1
|
Hulin-Curtis SL, Davies JA, Nestić D, Bates EA, Baker AT, Cunliffe TG, Majhen D, Chester JD, Parker AL. Identification of folate receptor α (FRα) binding oligopeptides and their evaluation for targeted virotherapy applications. Cancer Gene Ther 2020; 27:785-798. [PMID: 31902944 PMCID: PMC7661341 DOI: 10.1038/s41417-019-0156-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapies (OV) based on human adenoviral (HAdV) vectors hold significant promise for the treatment of advanced ovarian cancers where local, intraperitoneal delivery to tumour metastases is feasible, bypassing many complexities associated with intravascular delivery. The efficacy of HAdV-C5-based OV is hampered by a lack of tumour selectivity, where the primary receptor, hCAR, is commonly downregulated during malignant transformation. Conversely, folate receptor alpha (FRα) is highly expressed on ovarian cancer cells, providing a compelling target for tumour selective delivery of virotherapies. Here, we identify high-affinity FRα-binding oligopeptides for genetic incorporation into HAdV-C5 vectors. Biopanning identified a 12-mer linear peptide, DWSSWVYRDPQT, and two 7-mer cysteine-constrained peptides, CIGNSNTLC and CTVRTSAEC that bound FRα in the context of the phage particle. Synthesised lead peptide, CTVRTSAEC, bound specifically to FRα and could be competitively inhibited with folic acid. To assess the capacity of the elucidated FRα-binding oligopeptides to target OV to FRα, we genetically incorporated the peptides into the HAdV-C5 fiber-knob HI loop including in vectors genetically ablated for hCAR interactions. Unfortunately, the recombinant vectors failed to efficiently target transduction via FRα due to defective intracellular trafficking following entry via FRα, indicating that whilst the peptides identified may have potential for applications for targeted drug delivery, they require additional refinement for targeted virotherapy applications.
Collapse
Affiliation(s)
- Sarah L Hulin-Curtis
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - James A Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Emily A Bates
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Alexander T Baker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Tabitha G Cunliffe
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - John D Chester
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
- Velindre Cancer Centre, Whitchurch, Cardiff, CF14 2TL, UK
| | - Alan L Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
2
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Yang M, Yang C, Tao Y, Tang J, Huang Q, Guo W, Feng S, Jiang A, Xu X, Jiang G, Liu Y. Combination therapy with F5/35 fiber chimeric conditionally replicative adenoviruses expressing IL-24 enhances the antitumor effect of temozolomide against melanoma. Cancer Med 2018; 7:5928-5942. [PMID: 30406970 PMCID: PMC6308089 DOI: 10.1002/cam4.1843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Background Temozolomide (TMZ) is widely used to treat melanoma; however, response rates to TMZ are low because of rapid and frequent resistance. Conditionally, replicative adenoviruses (CRAds) are an effective and promising approach. The receptor for adenovirus is coxsackie‐adenovirus receptor (CAR), which is poorly expressed in most cells. However, CD46, which is the receptor of species B adenoviruses (Ads), is highly expressed in many cells. Methods We constructed CRAd F5/35‐ZD55‐IL‐24, which uses the viral receptors CAR and CD46 for entry into cells. We investigated the antitumor effect of F5/35‐ZD55‐IL‐24 in combination with TMZ to treat melanoma in vitro and in vivo. Results The \results indicated that F5/35‐ZD55‐IL‐24 in combination with TMZ produced additive or synergistic antitumor and pro‐apoptotic effects in melanoma cells. The combination of F5/35‐ZD55‐IL‐24 and TMZ significantly inhibited the growth of melanoma in vivo. In addition, the antitumor effect of F5/35‐ZD55‐IL‐24 was superior to that of ZD55‐IL‐24 and ZD55‐IL‐24 combined with TMZ. Conclusions The use of F5/35‐ZD55‐IL‐24 in conjunction with TMZ is a promising approach for anti‐melanoma therapy. Our results indicated that F5/35‐ZD55‐IL‐24 in combination with TMZ produced additive or synergistic antitumor effect and pro‐apoptotic effect in melanoma cells highly expressed CD46. The combination of F5/35‐ZD55‐IL‐24 and TMZ significantly inhibited the growth of melanoma in vivo. We also found the antitumor effect of F5/35‐ZD55‐IL‐24 was superior to ZD55‐IL‐24, the combination of F5/35‐ZD55‐IL‐24 and TMZ had a more significant antitumor effect than ZD55‐IL‐24 combining with TMZ.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, The Second People's Hospital of Huai'an, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yingkai Tao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jianqin Tang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Huang
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenwen Guo
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shouxin Feng
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aijun Jiang
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xifeng Xu
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanqun Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Yang M, Yang CS, Guo W, Tang J, Huang Q, Feng S, Jiang A, Xu X, Jiang G, Liu YQ. A novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 for tumor therapy. Cancer Biol Ther 2017; 18:833-840. [PMID: 29144842 DOI: 10.1080/15384047.2017.1395115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the diagnosis and treatment of cancer; however, significant challenges remain. Conditionally replicating adenoviruses (CRAds), which not only kill cancer cells, but also serve as vectors to express therapeutic genes, are a novel and effective method to treat cancer. However, most adenoviruses are Ad5, which infect cells through the coxsackie and adenovirus receptor (CAR). The transduction efficacy of Ad5 is restricted because of the absent or low expression of CAR on several cancer cells. Ad serotype 35 has a different tropism pattern to Ad5. Ad35 attaches to cells via a non-CAR receptor, CD46, which is expressed widely on most tumor cells. Thus, chimeric adenoviral vectors consisting of the knob and shaft of Ad35 combined with Ad5 have been constructed. The chimeric fiber adenoviral vectors can transduce CAR-positive and CAR-negative cell lines. In this review, we explore the application of the novel fiber chimeric conditionally replicative adenovirus-Ad5/F35 in tumor therapy in terms of safety, mechanism, transduction efficacy, and antitumor effect.
Collapse
Affiliation(s)
- Ming Yang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China.,b Department of Oncology , Affiliated Nanyang Second General Hospital , Nanyang , China
| | - Chun Sheng Yang
- c Department of Dermatology , Affiliated Huai'an Hospital of Xuzhou Medical University , the Second People's Hospital of Huai'an, Huai'an , China
| | - WenWen Guo
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - JianQin Tang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Qian Huang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - ShouXin Feng
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - AiJun Jiang
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - XiFeng Xu
- a Department of Radiotherapy , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guan Jiang
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Yan Qun Liu
- d Department of Dermatology , Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
5
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Fang L, Cheng Q, Liu W, Zhang J, Ge Y, Zhang Q, Li L, Liu J, Zheng J. Selective effects of a fiber chimeric conditionally replicative adenovirus armed with hep27 gene on renal cancer cell. Cancer Biol Ther 2016; 17:664-73. [PMID: 27195521 DOI: 10.1080/15384047.2016.1190485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ASBTARCT Adenoviruses mediated cancer gene therapies are widely investigated and show a promising effect on cancer treatment. However, efficient gene transfer varies among different cancer cell lines based on the expression of coxsakie adenovirus receptor (CAR). Hep27, a member of dehydrogenase/reductase (SDR) family, can bind to Mdm2, resulting in the attenuation of Mdm2-mediated p53 degradation. Here we constructed a fiber chimeric adenovirus carrying hep27 gene (F5/35-ZD55-Hep27), in which the fiber protein of 5-serotype adenovirus (Ad5) was substituted by that of 35-serotype adenovirus (Ad35), aiming to facilitate the infection for renal cancer cells and develop the role of hep27 in cancer therapy. We evaluated the CAR and CD46 (a membrane cofactor protein for Ad35) expression in four kinds of renal cancer cells and assessed the relationship between receptors and infection efficiency. 5/35 fiber-modified adenovirus had a much promising infectivity compared with Ad5-based vector in renal cancer cells. F5/35-ZD55-Hep27 had enhanced antitumor activity against human renal cancer cells compared to the other groups. Further, hep27 mediated p53 and cleaved-PARP upregulation and mdm2 downregulation was involved and caused increased apoptosis. Moreover, F5/35-ZD55-Hep27 significantly suppressed tumor growth in subcutaneous renal cancer cell xenograft models. Our data demonstrated that 5/35 fiber-modified adenovirus F5/35-ZD55-Hep27 transferred into renal cancers efficiently and increased p53 to induce cancer cell apoptosis. Thus 5/35 fiber-modified adenoviral vector F5/35-ZD55-Hep27 might a promising vector and antitumor reagent for renal cancer gene therapy.
Collapse
Affiliation(s)
- Lin Fang
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Qian Cheng
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Wenshun Liu
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Jie Zhang
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Yan Ge
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Qi Zhang
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Liantao Li
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China.,b Cancer Center, Affiliated Hospital of Xuzhou Medical College , Xuzhou , China
| | - Junjie Liu
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China
| | - Junnian Zheng
- a Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College , Xuzhou , China.,b Cancer Center, Affiliated Hospital of Xuzhou Medical College , Xuzhou , China.,c Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College , Xuzhou , China
| |
Collapse
|
7
|
Abstract
Early-stage clinical trials of oncolytic virotherapy have reported the safety of several virus platforms, and viruses from three families have progressed to advanced efficacy trials. In addition, preclinical studies have established proof-of-principle for many new genetic engineering strategies. Thus, the virotherapy field now has available a diverse collection of viruses that are equipped to address unmet clinical needs owing to improved systemic administration, greater tumour specificity and enhanced oncolytic efficacy. The current key challenge for the field is to develop viruses that replicate with greater efficiency within tumours while achieving therapeutic synergy with currently available treatments.
Collapse
Affiliation(s)
- Tanner S Miest
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | - Roberto Cattaneo
- 1] Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA. [2] Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| |
Collapse
|