1
|
Li S, Li L, Zhang C, Fu H, Yu S, Zhou M, Guo J, Fang Z, Li A, Zhao M, Zhang M, Wang X. PM2.5 leads to adverse pregnancy outcomes by inducing trophoblast oxidative stress and mitochondrial apoptosis via KLF9/CYP1A1 transcriptional axis. eLife 2023; 12:e85944. [PMID: 37737576 PMCID: PMC10584374 DOI: 10.7554/elife.85944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Epidemiological studies have demonstrated that fine particulate matter (PM2.5) is associated with adverse obstetric and postnatal metabolic health outcomes, but the mechanism remains unclear. This study aimed to investigate the toxicological pathways by which PM2.5 damaged placental trophoblasts in vivo and in vitro. We confirmed that PM2.5 induced adverse gestational outcomes such as increased fetal mortality rates, decreased fetal numbers and weight, damaged placental structure, and increased apoptosis of trophoblasts. Additionally, PM2.5 induced dysfunction of the trophoblast cell line HTR8/SVneo, including in its proliferation, apoptosis, invasion, migration and angiogenesis. Moreover, we comprehensively analyzed the transcriptional landscape of HTR8/SVneo cells exposed to PM2.5 through RNA-Seq and observed that PM2.5 triggered overexpression of pathways involved in oxidative stress and mitochondrial apoptosis to damage HTR8/SVneo cell biological functions through CYP1A1. Mechanistically, PM2.5 stimulated KLF9, a transcription factor identified as binding to CYP1A1 promoter region, which further modulated the CYP1A1-driven downstream phenotypes. Together, this study demonstrated that the KLF9/CYP1A1 axis played a crucial role in the toxic progression of PM2.5 induced adverse pregnancy outcomes, suggesting adverse effects of environmental pollution on pregnant females and putative targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Lingbing Li
- The Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Huaxuan Fu
- Jinan Environmental Monitoring Center of Shandong ProvinceJinanChina
| | - Shuping Yu
- School of Public Health, Weifang Medical UniversityWeifangChina
| | - Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao UniversityJinanChina
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
2
|
Yde Ohki CM, Walter NM, Rickli M, Salazar Campos JM, Werling AM, Döring C, Walitza S, Grünblatt E. Protocol for a Wnt reporter assay to measure its activity in human neural stem cells derived from induced pluripotent stem cells. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100095. [PMID: 37426743 PMCID: PMC10329100 DOI: 10.1016/j.crneur.2023.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
The canonical Wnt signaling is an essential pathway that regulates cellular proliferation, maturation, and differentiation during neurodevelopment and maintenance of adult tissue homeostasis. This pathway has been implicated with the pathophysiology of neuropsychiatric disorders and was associated with cognitive processes, such as learning and memory. However, the molecular investigation of the Wnt signaling in functional human neural cell lines might be challenging since brain biopsies are not possible and animal models may not represent the polygenic profile of some neurological and neurodevelopmental disorders. In this context, using induced pluripotent stem cells (iPSCs) has become a powerful tool to model disorders that affect the Central Nervous System (CNS) in vitro, by maintaining patients' genetic backgrounds. In this method paper, we report the development of a virus-free Wnt reporter assay in neural stem cells (NSCs) derived from human iPSCs from two healthy individuals, by using a vector containing a reporter gene (luc2P) under the control of a TCF/LEF (T-cell factor/lymphoid enhancer factor) responsive element. Dose-response curve analysis from this luciferase-based method might be useful when testing the activity of the Wnt signaling pathway after agonists (e.g. Wnt3a) or antagonists (e.g. DKK1) administration, comparing activity between cases and controls in distinct disorders. Using such a reporter assay method may help to elucidate whether neurological or neurodevelopmental mental disorders show alterations in this pathway, and testing whether targeted treatment may reverse these. Therefore, our established assay aims to help researchers on the functional and molecular investigation of the Wnt pathway in patient-specific cell types comprising several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Biomedicine PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Natalie Monet Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Michelle Rickli
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - José Maria Salazar Campos
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Christian Döring
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| |
Collapse
|
3
|
Chen L, Chau WY, Yuen HT, Liu XH, Qi RZ, Lung ML, Lung HL. THY1 (CD90) Maintains the Adherens Junctions in Nasopharyngeal Carcinoma via Inhibition of SRC Activation. Cancers (Basel) 2023; 15:cancers15072189. [PMID: 37046850 PMCID: PMC10093038 DOI: 10.3390/cancers15072189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
We had previously shown that THY1 (CD90) is a tumor suppressor in nasopharyngeal carcinoma (NPC) and that its down-regulation and loss of expression are associated with tumor metastasis, yet the mechanism leading to such effects remains unknown. In this study we show that tumor invasion could be suppressed by THY1 via adherens junction formation in a few NPC cell lines, and knockdown of THY1 would disrupt this cell-cell adhesion phenotype. Mechanistically, the activity of the SRC family kinase (SFK) member, SRC, and canonical Wnt signaling were dramatically reduced when THY1 was constitutively expressed. Previous studies by others have found that high levels of SRC activity in NPCs are associated with EMT and a poor prognosis. We hypothesized that THY1 can suppress tumor invasion in NPC via inhibition of SRC. By gene silencing of SRC, we found that the in vitro NPC cell invasion was significantly reduced and adherens junctions were restored. Through proteomic analysis, we identified that platelet-derived growth factor receptor β (PDGF-Rβ) and protein tyrosine phosphatase nonreceptor type 22 (PTPN22) are novel and potential binding partners of THY1, which were subsequently verified by co-immunoprecipitation (co-IP) analysis. The ligand of PDGF-Rβ (PDGF-BB) could highly induce SRC activation and NPC cell invasion, which could be almost completely suppressed by THY1 expression. On the other hand, the PTPN22 siRNA could enhance both the SRC activities and the cell invasion and could also disrupt the adherens junctions in the THY1-expressing NPC cells; the original THY1-induced phenotypes were reverted when the PTPN22 expression was reduced. Together, our results identified that PTPN22 is essential for THY1 to suppress cell invasion and SRC activity, maintain tight adherens junctions, and prevent NPC metastasis. These results suggested that PDGF-Rβ and SRC can be used as drug targets for suppressing NPC metastasis. Indeed, our in vivo assay using the SRC inhibitor KX2-391, clearly showed that inhibition of SRC signaling can prevent the metastasis of NPC, indicating that targeting SRC can be a promising approach to control the NPC progression.
Collapse
Affiliation(s)
- Luo Chen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Wai Yin Chau
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hei Tung Yuen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiao Han Liu
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| | - Robert Zhong Qi
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong 999077, China
| | - Hong Lok Lung
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
4
|
Chen YS, Racca JD, Weiss MA. Tenuous Transcriptional Threshold of Human Sex Determination. I. SRY and Swyer Syndrome at the Edge of Ambiguity. Front Endocrinol (Lausanne) 2022; 13:945030. [PMID: 35957822 PMCID: PMC9360328 DOI: 10.3389/fendo.2022.945030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Male sex determination in mammals is initiated by SRY, a Y-encoded transcription factor. The protein contains a high-mobility-group (HMG) box mediating sequence-specific DNA bending. Mutations causing XY gonadal dysgenesis (Swyer syndrome) cluster in the box and ordinarily arise de novo. Rare inherited variants lead to male development in one genetic background (the father) but not another (his sterile XY daughter). De novo and inherited mutations occur at an invariant Tyr adjoining the motif's basic tail (box position 72; Y127 in SRY). In SRY-responsive cell lines CH34 and LNCaP, de novo mutations Y127H and Y127C reduced SRY activity (as assessed by transcriptional activation of principal target gene Sox9) by 5- and 8-fold, respectively. Whereas Y127H impaired testis-specific enhancer assembly, Y127C caused accelerated proteasomal proteolysis; activity was in part rescued by proteasome inhibition. Inherited variant Y127F was better tolerated: its expression was unperturbed, and activity was reduced by only twofold, a threshold similar to other inherited variants. Biochemical studies of wild-type (WT) and variant HMG boxes demonstrated similar specific DNA affinities (within a twofold range), with only subtle differences in sharp DNA bending as probed by permutation gel electrophoresis and fluorescence resonance-energy transfer (FRET); thermodynamic stabilities of the free boxes were essentially identical. Such modest perturbations are within the range of species variation. Whereas our cell-based findings rationalize the de novo genotype-phenotype relationships, a molecular understanding of inherited mutation Y127F remains elusive. Our companion study uncovers cryptic biophysical perturbations suggesting that the para-OH group of Y127 anchors a novel water-mediated DNA clamp.
Collapse
Affiliation(s)
- Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph D Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
The CBP/β-Catenin Antagonist, ICG-001, Inhibits Tumor Metastasis via Blocking of the miR-134/ITGB1 Axis-Mediated Cell Adhesion in Nasopharyngeal Carcinoma. Cancers (Basel) 2022; 14:cancers14133125. [PMID: 35804897 PMCID: PMC9264930 DOI: 10.3390/cancers14133125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Metastatic nasopharyngeal carcinoma (NPC) is incurable and remains the main cause of NPC death. Our previous studies found that the CBP/β-catenin Wnt antagonist, IGC-001, could inhibit the primary tumor formation of NPC tumor cells. Here, we further explored the anti-metastatic activity of ICG-001. We started by screening a panel of microRNAs that are related to epithelial–mesenchymal transition and cancer stem cell phenotypes; both properties can contribute to tumor metastasis. MicroRNA-134 was found to be consistently upregulated by ICG-001. The role of miR-134 in NPC is largely unknown but some studies found an association between low expression of miR-134 and poor prognosis. We examined the role of miR-134 in NPC with both in vitro and in vivo models and found that miR-134 could inhibit cancer cell adhesion, migration, and invasion. Our study provided a functional explanation for the poor prognosis observed in NPC patients with low or loss of miR-134 expression in their tumors and showed that modulation of the Wnt signaling by ICG-001 could effectively inhibit NPC metastasis via the miR-134/ITGB1 axis. Abstract Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus (EBV)-associated malignancy ranking as the 23rd most common cancer globally, while its incidence rate ranked the 9th in southeast Asia. Tumor metastasis is the dominant cause for treatment failure in NPC and metastatic NPC is yet incurable. The Wnt/β-catenin signaling pathway plays an important role in many processes such as cell proliferation, differentiation, epithelial–mesenchymal transition (EMT), and self-renewal of stem cells and cancer stem cells (CSCs). Both the EMT process and CSCs are believed to play a critical role in cancer metastasis. We here investigated whether the specific CBP/β-catenin Wnt antagonist, IGC-001, affects the metastasis of NPC cells. We found that ICG-001 treatment could reduce the adhesion capability of NPC cells to extracellular matrix and to capillary endothelial cells and reduce the tumor cell migration and invasion, events which are closely associated with distant metastasis. Through a screening of EMT and CSC-related microRNAs, it was found that miR-134 was consistently upregulated by ICG-001 treatment in NPC cells. Very few reports have mentioned the functional role of miR-134 in NPC, except that the expression was found to be downregulated in NPC. Transient transfection of miR-134 into NPC cells reduced their cell adhesion, migration, and invasion capability, but did not affect the growth of CSC-enriched tumor spheres. Subsequently, we found that the ICG-001-induced miR-134 expression resulting in downregulation of integrin β1 (ITGB1). Such downregulation reduced cell adhesion and migration capability, as demonstrated by siRNA-mediated knockdown of ITGB1. Direct targeting of ITGB1 by miR-134 was confirmed by the 3′-UTR luciferase assay. Lastly, using an in vivo lung metastasis assay, we showed that ICG-001 transient overexpression of miR-134 or stable overexpression of miR-134 could significantly reduce the lung metastasis of NPC cells. Taken together, we present here evidence that modulation of Wnt/β-catenin signaling pathway could inhibit the metastasis of NPC through the miR-134/ITGB1 axis.
Collapse
|
6
|
Chau HF, Wu Y, Fok WY, Thor W, Cho WCS, Ma P, Lin J, Mak NK, Bünzli JCG, Jiang L, Long NJ, Lung HL, Wong KL. Lanthanide-Based Peptide-Directed Visible/Near-Infrared Imaging and Inhibition of LMP1. JACS AU 2021; 1:1034-1043. [PMID: 34467347 PMCID: PMC8395644 DOI: 10.1021/jacsau.1c00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 06/13/2023]
Abstract
A lanthanide-based peptide-directed bioprobe LnP19 (Ln = Eu or Yb) is designed as an impressive example of a small molecule-based dual-functional probe for the EBV oncoprotein LMP1. The peptide P19 (Pra-KAhx-K-LDLALK-FWLY-K-IVMSDKW-K-RrRK) is designed to selectively bind to LMP1 by mimicking its TM1 region during oligomerization in lipid rafts while signal transduction is significantly suppressed. Immunofluorescence imaging and Western blotting results reveal that P19 can effectively inactivate the oncogenic cellular pathway nuclear factor κB (NF-κB) and contribute to a selective cytotoxic effect on LMP1-positive cells. By conjugation with cyclen-based europium(III) and ytterbium(III) complexes, EuP19 and YbP19 were constructed to offer visible and near-infrared LMP1-targeted imaging and cancer monitoring. In addition to the ability to target and inhibit LMP1 and to selective inhibit LMP1-positive cells, selective growth inhibition toward the LMP1-positive tumor by LnP19 is also demonstrated.
Collapse
Affiliation(s)
- Ho-Fai Chau
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yue Wu
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wan-Yiu Fok
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Waygen Thor
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - William Chi-Shing Cho
- Department
of Clinical Oncology, Queen Elizabeth Hospital,
Kowloon, Hong Kong SAR, China
| | - Ping’an Ma
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun Lin
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Nai-Ki Mak
- Department
of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jean-Claude G. Bünzli
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- ISIC, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Lijun Jiang
- Department
of Applied Biological and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Hong Lok Lung
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ka-Leung Wong
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
7
|
Effect of Inducible BMP-7 Expression on the Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int J Mol Sci 2021; 22:ijms22126182. [PMID: 34201124 PMCID: PMC8229115 DOI: 10.3390/ijms22126182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
BMP-7 has shown inductive potential for in vitro osteogenic differentiation of mesenchymal stem cells, which are an ideal resource for regenerative medicine. Externally applied, recombinant BMP-7 was able to induce the osteogenic differentiation of DPSCs but based on our previous results with BMP-2, we aimed to study the effect of the tetracyclin-inducible BMP-7 expression on these cells. DPSC, mock, and DPSC-BMP-7 cell lines were cultured in the presence or absence of doxycycline, then alkaline phosphatase (ALP) activity, mineralization, and mRNA levels of different osteogenic marker genes were measured. In the DPSC-BMP-7 cell line, the level of BMP-7 mRNA significantly increased in the media supplemented with doxycycline, however, the expression of Runx2 and noggin genes was upregulated only after 21 days of incubation in the osteogenic medium with doxycycline. Moreover, while the examination of ALP activity showed reduced activity in the control medium containing doxycycline, the accumulation of minerals remained unchanged in the cultures. We have found that the induced BMP-7 expression failed to induce osteogenic differentiation of DPSCs. We propose three different mechanisms that may worth investigating for the engineering of expression systems that can be used for the induction of differentiation of mesenchymal stem cells.
Collapse
|
8
|
Expression of Secreted Neutrophil Gelatinase-Associated Lipocalin in 293T Cell Using the Inducible Dual-Function System. Processes (Basel) 2021. [DOI: 10.3390/pr9050855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a promising biomarker for the early prediction of acute kidney injury (AKI). The production of recombinant NGAL is considered to be necessary for the development of a detection method. This study intended to express the recombinant NGAL protein in 293T cell under the Tet-On inducible system and human serum albumin signal sequence (HSA-SS). The transfection efficiency and protein modulation were assessed by detecting the expression of the enhanced green fluorescent protein (EGFP) and secreted NGAL protein. Both proteins were detected only in the presence of a doxycycline (Dox) inducer. Cell toxicity was not found under any conditions. Moreover, a higher level of soluble NGAL protein in the supernatant secreted by HSA-SS compared with a native signal peptide (Nat-SS) was observed. In summary, this work successfully optimized the conditions for induction of NGAL expression. This system will provide as an efficient strategy to produce other recombinant proteins secreted from a mammalian cell.
Collapse
|
9
|
Ana Choi SS, Ko JMY, Yu VZ, Ning L, Lung ML. Differentiation-related zinc finger protein 750 suppresses cell growth in esophageal squamous cell carcinoma. Oncol Lett 2021; 22:513. [PMID: 33986873 DOI: 10.3892/ol.2021.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/12/2021] [Indexed: 11/06/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly squamous cell carcinoma (SCC) of the esophagus. Development of SCCs is associated with the deregulation of the squamous cell lineage program and/or keratinocyte terminal differentiation by genomic and genetic aberrations; thus, these processes must be tightly controlled to maintain normal squamous cell development. Zinc finger protein 750 (ZNF750) is a gene involved in keratinocyte terminal differentiation and is frequently mutated and putatively silenced in ESCC, which implicates its function as a potential differentiation-related suppressor of ESCC. The present study aimed to elucidate the relationship between ZNF750 function to induce keratinocyte differentiation and tumor suppression in ESCC. The results demonstrated that chemical manipulation of esophageal keratinocyte differentiation in mouse normal esophageal epithelial organoids (mNEEO) implicated the involvement of the mouse homologue of ZNF750, Zfp750, in keratinocyte differentiation in premalignant cells. Bioinformatics analyses of data from high ZNF750-expressing ESCC tumors obtained from public databases and ZNF750-overexpressing ESCC cells compared with low ZNF750-expressing ESCC tumors and GFP-expressing ESCC cells, respectively, revealed enrichment of keratinocyte differentiation-related gene sets in these samples. Finally, the induction through to terminal differentiation of the keratinocyte by all-trans retinoic acid on parental ESCC cell lines led to the upregulation of the terminal differentiation marker Involucrin and a decrease in cell viability similar to that observed in ZNF750-overexpressing ESCC cells. The results of the present study demonstrated a functional link between the ability of ZNF750 to induce cell differentiation through to terminal differentiation and its function as a growth suppressor in ESCC. This study provides improved understanding of the role of ZNF750, a frequently mutated differentiation-related gene in ESCC, and its effects in ESCC pathogenesis.
Collapse
Affiliation(s)
- Sheyne Sta Ana Choi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Lvwen Ning
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Maria Li Lung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
10
|
Page A, Fusil F, Cosset FL. Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction. Viruses 2020; 12:v12121427. [PMID: 33322556 PMCID: PMC7764518 DOI: 10.3390/v12121427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitutive or regulated promoters in order to regulate transgene expression. This allows to temporally and/or quantitatively control transgene expression, which is required for many applications such as for clinical applications, when transgene expression is required in specific tissues and at a specific timing. Here we review the main systems that have been developed for transgene regulated expression following lentiviral gene transfer. First, the induction of gene expression can be triggered either by external or by internal cues. Indeed, these regulated vector systems may harbor promoters inducible by exogenous stimuli, such as small molecules (e.g., antibiotics) or temperature variations, offering the possibility to tune rapidly transgene expression in case of adverse events. Second, expression can be indirectly adjusted by playing on inserted sequence copies, for instance by gene excision. Finally, synthetic networks can be developed to sense specific endogenous signals and trigger defined responses after information processing. Regulatable lentiviral vectors (LV)-mediated transgene expression systems have been widely used in basic research to uncover gene functions or to temporally reprogram cells. Clinical applications are also under development to induce therapeutic molecule secretion or to implement safety switches. Such regulatable approaches are currently focusing much attention and will benefit from the development of other technologies in order to launch autonomously controlled systems.
Collapse
|
11
|
Deng M, Dai W, Yu VZ, Tao L, Lung ML. Cylindromatosis Lysine 63 Deubiquitinase (CYLD) Regulates NF-kB Signaling Pathway and Modulates Fibroblast and Endothelial Cells Recruitment in Nasopharyngeal Carcinoma. Cancers (Basel) 2020; 12:cancers12071924. [PMID: 32708712 PMCID: PMC7409113 DOI: 10.3390/cancers12071924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the nasopharynx. Cylindromatosis lysine 63 deubiquitinase (CYLD), a NF-kB inhibitor, was reported as one of the top mutated candidate genes in NPC. NF-kB is an inducible transcription factor, contributing to cancer via regulating inflammation, angiogenesis, cell proliferation, and metastasis. In this study, the impact of CYLD on regulating the NF-kB signaling pathway and its contribution to NPC development was studied using in vitro and in vivo functional assays, together with single cell RNA sequencing to understand the NPC tumor microenvironment. CYLD was downregulated in NPC clinical specimens and multiple cell lines. Functional assays revealed CYLD inhibits NPC cell proliferation and migration in vitro and suppresses NPC tumorigenicity and metastasis in vivo by negatively regulating the NF-kB signaling pathway. Additionally, CYLD was able to inhibit fibroblast and endothelial stromal cell infiltration into the NPC tumor microenvironment. These findings suggest that CYLD inhibits NPC development and provides strong evidence supporting a role for CYLD inhibiting fibroblast and endothelial stromal cell infiltration into NPC via suppressing the NF-kB pathway.
Collapse
|
12
|
Kallunki T, Barisic M, Jäättelä M, Liu B. How to Choose the Right Inducible Gene Expression System for Mammalian Studies? Cells 2019; 8:cells8080796. [PMID: 31366153 PMCID: PMC6721553 DOI: 10.3390/cells8080796] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Inducible gene expression systems are favored over stable expression systems in a wide variety of basic and applied research areas, including functional genomics, gene therapy, tissue engineering, biopharmaceutical protein production and drug discovery. This is because they are mostly reversible and thus more flexible to use. Furthermore, compared to constitutive expression, they generally exhibit a higher efficiency and have fewer side effects, such as cell death and delayed growth or development. Empowered by decades of development of inducible gene expression systems, researchers can now efficiently activate or suppress any gene, temporarily and quantitively at will, depending on experimental requirements and designs. Here, we review a number of most commonly used mammalian inducible expression systems and provide basic standards and criteria for the selection of the most suitable one.
Collapse
Affiliation(s)
- Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
| |
Collapse
|
13
|
Yu VZ, Ko JMY, Ning L, Dai W, Law S, Lung ML. Endoplasmic reticulum-localized ECM1b suppresses tumor growth and regulates MYC and MTORC1 through modulating MTORC2 activation in esophageal squamous cell carcinoma. Cancer Lett 2019; 461:56-64. [PMID: 31319137 DOI: 10.1016/j.canlet.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with dismal 5-year survival. Extracellular matrix protein 1 (ECM1) was identified as one of the most downregulated genes by transcriptomic analysis of normal esophageal/ESCC paired tissue samples. ECM1 plays oncogenic roles in cancer development in various cancer types. However, little is known about its role in ESCC. In vivo and in vitro functional assays coupled with analyses on public datasets and detailed molecular and mechanistic analyses were used to study the gene. We demonstrate that as opposed to the previously identified oncogenic role of ECM1a, ECM1b is a novel tumor suppressor in ESCC. ECM1 is significantly downregulated in ESCC and several other squamous cell carcinomas. ECM1b encodes a cellular protein that suppresses MYC protein expression and MTORC1 signaling activity. MTORC2 inactivation leads to suppressed MYC expression and MTORC1 signaling. ECM1b localizes to the endoplasmic reticulum and suppresses MTORC2 activation by inhibiting MTORC2/ribosome association. By regulating MTORC2/MYC/MTORC1 signaling, ECM1b suppresses general protein translation and enhances chemosensitivity. We provide evidence establishing a novel role of ECM1 in cancer that suggests ECM1b as a biomarker for ESCC disease management.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Josephine Mun Yee Ko
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Lvwen Ning
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong.
| |
Collapse
|
14
|
Mesuraca M, Amodio N, Chiarella E, Scicchitano S, Aloisio A, Codispoti B, Lucchino V, Montalcini Y, Bond HM, Morrone G. Turning Stem Cells Bad: Generation of Clinically Relevant Models of Human Acute Myeloid Leukemia through Gene Delivery- or Genome Editing-Based Approaches. Molecules 2018; 23:E2060. [PMID: 30126100 PMCID: PMC6222541 DOI: 10.3390/molecules23082060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia in the adult, is believed to arise as a consequence of multiple molecular events that confer on primitive hematopoietic progenitors unlimited self-renewal potential and cause defective differentiation. A number of genetic aberrations, among which a variety of gene fusions, have been implicated in the development of a transformed phenotype through the generation of dysfunctional molecules that disrupt key regulatory mechanisms controlling survival, proliferation, and differentiation in normal stem and progenitor cells. Such genetic aberrations can be recreated experimentally to a large extent, to render normal hematopoietic stem cells "bad", analogous to the leukemic stem cells. Here, we wish to provide a brief outline of the complementary experimental approaches, largely based on gene delivery and more recently on gene editing, employed over the last two decades to gain insights into the molecular mechanisms underlying AML development and progression and on the prospects that their applications offer for the discovery and validation of innovative therapies.
Collapse
Affiliation(s)
- Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Nicola Amodio
- Laboratory of Medical Oncology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Bruna Codispoti
- Tecnologica Research Institute-Marrelli Hospital, 88900 Crotone, Italy.
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| |
Collapse
|
15
|
Current and future perspectives of functional metabolomics in disease studies-A review. Anal Chim Acta 2018; 1037:41-54. [PMID: 30292314 DOI: 10.1016/j.aca.2018.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Functional metabolomics is a new concept, which studies the functions of metabolites and related enzymes focused on metabolomics. It overcomes the shortcomings of traditional discovery metabolomics of mainly relying on literatures for biological interpretation. Functional metabolomics has many advantages. Firstly, the functional roles of metabolites and related metabolic enzymes are focused. Secondly, the in vivo and in vitro experiments are conducted to validate the metabolomics findings, therefore, increasing the reliability of metabolomics study and producing the new knowledge. Thirdly, functional metabolomics can be used by biologists to investigate functions of metabolites, and related genes and proteins. In this review, we summarize the analytical, biological and clinical platforms used in functional metabolomics studies. Recent progresses of functional metabolomics in cancer, metabolic diseases and biological phenotyping are reviewed, and future development is also predicted. Because of the tremendous advantages of functional metabolomics, it will have a bright future.
Collapse
|
16
|
Li S, Ma L, Ou M, Feng J, Liao Y, Wang G, Tang L. A novel inducible lentiviral system for multi-gene expression with human HSP70 promoter and tetracycline-induced promoter. Appl Microbiol Biotechnol 2017; 101:3689-3702. [PMID: 28160047 DOI: 10.1007/s00253-017-8132-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/04/2023]
Abstract
Despite lentiviral system's predominance, its ultimate potential for gene therapy has not been fully exploited. Currently, most lentivirus vectors are non-inducible expression system or single-gene-induced system, which limits the extensive application in gene therapy. In this study, we designed a novel lentiviral vector containing HSP70 promoter and TRE promoter. Compared to traditional lentiviral vectors and inducible vectors, our controllable system has many advantages. Firstly, it contains multiple gene or shRNA targets. Secondly, genes expression is on/off in response to heat shock and DOX induction in time of need respectively with high effectivity and sensitivity. Thirdly, TRE promoter and HSP70 promoter can work with no interference from each other in the same inducible lentiviral vector. In addition, our study also shows that our novel vector has a higher downstream gene expression efficiency than co-transfection method and can co-position multi-genes in single cell effectively. Finally, we propose four derived models based on our vector at the end, which may be useful in biological research and clinical research in the future. Therefore, we believe that this novel lentiviral system could be promising in gene therapy for tumor.
Collapse
Affiliation(s)
- Shun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Mengting Ou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yi Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400044, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, 400044, China.
| |
Collapse
|
17
|
Whole-exome sequencing identifies multiple loss-of-function mutations of NF-κB pathway regulators in nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 2016; 113:11283-11288. [PMID: 27647909 DOI: 10.1073/pnas.1607606113] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with a unique geographical distribution. The genomic abnormalities leading to NPC pathogenesis remain unclear. In total, 135 NPC tumors were examined to characterize the mutational landscape using whole-exome sequencing and targeted resequencing. An APOBEC cytidine deaminase mutagenesis signature was revealed in the somatic mutations. Noticeably, multiple loss-of-function mutations were identified in several NF-κB signaling negative regulators NFKBIA, CYLD, and TNFAIP3 Functional studies confirmed that inhibition of NFKBIA had a significant impact on NF-κB activity and NPC cell growth. The identified loss-of-function mutations in NFKBIA leading to protein truncation contributed to the altered NF-κB activity, which is critical for NPC tumorigenesis. In addition, somatic mutations were found in several cancer-relevant pathways, including cell cycle-phase transition, cell death, EBV infection, and viral carcinogenesis. These data provide an enhanced road map for understanding the molecular basis underlying NPC.
Collapse
|
18
|
Ng HY, Ko JMY, Yu VZ, Ip JCY, Dai W, Cal S, Lung ML. DESC1, a novel tumor suppressor, sensitizes cells to apoptosis by downregulating the EGFR/AKT pathway in esophageal squamous cell carcinoma. Int J Cancer 2016; 138:2940-51. [PMID: 26856390 DOI: 10.1002/ijc.30034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
Esophageal cancer is ranked as the eighth most common cancer and the sixth leading cause of cancer deaths worldwide. To identify candidate tumor suppressor genes related to esophageal squamous cell carcinoma (ESCC) development, a cDNA microarray analysis was performed using paired tumor and nontumor tissue samples from ESCC patients. Differentially expressed in squamous cell carcinoma 1 (DESC1), which belongs to the Type II transmembrane serine protease family, was frequently downregulated in ESCC. This study aims to elucidate the molecular mechanism for the tumor suppressive function of DESC1 in ESCC. We show that DESC1 reduced cell viability and sensitized cells to apoptosis, when cells were under apoptotic stimuli. The proapoptotic effect of DESC1 was mediated through downregulating AKT1 activation and the restoration of AKT activation by the introduction of the constitutively active AKT, myr-AKT, abolished the apoptosis-sensitizing effect of DESC1. DESC1 also reduced EGFR protein level, which was abrogated when the proteolytic function of DESC1 was lost, suggesting that DESC1 cleaved EGFR and downregulated the EGFR/AKT pathway to favor apoptosis. The transmembrane localization and the structural domains provide an opportunity for DESC1 to interact with the extracellular environment. The importance of such interaction was highlighted by the finding that DESC1 reduced cell colony formation ability in three-dimensional culture. In line with this, DESC1 reduced tumor growth kinetics in the in vivo orthotopic tumorigenesis assay. Taken together, our novel findings suggest how DESC1 may suppress ESCC development by sensitizing cells to apoptosis under an apoptotic stimulus through downregulating the EGFR/AKT signaling pathway.
Collapse
Affiliation(s)
- Hoi Yan Ng
- Department of Clinical Oncology, Faculty of Medicine, University of Hong Kong Li Ka Shing, Pokfulam, Hong Kong, SAR
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, Faculty of Medicine, University of Hong Kong Li Ka Shing, Pokfulam, Hong Kong, SAR
| | - Valen Zhuoyou Yu
- Department of Clinical Oncology, Faculty of Medicine, University of Hong Kong Li Ka Shing, Pokfulam, Hong Kong, SAR
| | - Joseph Chok Yan Ip
- Department of Clinical Oncology, Faculty of Medicine, University of Hong Kong Li Ka Shing, Pokfulam, Hong Kong, SAR
| | - Wei Dai
- Department of Clinical Oncology, Faculty of Medicine, University of Hong Kong Li Ka Shing, Pokfulam, Hong Kong, SAR
| | - Santiago Cal
- Departamento De Bioquímica Y Biología Molecular, Instituto Universitario De Oncología, Universidad De Oviedo, Spain
| | - Maria Li Lung
- Department of Clinical Oncology, Faculty of Medicine, University of Hong Kong Li Ka Shing, Pokfulam, Hong Kong, SAR
| |
Collapse
|
19
|
Response to "In vivo attenuation and genetic evolution of a ST247-SCCmecI MRSA clone after 13 years of pathogenic bronchopulmonary colonization in a patient with cystic fibrosis: implications of the innate immune response". Mucosal Immunol 2015; 8:697-8. [PMID: 25736458 DOI: 10.1038/mi.2015.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|