1
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Mudroňová D, Karaffová V, Pešulová T, Koščová J, Maruščáková IC, Bartkovský M, Marcinčáková D, Ševčíková Z, Marcinčák S. The effect of humic substances on gut microbiota and immune response of broilers. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2019.1707780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- D. Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - V. Karaffová
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - T. Pešulová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - J. Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - I. Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - M. Bartkovský
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - D. Marcinčáková
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Z. Ševčíková
- Department of Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - S. Marcinčák
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| |
Collapse
|
3
|
Proal A, Marshall T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr 2018; 6:373. [PMID: 30564562 PMCID: PMC6288442 DOI: 10.3389/fped.2018.00373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The illness ME/CFS has been repeatedly tied to infectious agents such as Epstein Barr Virus. Expanding research on the human microbiome now allows ME/CFS-associated pathogens to be studied as interacting members of human microbiome communities. Humans harbor these vast ecosystems of bacteria, viruses and fungi in nearly all tissue and blood. Most well-studied inflammatory conditions are tied to dysbiosis or imbalance of the human microbiome. While gut microbiome dysbiosis has been identified in ME/CFS, microbes and viruses outside the gut can also contribute to the illness. Pathobionts, and their associated proteins/metabolites, often control human metabolism and gene expression in a manner that pushes the body toward a state of illness. Intracellular pathogens, including many associated with ME/CFS, drive microbiome dysbiosis by directly interfering with human transcription, translation, and DNA repair processes. Molecular mimicry between host and pathogen proteins/metabolites further complicates this interference. Other human pathogens disable mitochondria or dysregulate host nervous system signaling. Antibodies and/or clonal T cells identified in patients with ME/CFS are likely activated in response to these persistent microbiome pathogens. Different human pathogens have evolved similar survival mechanisms to disable the host immune response and host metabolic pathways. The metabolic dysfunction driven by these organisms can result in similar clusters of inflammatory symptoms. ME/CFS may be driven by this pathogen-induced dysfunction, with the nature of dysbiosis and symptom presentation varying based on a patient's unique infectious and environmental history. Under such conditions, patients would benefit from treatments that support the human immune system in an effort to reverse the infectious disease process.
Collapse
Affiliation(s)
- Amy Proal
- Autoimmunity Research Foundation, Thousand Oaks, CA, United States
| | | |
Collapse
|
4
|
Lechner J, Aschoff J, Rudi T. The vitamin D receptor and the etiology of RANTES/CCL-expressive fatty-degenerative osteolysis of the jawbone: an interface between osteoimmunology and bone metabolism. Int J Gen Med 2018; 11:155-166. [PMID: 29731660 PMCID: PMC5927352 DOI: 10.2147/ijgm.s152873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Recent research on vitamin D indicates that our current understanding of the factors leading to chronic inflammation should be revised. One of the key mechanisms by which microbial immunosuppression occurs is the suppression of one of the most common endogenous cell nucleus receptors: the vitamin D receptor (VDR). Autoimmune diseases may be correlated with VDR deactivation (VDR-deac) which occurs when the receptor is no longer able to transcribe antimicrobial agents. Excess 1,25-dihydroxyvitamin D (1,25D) is not converted to 25-hydroxyvitamin D (25D); thus, high 1,25D levels may be accompanied by low 25D values. PATIENTS AND METHODS Since 1,25D promotes osteoclast activity and may thereby cause osteoporosis, fatty-degenerative osteolysis of the jaw (FDOJ), as described by our team, may also be associated with VDR-deac. In 43 patients, vitamin D conversion, immune system function and the quality of bone resorption and formation in the jawbone were related factors that may enhance chronic inflammatory processes. Here, we examine the relationship between immunology and bone metabolism among 43 FDOJ patients and those with immune system diseases (ISDs). RESULTS We provide a link between FDOJ, RANTES/CCL5 overexpression and VDR-deac. CONCLUSION The clinical data demonstrate the interaction between VDR-deac and proinflammatory RANTES/CCL5 overexpression in FDOJ patients.
Collapse
Affiliation(s)
| | | | - Tatjana Rudi
- Statistics at Institute for Epidemiological Studies, Berlin, Germany
| |
Collapse
|
5
|
Abstract
Studies in mice have shown that environmental electromagnetic waves tend to suppress the murine immune system with a potency similar to NSAIDs, yet the nature of any Electrosmog effects upon humans remains controversial. Previously, we reported how the human Vitamin-D receptor (VDR) and its ligand, 1,25-dihydroxyvitamin-D (1,25-D), are associated with many chronic inflammatory and autoimmune diseases. We have shown how olmesartan, a drug marketed for mild hypertension, acts as a high-affinity partial agonist for the VDR, and that it seems to reverse disease activity resulting from VDR dysfunction. We here report that structural instability of the activated VDR becomes apparent when observing hydrogen bond behavior with molecular dynamics, revealing that the VDR pathway exhibits a susceptibility to Electrosmog. Further, we note that characteristic modes of instability lie in the microwave frequency range, which is currently populated by cellphone and WiFi communication signals, and that the susceptibility is ligand dependent. A case series of 64 patient-reported outcomes subsequent to use of a silver-threaded cap designed to protect the brain and brain stem from microwave Electrosmog resulted in 90 % reporting “definite” or “strong” changes in their disease symptoms. This is much higher than the 3–5 % rate reported for electromagnetic hypersensitivity in a healthy population and suggests that effective control of environmental Electrosmog immunomodulation may soon become necessary for successful therapy of autoimmune disease.
Collapse
|
6
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
7
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
8
|
Nishiguchi T, Ito I, Lee JO, Suzuki S, Suzuki F, Kobayashi M. Macrophage polarization and MRSA infection in burned mice. Immunol Cell Biol 2016; 95:198-206. [PMID: 27596946 DOI: 10.1038/icb.2016.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
Mortality associated with Staphylococcus aureus infection remains high during the sub-acute phase of burn injury. In this study, we aimed to improve antibacterial resistance of sub-acutely burned mice through macrophage polarization. Sepsis did not develop in mice at the sub-acute phase of 5% total body surface area (TBSA) burn after being infected with methicillin-resistant S. aureus (MRSA), and M1 macrophages (interleukin (IL)-10-IL-12+ inducible nitric oxide synthase+ Mφ) were isolated from these mice. In contrast, predominantly M2b macrophages (C-C motif chemokine ligand 1 (CCL1)+IL-10+IL-12- Mφ) were isolated from mice with >15% TBSA burn, and all of these mice died after the same MRSA infection. Comparing NOD scid gamma mice inoculated with Mφ with 25% TBSA burns, all mice treated with CCL1 antisense oligodeoxynucleotide (ODN) survived after MRSA infection, whereas all untreated mice given the same infection died within 4 days. CCL1 antisense ODN has been characterized as a specific polarizer of M2bMφ. M1Mφ were isolated from MRSA-infected mice with 25% TBSA burn after treatment with CCL1 antisense ODN, and these mice were shown to be resistant against a lethal dose of MRSA infection. M1Mφ were also isolated from 25% TBSA-burned mice infected with MRSA when the ODN was administered therapeutically, and subsequent sepsis was effectively controlled in these mice. These results indicate that the M2bMφ polarizer is beneficial for controlling MRSA infection in mice at the sub-acute phase of severe burn injury.
Collapse
Affiliation(s)
- Tomoki Nishiguchi
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Ichiaki Ito
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jong O Lee
- Shriners Hospitals for Children, Galveston, TX, USA
| | - Sumihiro Suzuki
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Fujio Suzuki
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Makiko Kobayashi
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| |
Collapse
|
9
|
Kell DB, Kenny LC. A Dormant Microbial Component in the Development of Preeclampsia. Front Med (Lausanne) 2016; 3:60. [PMID: 27965958 PMCID: PMC5126693 DOI: 10.3389/fmed.2016.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is a complex, multisystem disorder that remains a leading cause of morbidity and mortality in pregnancy. Four main classes of dysregulation accompany PE and are widely considered to contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these themselves are caused. We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE (and of the four classes of dysregulation) is, in fact, microbial infection, that most such microbes are dormant and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional resuscitation and growth it is they that are responsible for all the observable sequelae, including the continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) immune response that exacerbates the inflammation further. The known need of microbes for free iron can explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, and urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in PE. Every known proteomic biomarker of "preeclampsia" that we assessed has, in fact, also been shown to be raised in response to infection. An infectious component to PE fulfills the Bradford Hill criteria for ascribing a disease to an environmental cause and suggests a number of treatments, some of which have, in fact, been shown to be successful. PE was classically referred to as endotoxemia or toxemia of pregnancy, and it is ironic that it seems that LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component in the etiology of PE mirrors that for ulcers and other diseases that were previously considered to lack one.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, UK
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, UK
- *Correspondence: Douglas B. Kell,
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Tieri P, Nardini C. Signalling pathway database usability: lessons learned. MOLECULAR BIOSYSTEMS 2014; 9:2401-7. [PMID: 23942525 DOI: 10.1039/c3mb70242a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND issues and limitations related to accessibility, understandability and ease of use of signalling pathway databases may hamper or divert research workflow, leading, in the worst case, to the generation of confusing reference frameworks and misinterpretation of experimental results. In an attempt to retrieve signalling pathway data related to a specific set of test genes, we queried and analysed the results from six of the major curated signalling pathway databases: Reactome, PathwayCommons, KEGG, InnateDB, PID, and Wikipathways. FINDINGS although we expected differences - often a desirable feature for the integration of each individual query, we observed variations of exceptional magnitude, with disproportionate quality and quantity of the results. Some of the more remarkable differences can be explained by the diverse conceptual designs and purposes of the databases, the types of data stored and the structure of the query, as well as by missing or erroneous descriptions of the search procedure. To go beyond the mere enumeration of these problems, we identified a number of operational features, in particular inner and cross coherence, which, once quantified, offer objective criteria to choose the best source of information. CONCLUSIONS in silico biology heavily relies on the information stored in databases. To ensure that computational biology mirrors biological reality and offers focused hypotheses to be experimentally validated, coherence of data codification is crucial and yet highly underestimated. We make practical recommendations for the end-user to cope with the current state of the databases as well as for the maintainers of those databases to contribute to the goal of the full enactment of the open data paradigm.
Collapse
Affiliation(s)
- Paolo Tieri
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yue Yang Road 320, Shanghai, P. R. China
| | | |
Collapse
|
11
|
Immunostimulation in the treatment for chronic fatigue syndrome/myalgic encephalomyelitis. Immunol Res 2014; 56:398-412. [PMID: 23576059 DOI: 10.1007/s12026-013-8413-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) has long been associated with the presence of infectious agents, but no single pathogen has been reliably identified in all patients with the disease. Recent studies using metagenomic techniques have demonstrated the presence of thousands of microbes in the human body that were previously undetected and unknown to science. More importantly, such species interact together by sharing genes and genetic function within communities. It follows that searching for a singular pathogen may greatly underestimate the microbial complexity potentially driving a complex disease like CFS/ME. Intracellular microbes alter the expression of human genes in order to facilitate their survival. We have put forth a model describing how multiple species-bacterial, viral, and fungal-can cumulatively dysregulate expression by the VDR nuclear receptor in order to survive and thus drive a disease process. Based on this model, we have developed an immunostimulatory therapy that is showing promise inducing both subjective and objective improvement in patients suffering from CFS/ME.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To demonstrate how dysbiosis of the human microbiome can drive autoimmune disease. RECENT FINDINGS Humans are superorganisms. The human body harbors an extensive microbiome, which has been shown to differ in patients with autoimmune diagnoses. Intracellular microbes slow innate immune defenses by dysregulating the vitamin D nuclear receptor, allowing pathogens to accumulate in tissue and blood. Molecular mimicry between pathogen and host causes further dysfunction by interfering with human protein interactions. Autoantibodies may well be created in response to pathogens. SUMMARY The catastrophic failure of human metabolism observed in autoimmune disease results from a common underlying pathogenesis - the successive accumulation of pathogens into the microbiome over time, and the ability of such pathogens to dysregulate gene transcription, translation, and human metabolic processes. Autoimmune diseases are more likely passed in families because of the inheritance of a familial microbiome, rather than Mendelian inheritance of genetic abnormalities. We can stimulate innate immune defenses and allow patients to target pathogens, but cell death results in immunopathology.
Collapse
|
13
|
Rajpal DK, Brown JR. The Microbiome as a Therapeutic Target for Metabolic Diseases. Drug Dev Res 2013. [DOI: 10.1002/ddr.21088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepak K. Rajpal
- Computational Biology; GlaxoSmithKline; Research Triangle Park; NC; 27709; USA
| | - James R. Brown
- Computational Biology; GlaxoSmithKline; Collegeville; PA; 19426-0989; USA
| |
Collapse
|
14
|
Dent JE, Nardini C. From desk to bed: computational simulations provide indication for rheumatoid arthritis clinical trials. BMC SYSTEMS BIOLOGY 2013; 7:10. [PMID: 23339423 PMCID: PMC3653749 DOI: 10.1186/1752-0509-7-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 01/18/2013] [Indexed: 12/19/2022]
Abstract
Background Rheumatoid arthritis (RA) is among the most common human systemic autoimmune diseases, affecting approximately 1% of the population worldwide. To date, there is no cure for the disease and current treatments show undesirable side effects. As the disease affects a growing number of individuals, and during their working age, the gathering of all information able to improve therapies -by understanding their and the disease mechanisms of action- represents an important area of research, benefiting not only patients but also societies. In this direction, network analysis methods have been used in previous work to further our understanding of this complex disease, leading to the identification of CRKL as a potential drug target for treatment of RA. Here, we use computational methods to expand on this work, testing the hypothesis in silico. Results Analysis of the CRKL network -available at http://www.picb.ac.cn/ClinicalGenomicNTW/software.html- allows for investigation of the potential effect of perturbing genes of interest. Within the group of genes that are significantly affected by simulated perturbation of CRKL, we are lead to further investigate the importance of PXN. Our results allow us to (1) refine the hypothesis on CRKL as a novel drug target (2) indicate potential causes of side effects in on-going trials and (3) importantly, provide recommendations with impact on on-going clinical studies. Conclusions Based on a virtual network that collects and connects a large number of the molecules known to be involved in a disease, one can simulate the effects of controlling molecules, allowing for the observation of how this affects the rest of the network. This is important to mimic the effect of a drug, but also to be aware of -and possibly control- its side effects. Using this approach in RA research we have been able to contribute to the field by suggesting molecules to be targeted in new therapies and more importantly, to warrant efficacy, to hypothesise novel recommendations on existing drugs currently under test.
Collapse
Affiliation(s)
- Jennifer E Dent
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| | | |
Collapse
|
15
|
Abstract
The human body is actually a vast and changing ecosystem comprised of billions of microbial organisms, known collectively as the microbiome. Within the last few years, the study of the microbiome and its impact on human health has been a rapidly growing area of biomedical science. The gut intestinal tract microbiome has been a particular focus of research given its potential role in many inflammatory and metabolic diseases as well as drug metabolism. Although a nascent field, the potential for modulating the gut microbiome or human host interactions associated with these microbes offers new therapeutic strategies for many chronic diseases, in particular obesity, diabetes and inflammatory bowel diseases. Here we provide an overview of present knowledge about the gut microbiome, its putative role in metabolic diseases and the potential for microbiome focused treatments from the drug development perspective.
Collapse
Affiliation(s)
- Deepak K. Rajpal
- Computational Biology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - James R. Brown
- Computational Biology, GlaxoSmithKline, UP1345, PO Box 5089, Collegeville, PA 19426-0989, USA
| |
Collapse
|
16
|
Poletaev A, Churilov L, Stroev Y, Agapov M. Immunophysiology versus immunopathology: Natural autoimmunity in human health and disease. PATHOPHYSIOLOGY 2012; 19:221-31. [DOI: 10.1016/j.pathophys.2012.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/16/2022] Open
|
17
|
Collison M, Hirt RP, Wipat A, Nakjang S, Sanseau P, Brown JR. Data mining the human gut microbiota for therapeutic targets. Brief Bioinform 2012; 13:751-68. [DOI: 10.1093/bib/bbs002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|