HIF-2. Sorafenib inhibits HIF-1α synthesis, making the hypoxic response switch from HIF-1α- to HIF-2α-dependent pathways and providing a mechanism for more aggressive growth of tumors. The present study has demonstrated that upregulation of HIF-2α induced by sorafenib contributes to the resistance of hypoxic HCC cells by activating the transforming growth factor (TGF)-α/epidermal growth factor receptor (EGFR) pathway. Blocking the TGF-α/EGFR pathway by gefitinib, a specific EGFR inhibitor, reduced the activation of STAT (signal transducer and activator of transcription) 3, AKT and ERK (extracellular signal-regulated kinase), and synergized with sorafenib to inhibit proliferation and induce apoptosis of hypoxic HCC cells. Transfection of HIF-2α siRNA into HCC cells downregulated the expression of VEGF (vascular endothelial growth factor), cyclin D1, HIF-2α and TGF-α, and inhibited the activation of EGFR. HIF-2α siRNA inhibited the proliferation and promoted the apoptosis of HCC cells in vitro, and synergized with sorafenib to suppress the growth of HCC tumors in vivo. The results indicate that targeting HIF-2α-mediated activation of the TGF-α/EGFR pathway warrants further investigation as a potential strategy to enhance the efficacy of sorafenib for treating HCC.
Collapse
Affiliation(s)
- Dali Zhao
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bo Zhai
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Changjun He
- Department of Thoracic Surgery, The Third Affiliated Hospital, Harbin Medical University, Harbin 150040, China
| | - Gang Tan
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xian Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shangha Pan
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuesong Dong
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zheng Wei
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lixin Ma
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Haiquan Qiao
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongchi Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
12
|
Guan J, Gluckman P, Yang P, Krissansen G, Sun X, Zhou Y, Wen J, Phillips G, Shorten PR, McMahon CD, Wake GC, Chan WHK, Thomas MF, Ren A, Moon S, Liu DX. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1. Sci Rep 2014; 4:4388. [PMID: 24633053 PMCID: PMC3955921 DOI: 10.1038/srep04388] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/28/2014] [Indexed: 02/02/2023] Open
Abstract
The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.
Collapse
Affiliation(s)
- Jian Guan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Peter Gluckman
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Panzao Yang
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Geoff Krissansen
- Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Xueying Sun
- Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Yongzhi Zhou
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
- School of Pharmacy, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Gemma Phillips
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102904, Auckland, New Zealand
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - Paul R. Shorten
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Chris D. McMahon
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - Graeme C. Wake
- Gravida National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102904, Auckland, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Wendy H. K. Chan
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Mark F. Thomas
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - April Ren
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Steve Moon
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Dong-Xu Liu
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
13
|
Sun XP, Dong X, Lin L, Jiang X, Wei Z, Zhai B, Sun B, Zhang Q, Wang X, Jiang H, Krissansen GW, Qiao H, Sun X. Up-regulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer. FEBS J 2014; 281:115-128. [PMID: 24165223 DOI: 10.1111/febs.12577] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022]
Abstract
This study investigated the contribution of survivin and its upstream regulators, AKT and hypoxia-inducible factor 1α (HIF-1α), to the resistance of gastric cancer cells to cisplatin (CDDP). We found that over-expression of survivin increased the resistance of SGC7901 and BGC823 gastric cancer cells to CDDP. Its over-expression abrogated CDDP-induced inhibition of cell proliferation and CDDP-induced cell apoptosis. In contrast, down-regulation of survivin expression using small hairpin RNA (shRNA) vectors and the small-molecule inhibitor YM155, or inhibition of survivin function using a recombinant cell-permeable dominant-negative survivin protein (dNSur9), promoted CDDP-induced apoptosis. CDDP-resistant sub-lines generated from the parental SGC7901 and BGC823 cells by exposure to increasing concentrations of CDDP expressed higher levels of HIF-1α and survivin in response to hypoxia, and higher levels of phosphorylated AKT (pAKT). Specific inhibition of AKT reduced the expression of HIF-1α and survivin, whereas specific inhibition or depletion of HIF-1α reduced survivin expression but had no effect on the expression of phosphorylated AKT. The expression levels of survivin affected the therapeutic efficacy of CDDP in treating gastric tumors in mice. Specific inhibition of survivin, AKT and HIF-1α enhanced the sensitivity of CDDP-resistant cells to CDDP. Specific inhibition of survivin, AKT and HIF-1α synergized with CDDP to suppress the growth of gastric tumors that had been engineered to overexpress survivin. In summary, the results provide evidence that up-regulation of survivin by AKT and HIF-1α contributes to CDDP resistance, indicating that inhibition of these pathways may be a potential strategy for overcoming CDDP resistance in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xue-Pu Sun
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hypoxia as a target for tissue specific gene therapy. J Control Release 2013; 172:484-94. [DOI: 10.1016/j.jconrel.2013.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|
15
|
Welsh SJ, Dale AG, Lombardo CM, Valentine H, de la Fuente M, Schatzlein A, Neidle S. Inhibition of the hypoxia-inducible factor pathway by a G-quadruplex binding small molecule. Sci Rep 2013; 3:2799. [PMID: 24165797 PMCID: PMC3810677 DOI: 10.1038/srep02799] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
The hypoxia-inducible transcription factor (HIF) co-ordinates the response of tumours to low oxygen by stimulating genes involved in metabolism and angiogenesis. HIF pathway activation is associated with decreased progression-free survival and increased mortality; compounds that target this pathway are potential agents for the treatment of a range of solid tumour malignancies. Renal cancers are likely to be particularly sensitive to inhibition of the HIF pathway since ~80% show constitutive activation of HIF. We have previously described the di-substituted naphthalene derivative, CL67, which binds to a G-quadruplex higher-order structure in the HIF promoter sequence in vitro. We show here that CL67 blocks HIF expression leading to inhibition of HIF-transactivation and down-regulation of downstream target genes and proteins in renal carcinoma cell lines and in a mouse xenograft model of renal cancer. This inhibition is independent of pathways that control HIF abundance through oxygen-dependant degradation and oxygen dependant HIF sub-unit expression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinogens/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Cell Hypoxia/drug effects
- Female
- G-Quadruplexes/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoenzyme Techniques
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Mice
- Mice, Nude
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Small Molecule Libraries/pharmacology
- Transcriptional Activation/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sarah J. Welsh
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Aaron G. Dale
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Caterina M. Lombardo
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Helen Valentine
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Maria de la Fuente
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Andreas Schatzlein
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
16
|
Xia X, Li X, Feng G, Zheng C, Liang H, Zhou G. Intra-arterial interleukin-12 gene delivery combined with chemoembolization: anti-tumor effect in a rabbit hepatocellular carcinoma (HCC) model. Acta Radiol 2013; 54:684-9. [PMID: 23507934 DOI: 10.1177/0284185113480072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Interleukin-12 (IL-12), a cytokine naturally secreted by activated dendritic cells and monocytes/macrophages, is known as a key anti-tumor agent in many tumor models, including hepatocellular carcinoma (HCC) models. PURPOSE To evaluate the anti-tumor effect of intra-arterial IL-12 gene delivery alone and in combination with transcatheter arterial chemoembolization (TACE) in rabbit VX2 liver cancer model. MATERIAL AND METHODS Rabbits with VX2 liver tumors were randomized into four groups, eight in each group. After laparotomy and insertion of a 30-gauge needle into the proper hepatic artery, the following interventional procedure protocols were applied: 0.9% saline solution (group A, control), TACE (group B, TACE alone, lipiodol + mitomycin), intra-arterial interleukin-12 gene infusion (group C, IL-12 alone), and intra-arterial interleukin-12 gene infusion in combination with TACE (group D, IL-12 plus TACE). Growth ratio was estimated by computed tomography. To analyze apoptotic index, tumor tissues were explanted for terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining, 14 days after therapy. RESULTS Significant differences of the relative tumor growth ratio were observed in TACE alone group and IL-12 plus TACE group in comparison with control (P < 0.05, ANOVA, Tukey's HSD correction) but not between IL-12 alone and control, or IL-12 plus TACE group and TACE alone group (P > 0.05). Significant changes of the apoptotic index were observed in group D in comparison with remaining three groups (P < 0.05). The difference between group C and group A was not significant statistically (P > 0.05). CONCLUSION Intra-arterial interleukin-12 gene therapy combined with TACE has a potent anti-tumor effect in rabbit VX2 liver cancer in comparison with TACE alone.
Collapse
Affiliation(s)
- Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Gansheng Feng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Huimin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
17
|
Barar J, Omidi Y. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes. BIOIMPACTS : BI 2012; 2:127-43. [PMID: 23678451 DOI: 10.5681/bi.2012.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/02/2012] [Accepted: 09/11/2012] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub-stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. METHODS Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. RESULTS Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA) for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. CONCLUSION Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno-medicines into clinical applications, it is essential 1) to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s); 2) to conduct necessary animal experimental studies to show the "proof of concept" for the proposed genomedicines; 3) to perform an initial clinical investigation; and 4) to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno-medicine development and clinical applications.
Collapse
Affiliation(s)
- Jaleh Barar
- Ovarian Cancer Research Center, Translational Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, Malaponte G, Nicoletti F, Libra M, Bäsecke J, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Cocco L, Martelli AM. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol 2011; 226:2762-81. [PMID: 21302297 DOI: 10.1002/jcp.22647] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapy remains a commonly used therapeutic approach for many cancers. Indeed chemotherapy is relatively effective for treatment of certain cancers and it may be the only therapy (besides radiotherapy) that is appropriate for certain cancers. However, a common problem with chemotherapy is the development of drug resistance. Many studies on the mechanisms of drug resistance concentrated on the expression of membrane transporters and how they could be aberrantly regulated in drug resistant cells. Attempts were made to isolate specific inhibitors which could be used to treat drug resistant patients. Unfortunately most of these drug transporter inhibitors have not proven effective for therapy. Recently the possibilities of more specific, targeted therapies have sparked the interest of clinical and basic researchers as approaches to kill cancer cells. However, there are also problems associated with these targeted therapies. Two key signaling pathways involved in the regulation of cell growth are the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways. Dysregulated signaling through these pathways is often the result of genetic alterations in critical components in these pathways as well as mutations in upstream growth factor receptors. Furthermore, these pathways may be activated by chemotherapeutic drugs and ionizing radiation. This review documents how their abnormal expression can contribute to drug resistance as well as resistance to targeted therapy. This review will discuss in detail PTEN regulation as this is a critical tumor suppressor gene frequently dysregulated in human cancer which contributes to therapy resistance. Controlling the expression of these pathways could improve cancer therapy and ameliorate human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Hypoxia is a feature of most solid tumors and is associated with poor prognosis in several cancer types, including breast cancer. The master regulator of the hypoxic response is the Hypoxia-inducible factor 1α (HIF-1α). It is becoming clear that HIF-1α expression alone is not a reliable marker of tumor response to hypoxia, and recent studies have focused on determining gene and microRNA (miRNA) signatures for this complex process. The results of these studies are likely to pave the way towards the development of a robust hypoxia signature for breast and other cancers that will be useful for diagnosis and therapy. In this review, we outline the existing markers of hypoxia and recently identified gene and miRNA expression signatures, and discuss their potential as prognostic and predictive biomarkers. We also highlight how the hypoxia response is being targeted in the development of cancer therapies.
Collapse
Affiliation(s)
- Elena Favaro
- The Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | | | | | | |
Collapse
|
20
|
Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia 2011; 25:1064-79. [PMID: 21436840 DOI: 10.1038/leu.2011.46] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has become apparent that regulation of protein translation is an important determinant in controlling cell growth and leukemic transformation. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten (PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway is often implicated in sensitivity and resistance to therapy. Dysregulated signaling through the PI3K/PTEN/Akt/mTOR pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Furthermore, this pathway is activated by autocrine transformation mechanisms. PTEN is a critical tumor suppressor gene and its dysregulation results in the activation of Akt. PTEN is often mutated, silenced and is often haploinsufficient. The mTOR complex1 (mTORC1) regulates the assembly of the eukaryotic initiation factor4F complex, which is critical for the translation of mRNAs that are important for cell growth, prevention of apoptosis and transformation. These mRNAs have long 5'-untranslated regions that are G+C rich, rendering them difficult to translate. Elevated mTORC1 activity promotes the translation of these mRNAs via the phosphorylation of 4E-BP1. mTORC1 is a target of rapamycin and novel active-site inhibitors that directly target the TOR kinase activity. Although rapamycin and novel rapalogs are usually cytostatic and not cytotoxic for leukemic cells, novel inhibitors that target the kinase activities of PI3K and mTOR may prove more effective for leukemia therapy.
Collapse
|
21
|
Pourgholami MH, Khachigian LM, Fahmy RG, Badar S, Wang L, Chu SWL, Morris DL. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis. Biochem Biophys Res Commun 2010; 397:729-34. [PMID: 20537982 DOI: 10.1016/j.bbrc.2010.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.
Collapse
Affiliation(s)
- Mohammad H Pourgholami
- University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sun XY, Jiang X, Jiang HC. Novel therapeutic strategies targeting the hypoxic microenvironment of tumors. Shijie Huaren Xiaohua Zazhi 2010; 18:1741. [DOI: 10.11569/wcjd.v18.i17.1741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|