1
|
Poulin KL, Clarkin RG, Del Papa J, Parks RJ. Development and Characterization of an Oncolytic Human Adenovirus-Based Vector Co-Expressing the Adenovirus Death Protein and p14 Fusion-Associated Small Transmembrane Fusogenic Protein. Int J Mol Sci 2024; 25:12451. [PMID: 39596515 PMCID: PMC11594305 DOI: 10.3390/ijms252212451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Human adenovirus (HAdV)-based oncolytic vectors, which are designed to preferentially replicate in and kill cancer cells, have shown modest efficacy in human clinical trials in part due to poor viral distribution throughout the tumor mass. Previously, we showed that expression of the p14 fusion-associated small transmembrane (FAST) fusogenic protein could enhance oncolytic HAdV efficacy and reduce tumor growth rate in a human xenograft mouse model of cancer. We now explore whether co-expression of the adenovirus death protein (ADP) with p14 FAST protein could synergize to further enhance oncolytic vector efficacy. ADP is naturally encoded within the early region 3 (E3) of HAdV, a region which is frequently removed from HAdV-based vectors, and functions to enhance cell lysis and progeny release. We evaluated a variety of approaches to achieve optimal expression of the two proteins, the most efficient method being insertion of an expression cassette within the E3 deletion, consisting of the coding sequences for p14 FAST protein and ADP separated by a self-cleaving peptide derived from the porcine teschovirus-1 (P2A). However, the quantities of p14 FAST protein and ADP produced from this vector were reduced approximately 10-fold compared to a similar vector-expressing only p14 FAST protein and wildtype HAdV, respectively. Compared to our original oncolytic vector-expressing p14 FAST protein alone, reduced expression of p14 FAST protein and ADP from the P2A construct reduced cell-cell fusion, vector spread, and cell-killing activity in human A549 adenocarcinoma cells in culture. These studies show that a self-cleaving peptide can be used to express two different transgenes in an armed oncolytic HAdV vector, but also highlight the challenges in maintaining adequate transgene expression when modifying vector design.
Collapse
Affiliation(s)
- Kathy L. Poulin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ryan G. Clarkin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Joshua Del Papa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
2
|
Ogawa K, Yamada K, Etoh T, Kitagawa M, Shirasaka Y, Noguchi K, Kobayashi T, Nishizono A, Inomata M. Development of an Oncolytic Mammalian Orthoreovirus Expressing the Near-Infrared Fluorescent Protein iRFP720. J Virol Methods 2022; 308:114574. [DOI: 10.1016/j.jviromet.2022.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
3
|
Clarkin RG, Del Papa J, Poulin KL, Parks RJ. The genome position of a therapeutic transgene strongly influences the level of expression in an armed oncolytic human adenovirus vector. Virology 2021; 561:87-97. [PMID: 34171766 DOI: 10.1016/j.virol.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Efficacy of oncolytic, conditionally-replicating adenovirus (CRAd) vectors can be enhanced by "arming" the vector with therapeutic transgenes. We examined whether inclusion of an intact early region 3 (E3) and the reptilian reovirus fusogenic p14 fusion-associated small transmembrane (FAST) protein enhanced vector efficacy. The p14 FAST transgene was cloned between the fiber gene and E4 region, with an upstream splice acceptor for replication-dependent expression from the major late promoter. In A549 cells, this vector expressed p14 FAST protein at very low levels, and showed a poor ability to mediate cell-cell fusion, relative to a similar vector encoding p14 FAST within the E3 deletion. Although expression of E3 proteins from the CRAd increased plaque size, poor expression of p14 FAST protein compromised the fusogenic capacity of the vector. Thus, location of a therapeutic transgene within a CRAd can significantly impact expression of the transgene and is an important consideration in vector design.
Collapse
Affiliation(s)
- Ryan G Clarkin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Joshua Del Papa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kathy L Poulin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
4
|
Del Papa J, Clarkin RG, Parks RJ. Use of cell fusion proteins to enhance adenoviral vector efficacy as an anti-cancer therapeutic. Cancer Gene Ther 2020; 28:745-756. [DOI: 10.1038/s41417-020-0192-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/03/2023]
|
5
|
Goradel NH, Negahdari B, Ghorghanlu S, Jahangiri S, Arashkia A. Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther 2020; 213:107586. [PMID: 32479843 DOI: 10.1016/j.pharmthera.2020.107586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses, effectively replicate viruses within malignant cells to lyse them without affecting normal ones, have recently shown great promise in developing therapeutic options for cancer. Adenoviruses (Ads) are one of the candidates in oncolytic virotheraoy due to its easily manipulated genomic DNA and expression of wide rane of its receptors on the various cancers. Although systematic delivery of oncolytic adenoviruses can target both primary and metastatic tumors, there are some drawbacks in the effective systematic delivery of oncolytic adenoviruses, including pre-existing antibodies and liver tropism. To overcome these limitations, intratumural (IT) administration of oncolytic viruses have been proposed. However, IT injection of Ads leaves much of the tumor mass unaffected and Ads are not able to disperse more in the tumor microenvironment (TME). To this end, various strategies have been developed to enhance the IT spread of oncolytic adenoviruses, such as using extracellular matrix degradation enzymes, junction opening peptides, and fusogenic proteins. In the present paper, we reviewed different oncolytic adenoviruses, their application in the clinical trials, and strategies for enhancing their IT spread.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ghorghanlu
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Suppresses Human Adenovirus Gene Expression and Replication. J Virol 2019; 93:JVI.00088-19. [PMID: 30944181 DOI: 10.1128/jvi.00088-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Human adenovirus (HAdV) causes minor illnesses in most patients but can lead to severe disease and death in pediatric, geriatric, and immunocompromised individuals. No approved antiviral therapy currently exists for the treatment of these severe HAdV-induced diseases. In this study, we show that the pan-histone deacetylase (HDAC) inhibitor SAHA reduces HAdV-5 gene expression and DNA replication in tissue culture, ultimately decreasing virus yield from infected cells. Importantly, SAHA also reduced gene expression from more virulent and clinically relevant serotypes, including HAdV-4 and HAdV-7. In addition to SAHA, several other HDAC inhibitors (e.g., trichostatin A, apicidin, and panobinostat) also affected HAdV gene expression. We determined that loss of class I HDAC activity, mainly HDAC2, impairs efficient expression of viral genes, and that E1A physically interacts with HDAC2. Our results suggest that HDAC activity is necessary for HAdV replication, which may represent a novel pharmacological target in HAdV-induced disease.IMPORTANCE Although human adenovirus (HAdV) can cause severe diseases that can be fatal in some populations, there are no effective treatments to combat HAdV infection. In this study, we determined that the pan-histone deacetylase (HDAC) inhibitor SAHA has inhibitory activity against several clinically relevant serotypes of HAdV. This U.S. Food and Drug Administration-approved compound affects various stages of the virus lifecycle and reduces virus yield even at low concentrations. We further report that class I HDAC activity, particularly HDAC2, is required for efficient expression of viral genes during lytic infection. Investigation of the mechanism underlying SAHA-mediated suppression of HAdV gene expression and replication will enhance current knowledge of virus-cell interaction and may aid in the development of more effective antivirals with lower toxicity for the treatment of HAdV infections.
Collapse
|
7
|
Del Papa J, Petryk J, Bell JC, Parks RJ. An Oncolytic Adenovirus Vector Expressing p14 FAST Protein Induces Widespread Syncytium Formation and Reduces Tumor Growth Rate In Vivo. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:107-120. [PMID: 31193718 PMCID: PMC6539411 DOI: 10.1016/j.omto.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/01/2019] [Indexed: 12/24/2022]
Abstract
Intratumoral injection of oncolytic viruses provides a direct means of tumor cell destruction for inoperable tumors. Unfortunately, oncolytic vectors based on human adenovirus (HAdV) typically do not spread efficiently throughout the tumor mass, reducing the efficacy of treatment. In this study, we explore the efficacy of a conditionally replicating HAdV vector expressing the p14 Fusion-Associated Small Transmembrane (FAST) protein (CRAdFAST) in both immunocompetent and immunodeficient mouse models of cancer. The p14 FAST protein mediates cell-cell fusion, which may enhance spread of the virus-mediated, tumor cell-killing effect. In the murine 4T1 model of cancer, treatment with CRAdFAST resulted in enhanced cell death compared to vector lacking the p14 FAST gene, but it did not reduce the tumor growth rate in vivo. In the human A549 lung adenocarcinoma model of cancer, CRAdFAST showed significantly improved oncolytic efficacy in vitro and in vivo. In an A549 xenograft tumor model in vivo, CRAdFAST induced tumor cell fusion, which led to the formation of large acellular regions within the tumor and significantly reduced the tumor growth rate compared to control vector. Our results indicate that expression of p14 FAST from an oncolytic HAdV can improve vector efficacy for the treatment of cancer.
Collapse
Affiliation(s)
- Josh Del Papa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Julia Petryk
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - John C Bell
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
Le Boeuf F, Gebremeskel S, McMullen N, He H, Greenshields AL, Hoskin DW, Bell JC, Johnston B, Pan C, Duncan R. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models. MOLECULAR THERAPY-ONCOLYTICS 2017; 6:80-89. [PMID: 28856238 PMCID: PMC5562180 DOI: 10.1016/j.omto.2017.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
Abstract
The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral fusogens (∼100–150 amino acids) and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant) encoding the p14 FAST protein (VSV-p14) was compared with a similar construct encoding GFP (VSV-GFP) in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK), and natural killer T (NKT) cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.
Collapse
Affiliation(s)
- Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Simon Gebremeskel
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Han He
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | | | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - John C Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Chungen Pan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS B3H4R2, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H4R2, Canada
| |
Collapse
|
9
|
Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents. Viruses 2017; 9:v9010013. [PMID: 28106842 PMCID: PMC5294982 DOI: 10.3390/v9010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/15/2017] [Indexed: 01/26/2023] Open
Abstract
Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics.
Collapse
|