1
|
Hu CM, Tien SC, Lo YC, Huang CH, Ko YL, Wu DN, Lee JH, Wu YT, Yu HM, Lin KG, Zong-You L, Cheng WC. Innovative cyclic peptide disrupts IL-17RB-MLK4 interaction for targeted pancreatic cancer therapy. Biomed Pharmacother 2025; 184:117892. [PMID: 39913969 DOI: 10.1016/j.biopha.2025.117892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
The IL-17B/IL-17RB oncogenic signaling axis promotes pancreatic cancer progression through interaction with mixed-lineage kinase 4 (MLK4). Here, we improved the effectiveness of a therapeutic peptide (TAT-IL17RB403-416, loop peptide) that disrupted IL-17RB/MLK4 interaction by converting its linear structure into a cyclic form. The modified cyclic peptide with higher uptake efficiency inhibited pancreatic cancer cell growth and metastasis, outperforming the original linear peptide both in vitro and in an orthotopic mouse model. At the molecular level, cysteine 408 in IL-17RB was important for mediating interactions with arginine 216 within MLK4 kinase domain. This interaction was fundamental to the efficacy of the cyclic peptide. Additionally, lysine 410 in IL-17RB was essential for maintaining the structural integrity of the cyclic peptide as a protein-protein disruptor These findings provide a deeper understanding of the IL-17RB-MLK4 interaction, offering insights for developing therapeutic agents targeting this pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Chen Lo
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Dan-Ni Wu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; TIGP, Chemical Biology and Molecular Biophysics Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jiin Horng Lee
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Ging Lin
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Lee Zong-You
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Kverneland AH, Harking F, Vej-Nielsen JM, Huusfeldt M, Bekker-Jensen DB, Svane IM, Bache N, Olsen JV. Fully Automated Workflow for Integrated Sample Digestion and Evotip Loading Enabling High-Throughput Clinical Proteomics. Mol Cell Proteomics 2024; 23:100790. [PMID: 38777088 PMCID: PMC11251069 DOI: 10.1016/j.mcpro.2024.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
Protein identification and quantification is an important tool for biomarker discovery. With the increased sensitivity and speed of modern mass spectrometers, sample preparation remains a bottleneck for studying large cohorts. To address this issue, we prepared and evaluated a simple and efficient workflow on the Opentrons OT-2 robot that combines sample digestion, cleanup, and loading on Evotips in a fully automated manner, allowing the processing of up to 192 samples in 6 h. Analysis of 192 automated HeLa cell sample preparations consistently identified ∼8000 protein groups and ∼130,000 peptide precursors with an 11.5 min active liquid chromatography gradient with the Evosep One and narrow-window data-independent acquisition (nDIA) with the Orbitrap Astral mass spectrometer providing a throughput of 100 samples per day. Our results demonstrate a highly sensitive workflow yielding both reproducibility and stability at low sample inputs. The workflow is optimized for minimal sample starting amount to reduce the costs for reagents needed for sample preparation, which is critical when analyzing large biological cohorts. Building on the digesting workflow, we incorporated an automated phosphopeptide enrichment step using magnetic titanium-immobilized metal ion affinity chromatography beads. This allows for a fully automated proteome and phosphoproteome sample preparation in a single step with high sensitivity. Using the integrated digestion and Evotip loading workflow, we evaluated the effects of cancer immune therapy on the plasma proteome in metastatic melanoma patients.
Collapse
Affiliation(s)
- Anders H Kverneland
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, National Center of Cancer Immune Therapy, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Florian Harking
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Inge Marie Svane
- Department of Oncology, National Center of Cancer Immune Therapy, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | | | - Jesper V Olsen
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Gong M, Shen F, Li Y, Ming L, Hong L. MLK4 as an immune marker and its correlation with immune infiltration in Cervical squamous cell carcinoma and endocervical adenocarcinoma(CESC). PLoS One 2023; 18:e0290462. [PMID: 37594950 PMCID: PMC10437903 DOI: 10.1371/journal.pone.0290462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Mixed pedigree kinase 4 (MLK4) is a member of the serine/threonine kinases mixed pedigree kinase (MLKs) family. Few reports on immune-related targets in Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and the role of MLK4 in cervical cancer remains to be studied. The expression of MLK4 in CESC was analyzed by TCGA database containing 306 CESC tissues and 3 peritumoral tissue samples, and the effect of MLK4 on immune invasion was evaluated using the Deseq2 package(Benjamini-Hochberg corrected p-value < 0.05 and log2 fold change ≥|2|). Tissue microarray was used to verify the expression of MLK4 in CESC patients, and it was found that MLK4 was significantly overexpressed in CESC, and significantly correlated with WHO grade. Multiple analysis algorithms revealed that the high expression of MLK4 was negatively correlated with immune cell infiltration in CESC. Analysis showed that MLK4 expression was negatively correlated with the infiltration of various immune cells including CD8+T cells, and MLK4 mRNA expression was positively correlated with immune checkpoints PD-L1,CTLA4, LAG3, and negatively correlated with immune promotion genes CD86 and CD80. Furthermore, vitro assays were performed to investigate the biological characteristics of MLK4 in C33A cells. The EDU and transwell assays demonstrated that the decrease in MLK4 expression in C33A cells resulted in a decrease in cell proliferation and invasion. The silencing of MLK4 resulted in a significant increase in the expression of inflammatory cytokines IL-1β(p<0.05), TNF-α(p<0.01), and IL-6 (p<0.05). The results of cell assays indicate that knocking down MLK4 would inhibit the expression of established biochemical markers CEA, AFP and HCG. Hence, it is plausible that MLK4 could potentially exert a significant influence on the development and progression of Cervical cancer.
Collapse
Affiliation(s)
- Meng Gong
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fujin Shen
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Li
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Ming
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Gynecology Department, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Wu Q, Cui D, Chao X, Chen P, Liu J, Wang Y, Su T, Li M, Xu R, Zhu Y, Zhang Y. Transcriptome Analysis Identifies Strategies Targeting Immune Response-Related Pathways to Control Enterotoxigenic Escherichia coli Infection in Porcine Intestinal Epithelial Cells. Front Vet Sci 2021; 8:677897. [PMID: 34447800 PMCID: PMC8383179 DOI: 10.3389/fvets.2021.677897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine–cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Defeng Cui
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xinyu Chao
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Chen
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Liu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yiding Wang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tongjian Su
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Meng Li
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ruyu Xu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonghong Zhang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
5
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Mao K, Zhang M, Cao J, Zhao X, Gao L, Fu L, Cheng H, Yan C, Xu X, Shi X, Jiang Z, Wang B, Zhang YB, Mi J. Coding Variants are Relevant to the Expression of Obesity-Related Genes for Pediatric Adiposity. Obesity (Silver Spring) 2021; 29:194-203. [PMID: 34494379 DOI: 10.1002/oby.23046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Heredity has a remarkable effect on obesity in an obesogenic environment. Despite the numerous genetic variants that contribute to obesity-related traits, none has been identified in Chinese children. This study aimed to identify novel variants associated with childhood obesity in China. METHODS Promising single-nucleotide variants were obtained using whole-exome sequencing from 76 children who had obesity and 74 children with normal weight, and their associations with obesity-related traits in an additional 6,334-child cohort were investigated. The effects of the genome-wide significant (P < 5E-8) variants on the expression of the implicated genes in blood and adipose tissue were then depicted using transcriptome sequencing. RESULTS Two coding variants associated with obesity with genome-wide significance were identified: rs1059491 (P = 2.57E-28) in SULT1A2 and rs189326455 (P = 8.98E-12) in MAP3K21. In addition, rs1059491 was also significantly associated with several obesity traits. Transcriptome sequencing demonstrated that rs1059491 and rs189326455 were expression quantitative trait loci relevant to the expression levels of several obesity-related genes, such as SULT1A2, ATXN2L, TUFM, and MAP3K21. CONCLUSIONS This work identified two coding variants that were significantly associated with pediatric adiposity and were expression quantitative trait loci for obesity-related genes. This study provides new insights into the pathophysiology of Chinese childhood obesity.
Collapse
Affiliation(s)
- Ke Mao
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meixian Zhang
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Jinshuai Cao
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyuan Zhao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Liwang Gao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Liwan Fu
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hong Cheng
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Chun Yan
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaopeng Xu
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaofeng Shi
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhuoyuan Jiang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bingqing Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong-Biao Zhang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jie Mi
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Wang W, Zhou C, Tang H, Yu Y, Zhang Q. Combined Analysis of DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Escherichia coli F4ab/ac-Induced Diarrhea. Front Cell Infect Microbiol 2020; 10:250. [PMID: 32547963 PMCID: PMC7272597 DOI: 10.3389/fcimb.2020.00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) that express F4 (K88) fimbriae are the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of ETEC F4ab/ac infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in ETEC F4ab/ac infected porcine intestinal epithelial cells. We characterized the pattern of changes in methylation and found 3297 and 1593 differentially methylated regions in cells infected with F4ab and F4ac, respectively. Moreover, 606 and 780 differentially expressed genes (DEGs) in ETEC F4ab and F4ac infected cells were detected and these genes were highly enriched in immune/defense response related pathways. Integrative analysis identified 27 and 10 genes showing inverse correlations between promoter methylation and expression with ETEC F4ab/ac infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon ETEC F4ab/ac infection. Further functional analyses revealed that three DEGs (S100A9, SGO1, and ESPL1) in F4ab infected cells and three DEGs (MAP3K21, PAK6, and MPZL1) in F4ac infected cells are likely involved in the host cells response to ETEC infection. Our data provides further insight into the epigenetic and transcriptomic alterations of ETEC F4ab/ac infected porcine intestinal epithelial cells, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling ETEC F4ab/ac induced diarrhea.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chuanli Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ying Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Abstract
Biofilm bacteria co‐evolve and reach a symbiosis with the host on the gingival surface. The disruption of the homeostatic relationship between plaque bacteria and the host can initiate and promote periodontal disease progression. Recent advances in sequencing technologies allow researchers to profile disease‐associated microbial communities and quantify microbial metabolic activities and host transcriptional responses. In addition to confirming the findings from previous studies, new putative pathogens and novel genes that have not previously been associated with periodontitis, emerge. For example, multiple studies have reported that Synergistetes bacteria are associated with periodontitis. Genes involved in epithelial barrier defense were downregulated in periodontitis, while excessive expression of interleukin‐17 was associated with a hyperinflammatory response in periodontitis and with a unique microbial community. Bioinformatics‐enabled gene ontology pathway analyses provide a panoramic view of the bacterial and host activities as they shift from periodontal health to disease. Additionally, host innate factors, such as genetic variants identified by either a candidate‐gene approach or genome‐wide association analyses, have an impact on subgingival bacterial colonization. Transgenic mice carrying candidate genetic variants, or with the deletion of candidate genes mimicking the deleterious loss‐of‐function variant effect, provide experimental evidence validating the biologic relevance of the novel markers associated with the microbial phenotype identified through a statistical approach. Further refinement in bioinformatics, data management approaches, or statistical tools, are required to gain insight into host‐microbe interactions by harmonizing the multidimensional “big” data at the genomic, transcriptional, and proteomic levels.
Collapse
Affiliation(s)
- Shaoping Zhang
- Periodontics Department, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Ning Yu
- Applied Oral Science Department, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Gallo KA, Ellsworth E, Stoub H, Conrad SE. Therapeutic potential of targeting mixed lineage kinases in cancer and inflammation. Pharmacol Ther 2019; 207:107457. [PMID: 31863814 DOI: 10.1016/j.pharmthera.2019.107457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of intracellular signaling pathways is a key attribute of diseases associated with chronic inflammation, including cancer. Mitogen activated protein kinases have emerged as critical conduits of intracellular signal transmission, yet due to their ubiquitous roles in cellular processes, their direct inhibition may lead to undesired effects, thus limiting their usefulness as therapeutic targets. Mixed lineage kinases (MLKs) are mitogen-activated protein kinase kinase kinases (MAP3Ks) that interact with scaffolding proteins and function upstream of p38, JNK, ERK, and NF-kappaB to mediate diverse cellular signals. Studies involving gene silencing, genetically engineered mouse models, and small molecule inhibitors suggest that MLKs are critical in tumor progression as well as in inflammatory processes. Recent advances indicate that they may be useful targets in some types of cancer and in diseases driven by chronic inflammation including neurodegenerative diseases and metabolic diseases such as nonalcoholic steatohepatitis. This review describes existing MLK inhibitors, the roles of MLKs in various aspects of tumor progression and in the control of inflammatory processes, and the potential for therapeutic targeting of MLKs.
Collapse
Affiliation(s)
- Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hayden Stoub
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Susan E Conrad
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Park JG, Aziz N, Cho JY. MKK7, the essential regulator of JNK signaling involved in cancer cell survival: a newly emerging anticancer therapeutic target. Ther Adv Med Oncol 2019; 11:1758835919875574. [PMID: 31579105 PMCID: PMC6759727 DOI: 10.1177/1758835919875574] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/19/2019] [Indexed: 01/02/2023] Open
Abstract
One of the mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal protein kinase (JNK) plays an important role in regulating cell fate, such as proliferation, differentiation, development, transformation, and apoptosis. Its activity is induced through the interaction of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks), and various scaffolding proteins. Because of the importance of the JNK cascade to intracellular bioactivity, many studies have been conducted to reveal its precise intracellular functions and mechanisms, but its regulatory mechanisms remain elusive. In this review, we discuss the molecular characterization, activation process, and physiological functions of mitogen-activated protein kinase kinase 7 (MKK7), the MAP2K that most specifically controls the activity of JNK. Understanding the role of MKK7/JNK signaling in physiological conditions could spark new hypotheses for targeted anticancer therapies.
Collapse
Affiliation(s)
- Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Li Y, Zuo H, Wang H, Hu A. Decrease of MLK4 prevents hepatocellular carcinoma (HCC) through reducing metastasis and inducing apoptosis regulated by ROS/MAPKs signaling. Biomed Pharmacother 2019; 116:108749. [PMID: 31071576 DOI: 10.1016/j.biopha.2019.108749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) results in large amounts of deaths each year worldwide. To develop more effective treatments for HCC, it is very necessary to define the molecular mechanisms in hepatocarcinogenesis. Mixed lineage kinase (MLK)-4 is a member of the MLK family of mitogen-activated protein kinase kinase kinases, and modulates different cellular responses. However, its role in the meditation of HCC progression remains unclear. In the study, we found that MLK4 was over-expressed in tumor samples of HCC patients. High MLK4 expression was significantly associated with shorter overall survival in HCC. Knockdown of MLK4 inhibited HCC cell proliferation and metastasis, which was partly through reducing matrix metalloproteinase (MMP)-13, MMP2, enhancer of zeste homolog 2 (EZH2) and Vimentin expressions. Apoptosis was significantly induced by MLK4 knockdown in HCC cells via decreasing Bcl-2 and increasing cleaved poly (ADP-ribose) polymerase (PARP), Caspase-7 and -3 expression levels. In addition, MLK4 silence led to a significant reactive oxygen species (ROS) production in liver cancer cells, accompanied with elevated expression of phosphorylated p38, c-Jun N-terminal kinase (JNK) and ERK1/2. Notably, reducing ROS generation and blocking MAPKs (p38/JNK/ERK1/2) signaling markedly abrogated MLK4 knockdown-induced apoptosis in HCC cells. Moreover, MLK4 silence-prevented metastasis was also rescued by scavenging ROS generation and repressing MAPKs pathway. In vivo, injection of MLK4 siRNA markedly inhibited liver tumor growth in xenograft models, and MLK4 knockdown reduced HCC lung metastasis. Together, our study indicated the essential function of MLK4 in HCC progression, providing crucial therapeutic hypothesis for the prevention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, the Affiliated Hospital of Xi'an Medical University, Xi'an, 710068, China
| | - Haibo Zuo
- Department of Liver, Gallbladder, Pancreas & Spleen Surgery, Shunde Hospital of Southern Medical University, Foshan, 528000, China
| | - Hongjian Wang
- Second Cancer Subjects, Tengzhou Central People's Hospital, Tengzhou, 277500, China
| | - Anxiang Hu
- Second Cancer Subjects, Tengzhou Central People's Hospital, Tengzhou, 277500, China.
| |
Collapse
|
12
|
Marusiak AA, Prelowska MK, Mehlich D, Lazniewski M, Kaminska K, Gorczynski A, Korwat A, Sokolowska O, Kedzierska H, Golab J, Biernat W, Plewczynski D, Brognard J, Nowis D. Upregulation of MLK4 promotes migratory and invasive potential of breast cancer cells. Oncogene 2018; 38:2860-2875. [PMID: 30552384 PMCID: PMC6484767 DOI: 10.1038/s41388-018-0618-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/23/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022]
Abstract
Metastasis to distant organs is a major cause for solid cancer mortality, and the acquisition of migratory and invasive phenotype is a key factor in initiation of malignancy. In this study we investigated the contribution of Mixed-Lineage Kinase 4 (MLK4) to aggressive phenotype of breast cancer cells. Our TCGA cancer genomic data analysis revealed that amplification or mRNA upregulation of MLK4 occurred in 23% of invasive breast carcinoma cases. To find the association between MLK4 expression and the specific subtype of breast cancer, we performed a transcriptomic analysis of multiple datasets, which showed that MLK4 is highly expressed in triple-negative breast cancer compared to other molecular subtypes. Depletion of MLK4 in cell lines with high MLK4 expression impaired proliferation and anchorage-dependent colony formation. Moreover, silencing of MLK4 expression significantly reduced the migratory potential and invasiveness of breast cancer cells as well as the number of spheroids formed in 3D cultures. These in vitro findings translate into slower rate of tumor growth in mice upon MLK4 knock-down. Furthermore, we established that MLK4 activates NF-κB signaling and promotes a mesenchymal phenotype in breast cancer cells. Immunohistochemical staining of samples obtained from breast cancer patients revealed a strong positive correlation between high expression of MLK4 and metastatic potential of tumors, which was predominantly observed in TNBC subgroup. Taken together, our results show that high expression of MLK4 promotes migratory and invasive phenotype of breast cancer and may represent a novel target for anticancer treatment.
Collapse
Affiliation(s)
- Anna A Marusiak
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Monika K Prelowska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dawid Mehlich
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Kaminska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Adam Gorczynski
- Department of Pathomorphology, Medical University of Gdansk, Gdańsk, Poland
| | - Aleksandra Korwat
- Department of Pathomorphology, Medical University of Gdansk, Gdańsk, Poland
| | - Olga Sokolowska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Immunology, Medical University o``f Warsaw, Warsaw, Poland
| | - Hanna Kedzierska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University o``f Warsaw, Warsaw, Poland.,Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Gdańsk, Poland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Dominika Nowis
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Genomic Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Immunology, Medical University o``f Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Xi Y, Niu J, Li D, He J, Qin L, Peng X. Mixed lineage kinase-4 promotes gastric carcinoma tumorigenesis through suppression of the c-Jun N-terminal kinase signaling pathway. Exp Ther Med 2018; 16:3317-3324. [PMID: 30233678 PMCID: PMC6143876 DOI: 10.3892/etm.2018.6618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Mixed lineage kinase-4 (MLK-4) is an important member of the mixed-lineage family of kinases that regulates the extracellular signal-regulated kinases and c-Jun N-terminal kinase (JNK) signaling pathways. The functions and mechanisms of MLK-4 in cancer initiation and progression have not been well understood. The present study investigated the expression, function and regulatory mechanism of MLK-4 in gastric carcinoma cells. Biochemical data indicated that normal MLK-4 was downregulated, which exerted dominant negative effects on gastric carcinoma cell viability, migration and invasion. The experimental data demonstrated that MLK-4 supplement abrogated activity of these mutants and induced inhibitory effects on gastric carcinoma cell viabilty, migration and invasion in vitro and in vivo. In addition, to determine the regulatory mechanism of MLK-4, its signaling pathway was assessed in gastric carcinoma cancer cells by regulating MLK-4. The present observations indicated that restoring MLK-4 activity by supplemental MLK-4 reduced gastric carcinoma cell colony formation in vitro and suppressed tumor viability, migration and invasion in vivo. The results of the present study indicated that MLK-4 may be a potential protein for targeting gastric carcinoma by suppressing kinases, which may lead to reduction of JNK signaling and enhance therapeutic efficacy in gastric carcinoma.
Collapse
Affiliation(s)
- Yu Xi
- Department of General Surgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jianhua Niu
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Dongmei Li
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jiagen He
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Le Qin
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xinyu Peng
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
14
|
Giraud S, Steichen C, Allain G, Couturier P, Labourdette D, Lamarre S, Ameteau V, Tillet S, Hannaert P, Thuillier R, Hauet T. Dynamic transcriptomic analysis of Ischemic Injury in a Porcine Pre-Clinical Model mimicking Donors Deceased after Circulatory Death. Sci Rep 2018; 8:5986. [PMID: 29654283 PMCID: PMC5899088 DOI: 10.1038/s41598-018-24282-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Due to organ shortage, clinicians are prone to consider alternative type of organ donors among them donors deceased after circulatory death (DCD). However, especially using these organs which are more prone to graft dysfunction, there is a need to better understand mechanistic events ocuring during ischemia phase and leading to ischemia/reperfusion injuries (IRI). The aim of this study is to provide a dynamic transcriptomic analysis of preclinical porcine model kidneys subjected to ischemic stress mimicking DCD donor. We compared cortex and corticomedullary junction (CMJ) tissues from porcine kidneys submitted to 60 min warm ischemia (WI) followed by 0, 6 or 24 hours of cold storage in University of Wisconsin solution versus control non-ischemic kidneys (n = 5 per group). 29 cortex genes and 113 CMJ genes were significantly up or down-regulated after WI versus healthy kidneys, and up to 400 genes were regulated after WI followed by 6 or 24 hours of cold storage (p < 0.05). Functionnal enrichment analysis (home selected gene kinetic classification, Gene-ontology-biological processes and Gene-ontology-molecular-function) revealed relevant genes implication during WI and cold storage. We uncovered targets which we will further validate as biomarkers and new therapeutic targets to optimize graft kidney quality before transplantation and improve whole transplantation outcome.
Collapse
Affiliation(s)
- Sebastien Giraud
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France.,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France
| | - Clara Steichen
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France
| | - Geraldine Allain
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France.,CHU Poitiers, Service de chirurgie cardio-thoracique, Poitiers, 86000, France
| | - Pierre Couturier
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France.,MOPICT, IBiSA plateforme 'Experimental Surgery and Transplantation', Domaine du Magneraud, Surgères, F-17700, France
| | | | - Sophie Lamarre
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, F- 31077, France
| | - Virginie Ameteau
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France
| | - Solenne Tillet
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France
| | | | - Raphael Thuillier
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France.,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France
| | - Thierry Hauet
- Inserm U1082 IRTOMIT, Poitiers, F-86000, France. .,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, F-86000, France. .,CHU Poitiers, Service de Biochimie, Poitiers, F-86000, France. .,MOPICT, IBiSA plateforme 'Experimental Surgery and Transplantation', Domaine du Magneraud, Surgères, F-17700, France. .,FHU SUPORT 'SUrvival oPtimization in ORgan Transplantation', Poitiers, F-86000, France.
| |
Collapse
|
15
|
Blessing NA, Kasturirangan S, Zink EM, Schroyer AL, Chadee DN. Osmotic and heat stress-dependent regulation of MLK4β and MLK3 by the CHIP E3 ligase in ovarian cancer cells. Cell Signal 2017; 39:66-73. [PMID: 28757353 PMCID: PMC5592140 DOI: 10.1016/j.cellsig.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/26/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Mixed Lineage Kinase 3 (MLK3), a member of the MLK subfamily of protein kinases, is a mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) that activates MAPK signalling pathways and regulates cellular responses such as proliferation, invasion and apoptosis. MLK4β, another member of the MLK subfamily, is less extensively studied, and the regulation of MLK4β by stress stimuli is not known. In this study, the regulation of MLK4β and MLK3 by osmotic stress, thermostress and heat shock protein 90 (Hsp90) inhibition was investigated in ovarian cancer cells. MLK3 and MLK4β protein levels declined under conditions of prolonged osmotic stress, heat stress or exposure to the Hsp90 inhibitor geldanamycin (GA); and MLK3 protein declined faster than MLK4β. Similar to MLK3, the reduction in MLK4β protein in cells exposed to heat or osmotic stresses occurred via a mechanism that involves the E3 ligase, carboxy-terminus of Hsc70-interacting protein (CHIP). Both heat shock protein 70 (Hsp70) and CHIP overexpression led to polyubiquitination and a decrease in endogenous MLK4β protein, and MLK4β was ubiquitinated by CHIP in vitro. In untreated cells and cells exposed to osmotic and heat stresses for short time periods, small interfering RNA (siRNA) knockdown of MLK4β elevated the levels of activated MLK3, c-Jun N-terminal kinase (JNK) and p38 MAPKs. Furthermore, MLK3 binds to MLK4β, and this association is regulated by osmotic stress. These results suggest that in the early response to stressful stimuli, MLK4β-MLK3 binding is important for regulating MLK3 activity and MAPK signalling, and after prolonged periods of stress exposure, MLK4β and MLK3 proteins decline via CHIP-dependent degradation. These findings provide insight into how heat and osmotic stresses regulate MLK4β and MLK3, and reveal an important function for MLK4β in modulating MLK3 activity in stress responses.
Collapse
Affiliation(s)
- Natalya A Blessing
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | | | - Evan M Zink
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - April L Schroyer
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Deborah N Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
16
|
Fafián-Labora J, Lesende-Rodriguez I, Fernández-Pernas P, Sangiao-Alvarellos S, Monserrat L, Arntz OJ, Loo FJVD, Mateos J, Arufe MC. Effect of age on pro-inflammatory miRNAs contained in mesenchymal stem cell-derived extracellular vesicles. Sci Rep 2017; 7:43923. [PMID: 28262816 PMCID: PMC5338265 DOI: 10.1038/srep43923] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023] Open
Abstract
Stem cells possess significant age-dependent differences in their immune-response profile. These differences were analysed by Next-Generation Sequencing of six age groups from bone marrow mesenchymal stem cells. A total of 9,628 genes presenting differential expression between age groups were grouped into metabolic pathways. We focused our research on young, pre-pubertal and adult groups, which presented the highest amount of differentially expressed genes related to inflammation mediated by chemokine and cytokine signalling pathways compared with the newborn group, which was used as a control. Extracellular vesicles extracted from each group were characterized by nanoparticle tracking and flow cytometry analysis, and several micro-RNAs were verified by quantitative real-time polymerase chain reaction because of their relationship with the pathway of interest. Since miR-21-5p showed the highest statistically significant expression in extracellular vesicles from mesenchymal stem cells of the pre-pubertal group, we conducted a functional experiment inhibiting its expression and investigating the modulation of Toll-Like Receptor 4 and their link to damage-associated molecular patterns. Together, these results indicate for the first time that mesenchymal stem cell-derived extracellular vesicles have significant age-dependent differences in their immune profiles.
Collapse
Affiliation(s)
- J. Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - I. Lesende-Rodriguez
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - P. Fernández-Pernas
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - S. Sangiao-Alvarellos
- Grupo Fisiopatología Endocrina, Nutricional y Médica (FENM-CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - L. Monserrat
- Cardiology Department, Health in Code, As Xubias, 15006, A Coruña, Spain
| | - O. J. Arntz
- Experimental Rheumatology, Radboudumc University Medical Center, Huispost 272, route 272, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - F. J. Van de Loo
- Experimental Rheumatology, Radboudumc University Medical Center, Huispost 272, route 272, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - J. Mateos
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - M. C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC). CIBER-BBN/ISCIII. Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade de A Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| |
Collapse
|
17
|
Brkic Z, Petrovic Z, Franic D, Mitic M, Adzic M. Male-specific effects of lipopolysaccharide on glucocorticoid receptor nuclear translocation in the prefrontal cortex of depressive rats. Psychopharmacology (Berl) 2016; 233:3315-30. [PMID: 27387895 DOI: 10.1007/s00213-016-4374-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Inflammation plays a key role in the pathogenesis of major depressive disorder (MDD) for a subset of depressed individuals. One of the possible routes by which cytokines can induce depressive symptoms is by promoting the dysregulation of hypothalamic-pituitary-adrenal (HPA) axis via altering glucocorticoid receptor (GR) function. OBJECTIVES We investigated the mechanisms that finely tune the GR functioning upon lipopolysaccharide (LPS), i.e., subcellular localization of the GR, the levels of its co-chaperones FK506 binding protein 52 (FKBP4) and FK506 binding protein 51 (FKBP5), the receptor phosphorylation status along with its upstream kinases, as well as mRNA levels of GR-regulated genes in the prefrontal cortex (PFC) of male and female Wistar rats. RESULTS We found that upon LPS treatment, animals of both sexes exhibited depressive-like behavior and elevated serum corticosterone. However, the nuclear translocation of the GR and both FKBPs was found only in males, together with elevated phosphorylation of the GR at serine 232 and 246 and the activation and nuclear translocation of all analyzed kinases. This activation of the GR in males was paralleled with altered expression of GR-related genes, particularly PTGS2 and BDNF. CONCLUSION Our data suggest that LPS treatment produced alterations in the mechanisms that control the GR nuclear translocation in the PFC of males, and that these mechanisms may contribute to the sex-specific dysfunction of GR-related neurotrophic and neuroinflammatory processes in inflammation-associated depression.
Collapse
Affiliation(s)
- Zeljka Brkic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Zorica Petrovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Dusanka Franic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522-MBE090, Belgrade, 11001, Serbia.
| |
Collapse
|
18
|
Mixed – Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1581-6. [DOI: 10.1016/j.bbadis.2016.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
|
19
|
MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability. Acta Pharmacol Sin 2016; 37:889-97. [PMID: 27063215 DOI: 10.1038/aps.2016.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2016] [Indexed: 12/20/2022]
Abstract
AIM MicroRNAs play pivotal roles in regulation of both innate and adaptive immune responses. In the present study, we investigated the effects of microRNA-124 (miR-124) on production of the pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-treated mouse macrophages. METHODS Mouse macrophage cell line RAW264.7 was stimulated with LPS (100 ng/mL). The levels of miR-124 and TNF-α mRNA were evaluated using q-PCR. ELISA and Western blotting were used to detect TNF-α protein level in cell supernatants and cells, respectively. 3'-UTR luciferase reporter assays were used to analyze the targets of miR-124. For in vivo experiments, mice were injected with LPS (30 mg/kg, ip). RESULTS LPS stimulation significantly increased the mRNA level of miR-124 in RAW264.7 macrophages in vitro and mice in vivo. In RAW264.7 macrophages, knockdown of miR-124 with miR-124 inhibitor dose-dependently increased LPS-stimulated production of TNF-α protein and prolonged the half-life of TNF-α protein, but did not change TNF-α mRNA levels, whereas overexpression of miR-124 with miR-124 mimic produced the opposite effects. Furthermore, miR-124 was found to directly target two components of deubiquitinating enzymes: ubiquitin-specific proteases (USP) 2 and 14. Knockdown of USP2 or USP14 accelerated protein degradation of TNF-α, and abolished the effect of miR-124 on TNF-α protein stability. CONCLUSION miR-124, targeting USP2 and USP14, negatively regulates LPS-induced TNF-α production in mouse macrophages, suggesting miR-124 as a new therapeutic target in inflammation-related diseases.
Collapse
|
20
|
Dunn J, McCuaig R, Tu WJ, Hardy K, Rao S. Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes. BMC Immunol 2015; 16:27. [PMID: 25943594 PMCID: PMC4422045 DOI: 10.1186/s12865-015-0089-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Background Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to “remember” previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an antigen, previously activated genes are transcribed more rapidly and robustly in memory T cells compared to their naïve counterparts. The ability for cells to remember past transcriptional responses is termed “adaptive transcriptional memory”. Results Recent global epigenome studies suggest that epigenetic mechanisms are central to establishing and maintaining transcriptional memory, with elegant studies in model organisms providing tantalizing insights into the epigenetic programs that contribute to adaptive immunity. These epigenetic mechanisms are diverse, and include not only classical acetylation and methylation events, but also exciting and less well-known mechanisms involving histone structure, upstream signalling pathways, and nuclear localisation of genomic regions. Conclusions Current global health challenges in areas such as tuberculosis and influenza demand not only more effective and safer vaccines, but also vaccines for a wider range of health priorities, including HIV, cancer, and emerging pathogens such as Ebola. Understanding the multi-layered epigenetic mechanisms that underpin the rapid recall responses of memory T cells following reactivation is a critical component of this development pathway.
Collapse
Affiliation(s)
- Jennifer Dunn
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Robert McCuaig
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Wen Juan Tu
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Kristine Hardy
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Sudha Rao
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| |
Collapse
|
21
|
Moreira GCM, Godoy TF, Boschiero C, Gheyas A, Gasparin G, Andrade SCS, Paduan M, Montenegro H, Burt DW, Ledur MC, Coutinho LL. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Anim Genet 2015; 46:141-7. [PMID: 25643900 DOI: 10.1111/age.12263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 12/17/2022]
Abstract
Abdominal fat content is an economically important trait in commercially bred chickens. Although many quantitative trait loci (QTL) related to fat deposition have been detected, the resolution for these regions is low and functional variants are still unknown. The current study was conducted aiming at increasing resolution for a region previously shown to have a QTL associated with fat deposition, to detect novel variants from this region and to annotate those variants to delineate potentially functional ones as candidates for future studies. To achieve this, 18 chickens from a parental generation used in a reciprocal cross between broiler and layer lines were sequenced using the Illumina next-generation platform with an initial coverage of 18X/chicken. The discovery of genetic variants was performed in a QTL region located on chromosome 3 between microsatellite markers LEI0161 and ADL0371 (33,595,706-42,632,651 bp). A total of 136,054 unique SNPs and 15,496 unique INDELs were detected in this region, and after quality filtering, 123,985 SNPs and 11,298 INDELs were retained. Of these variants, 386 SNPs and 15 INDELs were located in coding regions of genes related to important metabolic pathways. Loss-of-function variants were identified in several genes, and six of those, namely LOC771163, EGLN1, GNPAT, FAM120B, THBS2 and GGPS1, were related to fat deposition. Therefore, these loss-of-function variants are candidate mutations for conducting further studies on this important trait in chickens.
Collapse
Affiliation(s)
- G C M Moreira
- Departamento de Zootecnia, USP/ESALQ, Piracicaba, SP, 13418-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cannabinoid receptor 2 protects against acute experimental sepsis in mice. Mediators Inflamm 2013; 2013:741303. [PMID: 23781122 PMCID: PMC3679685 DOI: 10.1155/2013/741303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 01/29/2023] Open
Abstract
The systemic inflammatory response syndrome can be self-limited or can progress to severe sepsis and septic shock. Despite significant advances in the understanding of the molecular and cellular mechanisms of septic shock, it is still one of the most frequent and serious problems confronting clinicians in the treatments. And the effects of cannabinoid receptor 2 (CB2R) on the sepsis still remain undefined. The present study was aimed to explore the role and mechanism of CB2R in acute sepsis model of mice. Here, we found that mice were more vulnerable for lipopolysaccharide- (LPS-) induced death and inflammation after CB2R deletion (CB2R−/−). CB2R agonist, GW405833, could significantly extend the survival rate and decrease serum proinflammatory cytokines in LPS-treated mice. GW405833 dose-dependently inhibits proinflammatory cytokines release in splenocytes and peritoneal macrophages as well as splenocytes proliferation, and these effects were partly abolished in CB2R−/− splenocytes but completely abolished in CB2R−/− peritoneal macrophages. Further studies showed that GW405833 inhibits LPS-induced phosphorylation of ERK1/2 and STAT3 and blocks IκBα degradation and NF-κB p65 nuclear translocation in macrophages. All data together showed that CB2R provides a protection and is a potential therapeutic target for the sepsis.
Collapse
|
23
|
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are composed of a phosphorelay signaling module where an activated MAP kinase kinase kinase (MAP3K) phosphorylates and activates a MAPK kinase (MAP2K) that in turn phosphorylates and activates a MAPK. The biological outcome of MAPK signaling is the regulation of cellular responses such as proliferation, differentiation, migration, and apoptosis. The MAP3K mixed lineage kinase 3 (MLK3) phosphorylates MAP2Ks to activate multiple MAPK signaling pathways, and MLK3 also has functions in cell signaling that are independent of its kinase activity. The recent elucidation of essential functions for MLK3 in tumour cell proliferation, migration, and invasion has drawn attention to the MLKs as potential therapeutic targets for cancer treatments. The mounting evidence that suggests a role for MLK3 in tumourigenesis and establishment of the malignant phenotype is the focus of this review.
Collapse
Affiliation(s)
- Deborah N Chadee
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
24
|
Martini M, Russo M, Lamba S, Vitiello E, Crowley EH, Sassi F, Romanelli D, Frattini M, Marchetti A, Bardelli A. Mixed Lineage Kinase MLK4 Is Activated in Colorectal Cancers Where It Synergistically Cooperates with Activated RAS Signaling in Driving Tumorigenesis. Cancer Res 2013; 73:1912-21. [PMID: 23319808 DOI: 10.1158/0008-5472.can-12-3074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Abi Saab WF, Brown MS, Chadee DN. MLK4β functions as a negative regulator of MAPK signaling and cell invasion. Oncogenesis 2012; 1:e6. [PMID: 23552557 PMCID: PMC3412637 DOI: 10.1038/oncsis.2012.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mixed lineage kinase (MLK) 4, or MLK4, is a member of the MLK family of mitogen-activated protein kinase kinase kinases (MAP3Ks). Typically, MAP3Ks function to activate the mitogen-activated protein kinase (MAPK)-signaling pathways and regulate different cellular responses. However, here we report that MLK4β, unlike the other MLKs, negatively regulates the activities of the MAPKs, p38, c-Jun N-terminal kinase and extracellular signal-regulated kinase, and the MAP2Ks, MEK3 and 6. Our results show that MLK4β inhibits sorbitol- and tumor necrosis factor-induced activation of p38. Furthermore, MLK4β interacts with another MLK family member, MLK3, in HCT116 cells. Exogenous expression of MLK4β inhibits activation of MLK3 and also blocks matrix metalloproteinase-9 gelatinase activity and invasion in SKOV3 ovarian cancer cells. Collectively, our data establish MLK4β as a novel suppressor of MLK3 activation, MAPK signaling and cell invasion.
Collapse
Affiliation(s)
- W F Abi Saab
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
26
|
Weng NP, Araki Y, Subedi K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol 2012; 12:306-15. [PMID: 22421787 DOI: 10.1038/nri3173] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How the immune system remembers a previous encounter with a pathogen and responds more efficiently to a subsequent encounter has been one of the central enigmas for immunologists for over a century. The identification of pathogen-specific memory lymphocytes that arise after an infection provided a cellular basis for immunological memory. But the molecular mechanisms of immunological memory remain only partially understood. The emerging evidence suggests that epigenetic changes have a key role in controlling the distinct transcriptional profiles of memory lymphocytes and thus in shaping their function. In this Review, we summarize the recent progress that has been made in assessing the differential gene expression and chromatin modifications in memory CD4(+) and CD8(+) T cells, and we present our current understanding of the molecular basis of memory T cell function.
Collapse
Affiliation(s)
- Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|
27
|
Yang W. Some research advances of immune mechanism during infection in China. SCIENCE CHINA LIFE SCIENCES 2011; 54:1153-5. [PMID: 22227909 PMCID: PMC7099174 DOI: 10.1007/s11427-011-4258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/30/2011] [Indexed: 11/26/2022]
Affiliation(s)
- Wei Yang
- Institute of Biophyisics, Chinese Academy of Sciences, Beijing 100001, China.
| |
Collapse
|