1
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
2
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
3
|
Yu J, Liu SH, Sanchez R, Nemunaitis J, Rozengurt E, Brunicardi FC. Pancreatic cancer actionable genes in precision medicine and personalized surgery. Surgeon 2017; 15:24-29. [PMID: 27374183 PMCID: PMC5195911 DOI: 10.1016/j.surge.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/02/2016] [Accepted: 05/22/2016] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer with an overall 5-year survival rate less than 5% due to the poor early diagnosis and lack of effective therapeutic options. The most effective therapy remains surgery, however post-operative survival could be enhanced with effective adjuvant therapy. The massive information gained from Omics techniques on PDAC at the beginning of the 21st century is a remarkable accomplishment. However, the information gained from the omics data, including next generation sequencing data, has yet to successfully affect care of patients suffering with PDAC. Therefore, we propose the development of an actionable genomic platform that matches a patient's PDAC clinically actionable genes with potential targeted adjuvant therapies. Using this platform, PDX1 has been identified as a potential actionable gene for PDAC, therefore, RNAi therapy, gene therapy and small inhibitory drugs, all targeting PDX1, serve as potential targeted adjuvant therapies. Preclinical studies support the hypothesis that identification of PDAC actionable genes could permit translation of a patient's genomic information into precision targeted adjuvant therapy for PDAC.
Collapse
Affiliation(s)
- Juehua Yu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Shi-He Liu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Robbi Sanchez
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | | | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - F Charles Brunicardi
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA.
| |
Collapse
|
4
|
Yu J, Liu SH, Sanchez R, Nemunaitis J, Rozengurt E, Brunicardi FC. PDX1 associated therapy in translational medicine. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:214. [PMID: 27386488 DOI: 10.21037/atm.2016.03.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extremely poor prognosis and a low median survival due to lack of the early and reliable detection and effective therapeutic options, despite improvements observed for many other cancers in last decade. Pancreatic and duodenal homeobox 1 (PDX1), which is a homeodomain-containing transcription factor and a key regulator for insulin gene expression, β cell maturation and proper β cell function maintenance in the pancreas. Our previous studies revealed that PDX1 promotes tumorigenesis and it is a promising therapeutic target for PDAC. For translational purposes, we developed three therapeutic platforms utilizing RNA interference (RNAi), gene therapy and small inhibitory drug targeting PDX1, and further validated them in PDAC preclinical models both in vitro and in vivo. These PDX1 targeted therapies significantly inhibited PDX1 expression in PDAC cells, ablated PDX1-expressing human PDAC xenograft tumor growth, and prolonged survival in the PDAC mouse models. The data from these preclinical studies proved the translational potentials of PDX1 targeted therapies in PDAC and suggest that the strategy of developing PDX1 targeted therapies would permit a rapid bench-to-bedside translation of other relevant gene therapies, which would eventually benefit the patients suffering from this deadly disease.
Collapse
Affiliation(s)
- Juehua Yu
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shi-He Liu
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Robbi Sanchez
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - John Nemunaitis
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Enrique Rozengurt
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - F Charles Brunicardi
- 1 Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; 2 Mary Crowley Cancer Research Center, Dallas, TX, USA ; 3 Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Preclinical Justification of pbi-shRNA EWS/FLI1 Lipoplex (LPX) Treatment for Ewing's Sarcoma. Mol Ther 2016; 24:1412-22. [PMID: 27166877 PMCID: PMC5023384 DOI: 10.1038/mt.2016.93] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
The EWS/FLI1 fusion gene is well characterized as a driver of Ewing's sarcoma. Bi-shRNA EWS/FLI1 is a functional plasmid DNA construct that transcribes both siRNA and miRNA-like effectors each of which targets the identical type 1 translocation junction region of the EWS/FLI1 transcribed mRNA sequence. Previous preclinical and clinical studies confirm the safety of this RNA interference platform technology and consistently demonstrate designated mRNA and protein target knockdown at greater than 90% efficiency. We initiated development of pbi-shRNA EWS/FLI1 lipoplex (LPX) for the treatment of type 1 Ewing's sarcoma. Clinical-grade plasmid was manufactured and both sequence and activity verified. Target protein and RNA knockdown of 85-92% was demonstrated in vitro in type 1 human Ewing's sarcoma tumor cell lines with the optimal bi-shRNA EWS/FLI1 plasmid. This functional plasmid was placed in a clinically tested, liposomal (LP) delivery vehicle followed by in vivo verification of activity. Type 1 Ewing's sarcoma xenograft modeling confirmed dose related safety and tumor response to pbi-shRNA EWS/FLI1 LPX. Toxicology studies in mini-pigs with doses comparable to the demonstrated in vivo efficacy dose resulted in transient fever, occasional limited hypertension at low- and high-dose assessment and transient liver enzyme elevation at high dose. These results provide the justification to initiate clinical testing.
Collapse
|
6
|
Wu J, Liu S, Yu J, Zhou G, Rao D, Jay CM, Kumar P, Sanchez R, Templeton N, Senzer N, Maples P, Nemunaitis J, Brunicardi FC. Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform. Cancer Gene Ther 2014; 21:48-53. [PMID: 24457987 DOI: 10.1038/cgt.2013.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) represents a powerful, new tool for scientific investigation as well as a promising new form of targeted gene therapy, with applications currently in clinical trials. Bifunctional short hairpin RNA (shRNA) are synthetic RNAi molecules, engineered to utilize multiple endogenous RNAi pathways to specifically silence target genes. Pancreatic and duodenal homeobox 1 (PDX1) is a key regulator of pancreatic development, β-cell differentiation, normal β-cell function and pancreatic cancer. Our aim is to review the process of identifying PDX1 as a specific, potential RNAi target in pancreatic cancer, as well as the underlying mechanisms and various forms of RNAi, with subsequent testing and development of PDX1-targeted bifunctional shRNA therapy.
Collapse
Affiliation(s)
- J Wu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - S Liu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - J Yu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - G Zhou
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D Rao
- Gradalis, Carrollton, TX, USA
| | - C M Jay
- Gradalis, Carrollton, TX, USA
| | - P Kumar
- Gradalis, Carrollton, TX, USA
| | - R Sanchez
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - N Senzer
- 1] Gradalis, Carrollton, TX, USA [2] Mary Crowley Cancer Research Center, Dallas, TX, USA
| | | | - J Nemunaitis
- 1] Gradalis, Carrollton, TX, USA [2] Mary Crowley Cancer Research Center, Dallas, TX, USA
| | - F C Brunicardi
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|