1
|
Yang Y, Du T, Zhang J, Kang T, Luo L, Tao J, Gou Z, Chen S, Du Y, He J, Jiang S, Mao Q, Gou M. A 3D-Engineered Conformal Implant Releases DNA Nanocomplexs for Eradicating the Postsurgery Residual Glioblastoma. ADVANCED SCIENCE 2017; 4:1600491. [PMID: 28852611 PMCID: PMC5566247 DOI: 10.1002/advs.201600491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/01/2017] [Indexed: 02/05/2023]
Abstract
Gene therapy has great promise for glioblastoma treatment; however, it remains a great challenge to efficiently deliver genes to the brain. The incomplete resection of glioblastoma always leads to poor prognosis. Here, a 3D‐engineered conformal implant for eradicating the postsurgery residual glioblastoma is designed. This implant is constructed by 3D‐printing technology to match the tumor cavity and release an oncolytic virus‐inspired DNA nanocomplex to kill glioblastoma cells through apoptosis induction. Meanwhile, a 3D‐engineered subcutaneous glioblastoma xenograft is built to mimic the resection tumor cavity in mice. Insertion of the implant into the glioblastoma resection cavity efficiently delays tumor recurrence and significantly prolongs overall survival. This study provides a proof‐of‐concept of glioblastoma therapy using a conformal implant that releases oncolytic DNA nanocomplexs. This strategy can lead to the development of future precision therapy for eradicating postsurgery residual tumors.
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
- Department of Neurosurgery; West China Hospital; Sichuan University; Chengdu P. R. China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Li Luo
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
- School of Materials Science and Engineering; Sichuan University; Chengdu Sichuan 610065 P. R. China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Shaochen Chen
- Department of Nanoengineering; Institute of Engineering in Medicine; 245B SME Building; MC 0448; University of California; San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yanan Du
- Department of Biomedical Engineering; Tsinghua University School of Medicine; Beijing P. R. China
| | - Jiankang He
- State key laboratory for manufacturing systems engineering; Xi'an Jiaotong University; Xi'an 710049 China
| | - Shu Jiang
- Department of Neurosurgery; West China Hospital; Sichuan University; Chengdu P. R. China
| | - Qing Mao
- Department of Neurosurgery; West China Hospital; Sichuan University; Chengdu P. R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| |
Collapse
|
2
|
Qi X, Du L, Chen X, Chen L, Yi T, Chen X, Wen Y, Wei Y, Zhao X. VEGF-D-enhanced lymph node metastasis of ovarian cancer is reversed by vesicular stomatitis virus matrix protein. Int J Oncol 2016; 49:123-32. [PMID: 27211072 PMCID: PMC4902071 DOI: 10.3892/ijo.2016.3527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/25/2016] [Indexed: 02/05/2023] Open
Abstract
Lymphatic metastasis is a poor prognostic factor in ovarian cancer, which correlates to the majority of cancer deaths. Matrix protein (MP) of vesicular stomatitis virus (VSV) exhibits potent antitumor and antiangiogenic activities through inducing apoptosis and inhibiting angiogenesis. In this study, the antitumor and antimetastatic effects of MP were further investigated. Wild-type SKOV3 (WT-SK) cells were successfully transfected with empty vector pcDNA3.1 plasmid, or pcDNA3.1-VEGF-D recombinant plasmid to construct cell lines named EV-SK, and VEGFD-SK, respectively. Inhibition of VEGFD-SK cell migration and invasion was detected by Transwell and wound healing assay. Then, lymphogenous metastatic model of ovarian cancer was established by injecting VEGFD-SK cells subcutaneously into the left hindlimb claw pad of nude mice. The inducted apoptotic effect of MP on VEGFD-SK cells were assessed by flow analysis and Hoechst-33258 staining, respectively, in vitro. The in vivo antitumor and antiangiogenic activities of MP gene were evaluated with lymphogenous metastatic model of ovarian cancer. Tumor volume and lymphatic metastasis rates were measured. Lymphatic vessels were delineated using Evan's blue and LYVE-1 staining. Expression of VEGF-D and MMP-2 were evaluated by immunostaining. Apoptosis of tumor cells was analyzed by Hoechst-33258 staining. Mice bearing VEGFD-SK tumor cells displayed more rapid tumorigenesis, higher lymphogenous metastatic tendency and increased lymphatic vessel density compared with the mice bearing WT-SK or EV-SK cells. However, VEGF-D-enhanced metastasis was evidently reversed by MP. MP significantly reduced the invasion of VEGFD-SK cells, tumor volume, lymphatic metastasis rates and lymphatic vessel density compared with control groups (P<0.05), accompanied with down-expression of VEGF-D and MMP-2 and increased apoptosis. Our data indicate that MP has strong antitumor and antimetastatic abilities, and it may be a promising therapeutic strategy against the lymphatic metastasis of human ovarian cancer.
Collapse
Affiliation(s)
- Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Licheng Du
- Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanjun Wen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Effect of Glycyrrhiza on the Diuretic Function of Euphorbia kansui: An Ascites Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7620817. [PMID: 27247609 PMCID: PMC4876214 DOI: 10.1155/2016/7620817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
We investigated the therapeutic role of the herbal combination Euphorbia kansui (GS) and Glycyrrhiza (GC) in ascites during hepatocellular carcinoma (HCC). The AVPR2 and AQP2 expression in kidney tissues of ascites mice in different groups was determined by immunohistochemistry, Western blot, and real-time PCR analyses. When the dose of GS was less than 0.70 g/kg at a ratio of GC : GS not exceeding 0.4 : 1, the combination of GS and GC exhibited synergistic effects on HCC ascites and significantly elevated the expression levels of AVPR2 and AQP2 (all P < 0.05). On the contrary, when GS ≥ 0.93 g/kg and GC ≥ 1.03 g/kg with the GC-to-GS ratio exceeding 1.11 : 1, the combination of GS and GC displayed antagonistic effects on HCC ascites and dramatically reduced the expression levels of AVPR2 and AQP2 (all P < 0.05). Furthermore, the administration of herbal pair GS and GC at different ratios did not exacerbate the pathological changes in liver and kidney tissues of HCC ascites mice. The different combinations of GS and GC exerted synergistic or antagonistic effects on HCC ascites, partially by regulating the expression of AVPR2 and AQP2.
Collapse
|
4
|
Zhou Y, Wen F, Zhang P, Tang R, Li Q. Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites. Oncol Rep 2015; 35:1573-81. [PMID: 26707610 DOI: 10.3892/or.2015.4522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/26/2015] [Indexed: 02/05/2023] Open
Abstract
Cancer cells in ascites are usually exposed to a hypoxia tumor microenvironment and utilize enhanced glycolysis which produces energy and metabolizes nutrients to support proliferation. Vesicular stomatitis virus (VSV) is an oncolytic virus that relies on the host cellular metabolism for replication. We tested the efficacy of VSV on peritoneal carcinomatosis and assessed VSV replication in cancer cells from ascites. BALB/c female mice bearing peritoneal H22 or MethA cells received an i.p. administration of 1x108 PFU VSV or 1x108 PFU equivalent of UV-inactivated VSV on day 10, 12 and 14 after incubation. Administration of VSV resulted in a significant inhibition of ascites formation and prolonged survival of the treated mice. The replication of VSV was obviously enhanced in the cancer cells from the ascites. Considering the central carbon metabolic pathways, cancer cells in the malignant ascites provided more exogenous glucose, glutamine and pyruvate after VSV infection due to its unregulated glycolytic activity and glutamine metabolism. Pharmacologically, inhibition of the glycolytic pathway and glutamine metabolism reduced VSV replication, and this inhibited replication was rescued by the addition of multiple tricarboxylic acid (TCA) cycle intermediates. Our results demonstrated that metabolic adaptive processes in peritoneal carcinoma, such as high glycolytic activity and glutamine metabolism, favor VSV replication. These results suggest the clinical potency of VSV in the treatment of malignant ascites and provide new insights into the further exploration of the potential application of VSV in the treatment of hypoxia ascites cancer cells.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pengfei Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruilei Tang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|