1
|
Zhang K, Zhu J, Wang P, Chen Y, Wang Z, Ge X, Wu J, Chen L, Lu Y, Xu P, Yao J. Plasma metabolites as mediators in immune cell-pancreatic cancer risk: insights from Mendelian randomization. Front Immunol 2024; 15:1402113. [PMID: 38933268 PMCID: PMC11199692 DOI: 10.3389/fimmu.2024.1402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background Immune cells play a crucial role in the development and progression of pancreatic cancer, yet the causal relationship remains uncertain due to complex immune microenvironments and conflicting research findings. Mendelian randomization (MR), this study aims to delineate the causal relationships between immune cells and pancreatic cancer while identifying intermediary factors. Methods The genome-wide association study (GWAS) data on immune cells, pancreatic cancer, and plasma metabolites are derived from public databases. In this investigation, inverse variance weighting (IVW) as the primary analytical approach to investigate the causal relationship between exposure and outcome. Furthermore, this study incorporates MR-Egger, simple mode, weighted median, and weighted mode as supplementary analytical approaches. To ensure the reliability of our findings, we further assessed horizontal pleiotropy and heterogeneity and evaluated the stability of MR results using the Leave-one-out method. In conclusion, this study employed mediation analysis to elucidate the potential mediating effects of plasma metabolites. Results Our investigation revealed a causal relationship between immune cells and pancreatic cancer, highlighting the pivotal roles of CD11c+ monocytes (odds ratio, ORIVW=1.105; 95% confidence interval, 95%CI: 1.002-1.218; P=0.045), HLA DR+ CD4+ antigen-presenting cells (ORIVW=0.920; 95%CI: 0.873-0.968; P=0.001), and HLA DR+ CD8br T cells (ORIVW=1.058; 95%CI: 1.002-1.117; P=0.041) in pancreatic cancer progression. Further mediation analysis indicated that oxalate (proportion of mediation effect in total effect: -11.6%, 95% CI: -89.7%, 66.6%) and the mannose to trans-4-hydroxyproline ratio (-19.4, 95% CI: -136%, 96.8%) partially mediate the relationship between HLA DR+ CD8br T cells and pancreatic cancer in nature. In addition, our analysis indicates that adrenate (-8.39%, 95% CI: -18.3%, 1.54%) plays a partial mediating role in the association between CD11c+ monocyte and pancreatic cancer, while cortisone (-26.6%, 95% CI: 138%, -84.8%) acts as a partial mediator between HLA DR+ CD4+ AC and pancreatic cancer. Conclusion This MR investigation provides evidence supporting the causal relationship between immune cell and pancreatic cancer, with plasma metabolites serving as mediators. Identifying immune cell phenotypes with potential causal effects on pancreatic cancer sheds light on its underlying mechanisms and suggests novel therapeutic targets.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian Medical University, Dalian, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Long Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Yipin Lu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital Affiliated Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Wang H, Liu B, Long J, Yu J, Ji X, Li J, Zhu N, Zhuang X, Li L, Chen Y, Liu Z, Wang S, Zhao S. Integrative analysis identifies two molecular and clinical subsets in Luminal B breast cancer. iScience 2023; 26:107466. [PMID: 37636034 PMCID: PMC10448479 DOI: 10.1016/j.isci.2023.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Comprehensive multiplatform analysis of Luminal B breast cancer (LBBC) specimens identifies two molecularly distinct, clinically relevant subtypes: Cluster A associated with cell cycle and metabolic signaling and Cluster B with predominant epithelial mesenchymal transition (EMT) and immune response pathways. Whole-exome sequencing identified significantly mutated genes including TP53, PIK3CA, ERBB2, and GATA3 with recurrent somatic mutations. Alterations in DNA methylation or transcriptomic regulation in genes (FN1, ESR1, CCND1, and YAP1) result in tumor microenvironment reprogramming. Integrated analysis revealed enriched biological pathways and unexplored druggable targets (cancer-testis antigens, metabolic enzymes, kinases, and transcription regulators). A systematic comparison between mRNA and protein displayed emerging expression patterns of key therapeutic targets (CD274, YAP1, AKT1, and CDH1). A potential ceRNA network was developed with a significantly different prognosis between the two subtypes. This integrated analysis reveals a complex molecular landscape of LBBC and provides the utility of targets and signaling pathways for precision medicine.
Collapse
Affiliation(s)
- Huina Wang
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Bo Liu
- School of Mathematical and Computational Sciences, Massey University, Palmerston North 4472, New Zealand
| | - Junqi Long
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiangyong Yu
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinchan Ji
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jinmeng Li
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Nian Zhu
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Xujie Zhuang
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Lujia Li
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuhaoran Chen
- School of Software Engineering, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shu Wang
- Breast Disease Center, Peking University People’s Hospital, Peking University, Beijing 100044, China
| | - Shuangtao Zhao
- Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
3
|
Song Q, Xu SX, Wu JZ, Ling L, Wang S, Shu XH, Ying DN, Pei WW, Wu YC, Sun SF, Zhang YN, Zhou SH, Shao ZY. The preoperative platelet to neutrophil ratio and lymphocyte to monocyte ratio are superior prognostic indicators compared with other inflammatory biomarkers in ovarian cancer. Front Immunol 2023; 14:1177403. [PMID: 37457691 PMCID: PMC10347525 DOI: 10.3389/fimmu.2023.1177403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Previous studies have suggested that the ratios of immune-inflammatory cells could serve as prognostic indicators in ovarian cancer. However, which of these is the superior prognostic indicator in ovarian cancer remains unknown. In addition, studies on the prognostic value of the platelet to neutrophil ratio (PNR) in ovarian cancer are still limited. Methods A cohort of 991 ovarian cancer patients was analyzed in the present study. Receiver operator characteristic (ROC) curves were utilized to choose the optimal cut-off values of inflammatory biomarkers such as neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and PNR. The correlation of inflammatory biomarkers with overall survival (OS) and relapse-free survival (RFS) was investigated by Kaplan-Meier methods and log-rank test, followed by Cox regression analyses. Results Kaplan-Meier curves suggested that LMR<3.39, PLR≥181.46, and PNR≥49.20 had obvious associations with worse RFS (P<0.001, P=0.018, P<0.001). Multivariate analysis suggested that LMR (≥3.39 vs. <3.39) (P=0.042, HR=0.810, 95% CI=0.661-0.992) and PNR (≥49.20 vs. <49.20) (P=0.004, HR=1.351, 95% CI=1.103-1.656) were independent prognostic indicators of poor RFS. In addition, Kaplan-Meier curves indicated that PLR≥182.23 was significantly correlated with worse OS (P=0.039). Conclusion Taken together, PNR and LMR are superior prognostic indicators compared with NLR, PLR, and SII in patients with ovarian cancer.
Collapse
Affiliation(s)
- Qian Song
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Song-Xiao Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jun-Zhou Wu
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lin Ling
- Department of Gynaecology, Haining People’s Hospital, Haining, Zhejiang, China
| | - Sheng Wang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xin-Hua Shu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dan-Ni Ying
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wang-Wei Pei
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yu-Chen Wu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Su-Fang Sun
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yi-Ning Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Si-Hang Zhou
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhu-Yan Shao
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Abou Shousha S, Baheeg S, Ghoneim H, Zoheir M, Hemida M, Shahine Y. The effect of Fas/FasL pathway blocking on apoptosis and stemness within breast cancer tumor microenvironment (preclinical study). Breast Dis 2023; 42:163-176. [PMID: 37334575 DOI: 10.3233/bd-220077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Evasion of the immune system is the tumor's key strategy for its maintenance and progression. Thus, targeting the tumor microenvironment (TME) is considered one of the most promising approaches for fighting cancer, where immune cells within the TME play a vital role in immune surveillance and cancer elimination.FasL is one of the most important death ligands expressed by tumor-infiltrating lymphocytes (TILs) and plays a vital role in eliminating Fas-expressing cancer cells via Fas/FasL pathway-induced apoptosis. However, tumor cells can express elevated levels of FasL inducing apoptosis to TILs. Fas/FasL expression is linked to the maintenance of cancer stem cells (CSCs) within the TME, contributing to tumor aggressiveness, metastasis, recurrence, and chemoresistance.This study is considered the first study designed to block the overexpressed FasL on the tumor cells within TME mimicking tissue culture system using rFas molecules and supplementing the Fas enriched tissue culture system with blocked Fas - peripheral blood mononuclear cells PBMCs (using anti-Fas mAb) to protect them from tumor counterattack and augment their ability to induce tumor cell apoptosis and stemness inhibition.A significantly increased level of apoptosis and decreased expression of CD 44 (CSCs marker) was observed within the east tumor tissue culture system enriched with Fas molecules and anti-Fas treated PBMCs and the one enriched with Fas molecules only compared to the breast tumor tissues cultured alone (p < 0.001). Accordingly, we can consider the current study as a promising proposed immunotherapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Seham Abou Shousha
- Medical Research Institute, Immunology and Allergy Department, Alexandria University, Alexandria, Egypt
| | - Suzan Baheeg
- National Institute of Oceanography and Fisheries, Central Laboratories Unit, Alexandria, Egypt
| | - Hossam Ghoneim
- Medical Research Institute, Immunology and Allergy Department, Alexandria University, Alexandria, Egypt
| | - Malak Zoheir
- Medical Research Institute, Pathology Department, Alexandria University, Alexandria, Egypt
| | - Mahmoud Hemida
- Medical Research Institute, Department of Surgery, Alexandria University, Alexandria, Egypt
| | - Yasmine Shahine
- Faculty of Pharmacy, Department of Microbiology & Immunology, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Anwar MM, Albanese C, Hamdy NM, Sultan AS. Rise of the natural red pigment 'prodigiosin' as an immunomodulator in cancer. Cancer Cell Int 2022; 22:419. [PMID: 36577970 PMCID: PMC9798661 DOI: 10.1186/s12935-022-02815-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer is a heterogeneous disease with multifaceted drug resistance mechanisms (e.g., tumour microenvironment [TME], tumour heterogeneity, and immune evasion). Natural products are interesting repository of bioactive molecules, especially those with anticancer activities. Prodigiosin, a red pigment produced by Serratia marcescens, possesses inherent anticancer characteristics, showing interesting antitumour activities in different cancers (e.g., breast, gastric) with low or without harmful effects on normal cells. The present review discusses the potential role of prodigiosin in modulating and reprogramming the metabolism of the various immune cells in the TME, such as T and B lymphocytes, tumour-associated macrophages (TAMs), natural killer (NK) cells, and tumour-associated dendritic cells (TADCs), and myeloid-derived suppressor cells (MDSCs) which in turn might introduce as an immunomodulator in cancer therapy.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- grid.7155.60000 0001 2260 6941Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Chris Albanese
- grid.516085.f0000 0004 0606 3221Oncology and Radiology Departments, Lombardi Comprehensive Cancer Center, Washington, D.C. USA
| | - Nadia M. Hamdy
- Department of Biochemistry, Ain Shams Faculty of Pharmacy, Cairo, Egypt
| | - Ahmed S. Sultan
- grid.7155.60000 0001 2260 6941Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Wang J, Liu T, Huang T, Shang M, Wang X. The mechanisms on evasion of anti-tumor immune responses in gastric cancer. Front Oncol 2022; 12:943806. [PMID: 36439472 PMCID: PMC9686275 DOI: 10.3389/fonc.2022.943806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 10/22/2023] Open
Abstract
The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/β-catenin, Notch, Hippo and TGF-β/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Damasceno KA, dos Santos-Conceição AM, Silva LP, Cardoso TMDS, Vieira-Filho CHDC, Figuerêdo SHS, Martins-Filho E, de Faria BGO, da Costa-Neto JM, Cassali GD, Estrela-Lima A. Factors related to the suppression of the antitumour immune response in female dogs with inflammatory mammary carcinoma. PLoS One 2022; 17:e0267648. [PMID: 35512031 PMCID: PMC9071162 DOI: 10.1371/journal.pone.0267648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory mammary carcinoma (IMC), a neoplasia affecting women and female dogs, is considered an aggressive cancer with high metastatic potential and a low survival rate. Studies focused on the tumour microenvironment indicate that the aggressive behaviour of this tumour is primarily correlated with immunological factors as well as inflammation. The objective of this study was to analyse the possible strategies used by the tumour cells to suppress the immune response in female dogs with IMC. Forty-six female dogs were divided into three groups: control (C, n = 10), IMC (n = 14) and mammary carcinoma (MC, n = 22). Clinical-pathological evaluations, survival at follow-up, immunophenotyping of leukocytes in peripheral blood and tumours, and immunohistochemical evaluation of CD4+, granzyme B, perforin and FAS-L were performed. Clinical and pathological results showed a higher frequency of the primary form of neoplasia, solid arrays of tumor cells and a lower survival rate in the IMC group (30 days). Morphometric analysis of inflammatory infiltrate revealed more lymphocytes and macrophages in the IMC group. Immunophenotyping analysis of peripheral blood revealed a higher frequency of CD8+ T-cells (p = 0.0017), a lower frequency of CD4+ T-cells (p <0.0001), and significantly higher mean MHCI and MHCII CD14+ fluorescence intensity in the IMC group (p = 0.038 and p = 0.0117, respectively). The immunohistochemical evaluation of tumour sections showed fewer FAS-L-positive inflammatory cells in the IMC group. These results suggest the important contribution of CD8+ T-cells, macrophages and FAS-L in the aggressiveness of IMC.
Collapse
Affiliation(s)
- Karine Araújo Damasceno
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Salvador, Bahia, Brazil
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail: (AE-L); (KAD)
| | - Aline Michelle dos Santos-Conceição
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Laís Pereira Silva
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | | | - Emanoel Martins-Filho
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - João Moreira da Costa-Neto
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Estrela-Lima
- Research Center on Mammary Oncology NPqOM/HOSPMEV, Federal University of Bahia, Salvador, Bahia, Brazil
- Postgraduate Program in Animal Science in the Tropics, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail: (AE-L); (KAD)
| |
Collapse
|
9
|
Ingravallo G, Tamma R, Opinto G, Annese T, Gaudio F, Specchia G, Perrone T, Musto P, Cazzato G, Bellitti E, Capodiferro S, Maiorano E, Ribatti D. The Effect of the Tumor Microenvironment on Lymphoid Neoplasms Derived from B Cells. Diagnostics (Basel) 2022; 12:573. [PMID: 35328127 PMCID: PMC8947733 DOI: 10.3390/diagnostics12030573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphomas are characteristic tumors surrounded by an inflammatory microenvironment. The cells of the microenvironment are essential for the growth and survival of neoplastic cells and are recruited through the effect of cytokines/chemokines. Lymphomas include heterogeneous groups of neoplasms infiltrating various lymphoid structures which may arise from B lymphocytes, T lymphocytes, and natural killer (NK) cells at various stages of their differentiation state. In this review article, we analyze the literature data concerning the involvement of the tumor microenvironment (TME) in the progression of lymphomas and the recent advances in the analysis of microenvironment components in the most common forms: some mature B cell lymphoma neoplasms and classic Hodgkin lymphomas. The complex crosstalk between the TME and tumor cells led to the discovery of many mechanisms usable as molecular-targeted therapy through the control of diverse elements of the TME, varying from inhibitors of angiogenic cytokines and their receptors to the regulation of cells' activities and the novel immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (T.A.); (D.R.)
| | - Giuseppina Opinto
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (T.A.); (D.R.)
| | - Francesco Gaudio
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Tommasina Perrone
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.)
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy; (F.G.); (T.P.); (P.M.)
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Emilio Bellitti
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Saverio Capodiferro
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy;
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (E.B.); (E.M.)
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy; (T.A.); (D.R.)
| |
Collapse
|
10
|
Ghosh CC, Heatherton KR, Connell KPO, Alexander IS, Greer DA, LaPorte J, Guha P, Cox BF, Katz SC. Regional infusion of a class C TLR9 agonist enhances liver tumor microenvironment reprogramming and MDSC reduction to improve responsiveness to systemic checkpoint inhibition. Cancer Gene Ther 2022; 29:1854-1865. [PMID: 35697801 PMCID: PMC9750861 DOI: 10.1038/s41417-022-00484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) expand in response to malignancy and suppress responsiveness to immunotherapy, including checkpoint inhibitors (CPIs). Within the liver, MDSCs have unique immunosuppressive features. While TLR9 agonists have shown promising activities in enhancing CPI responsiveness in superficial tumors amenable to direct needle injection, clinical success for liver tumors with TLR9 agonists has been limited by delivery challenges. Here, we report that regional intravascular infusion of ODN2395 into mice with liver metastasis (LM) partially eliminated liver MDSCs and reprogrammed residual MDSC. TLR9 agonist regional infusion also induced an increase in the M1/M2 macrophage ratio. Enhanced TLR9 signaling was demonstrated by an increased activation of in NFκB (pP65) and production of IL6 compared with systemic infusion. Further, PBMC-derived human MDSCs express TLR9, and treatment with class C TLR9 agonists (ODN2395 and SD101) reduced the expansion of MDSC population. TLR9 stimulation induced MDSC apoptosis and increased the M1/M2 macrophage ratio. Regional TLR9 agonist infusion along with systemic anti-PD-1 therapy improved control of LM. With effective delivery, TLR9 agonists have the potential to favorably reprogram the liver TME through reduction of MDSCs and favorable macrophage polarization, which may improve responsiveness to systemic CPI therapy.
Collapse
Affiliation(s)
- Chandra C. Ghosh
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA ,TriSalus™ Life Sciences, Inc., Westminster, CO USA
| | - Kara R. Heatherton
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA
| | - Kyle P. O’ Connell
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA
| | - Ian S. Alexander
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA ,TriSalus™ Life Sciences, Inc., Westminster, CO USA ,grid.16753.360000 0001 2299 3507Northwestern University, Evanston, IL USA
| | - Deborah A. Greer
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA
| | - Jason LaPorte
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA ,TriSalus™ Life Sciences, Inc., Westminster, CO USA
| | - Prajna Guha
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA ,TriSalus™ Life Sciences, Inc., Westminster, CO USA ,grid.239424.a0000 0001 2183 6745Department of Surgery, Boston University Medical Center, Boston, MA USA
| | - Bryan F. Cox
- TriSalus™ Life Sciences, Inc., Westminster, CO USA
| | - Steven C. Katz
- grid.240606.60000 0004 0430 1740Roger Williams Medical Center, Immuno-oncology Institute, Providence, RI USA ,TriSalus™ Life Sciences, Inc., Westminster, CO USA ,grid.239424.a0000 0001 2183 6745Department of Surgery, Boston University Medical Center, Boston, MA USA ,grid.240606.60000 0004 0430 1740Department of Medicine, Roger Williams Medical Center, Providence, RI USA
| |
Collapse
|
11
|
Robust immune response stimulated by in situ injection of CpG/αOX40/cGAMP in αPD-1-resistant malignancy. Cancer Immunol Immunother 2021; 71:1597-1609. [PMID: 34731284 PMCID: PMC9188536 DOI: 10.1007/s00262-021-03095-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022]
Abstract
Recently, the emergence of immunotherapy has revolutionized traditional tumour treatment. However, effective treatments for patients exhibiting αPD-1 resistance are still lacking. In our study, a combination of cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs), anti-OX40 and cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) injection in situ systematically generated a robust antitumour immune response in TC1 and B16 cells, which are αPD-1-resistant malignancies. More precisely, this method activates both adaptive and innate immunity. Additionally, in situ vaccination with CpG/αOX40/cGAMP fully activates the production of cytokines. However, the combination of αPD-1 does not improve the efficacy of triple therapy, prompting further questions. Collectively, the combination of CpG/αOX40/cGAMP causes the regression of various αPD-1-resistant tumours through the full mobilization of innate and adaptive immunity. In addition, we explored the therapeutic effect of triple therapy on the αPD-1-sensitive cell line CT26. The results showed that triple therapy could significantly enhance the therapeutic effect of αPD-1, and some mice even achieved complete tumour regression after the combined application of αPD-1 and triple treatment.
Collapse
|
12
|
Saito RF, Rangel MC, Halman JR, Chandler M, de Sousa Andrade LN, Odete-Bustos S, Furuya TK, Carrasco AGM, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Afonin KA, Chammas R. Simultaneous silencing of lysophosphatidylcholine acyltransferases 1-4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102418. [PMID: 34171470 DOI: 10.1016/j.nano.2021.102418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.
Collapse
Affiliation(s)
- Renata F Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Maria Cristina Rangel
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Silvina Odete-Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Tatiane Katsue Furuya
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Alexis Germán Murillo Carrasco
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Adriano B Chaves-Filho
- Laboratório de Lipídeos Modificados, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil.
| | - Marcos Y Yoshinaga
- Laboratório de Lipídeos Modificados, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil.
| | - Sayuri Miyamoto
- Laboratório de Lipídeos Modificados, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil; Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
13
|
Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and Cancer: Insight into Tumor Progression and Immunity. BIOLOGY 2020; 9:E434. [PMID: 33271839 PMCID: PMC7760298 DOI: 10.3390/biology9120434] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Erica Buoso
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
14
|
Modulation of Immune Infiltration of Ovarian Cancer Tumor Microenvironment by Specific Subpopulations of Fibroblasts. Cancers (Basel) 2020; 12:cancers12113184. [PMID: 33138184 PMCID: PMC7692816 DOI: 10.3390/cancers12113184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor immune infiltration plays a key role in the progression of solid tumors, including ovarian cancer, and immunotherapies are rapidly emerging as effective treatment modalities. However, the role of cancer-associated fibroblasts (CAFs), a predominant stromal constituent, in determining the tumor-immune microenvironment and modulating efficacy of immunotherapies remains poorly understood. We have conducted an extensive bioinformatic analysis of our and other publicly available ovarian cancer datasets (GSE137237, GSE132289 and GSE71340), to determine the correlation of fibroblast subtypes within the tumor microenvironment (TME) with the characteristics of tumor-immune infiltration. We identified (1) four functional modules of CAFs in ovarian cancer that are associated with the TME and metastasis of ovarian cancer, (2) immune-suppressive function of the collagen 1,3,5-expressing CAFs in primary ovarian cancer and omental metastases, and (3) consistent positive correlations between the functional modules of CAFs with anti-immune response genes and negative correlation with pro-immune response genes. Our study identifies a specific fibroblast subtype, fibroblast functional module (FFM)2, in the ovarian cancer tumor microenvironment that can potentially modulate a tumor-promoting immune microenvironment, which may be detrimental toward the effectiveness of ovarian cancer immunotherapies.
Collapse
|
15
|
Inflammatory Infiltrate and Angiogenesis in Mantle Cell Lymphoma. Transl Oncol 2020; 13:100744. [PMID: 32120334 PMCID: PMC7052512 DOI: 10.1016/j.tranon.2020.100744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive and rare B-cell non-Hodgkin lymphoma classified in two clinicopathological subtypes according to SOX11 expression and mutation state of immunoglobulin variable region heavy chain (IgVH) gene. The transcription factor SOX11, overexpressed in 78%-93% of MCL patients, plays a central role in modulating tumor microenvironment prosurvival signals and angiogenic genes. In this work, we have explored the lymph node microenvironment of three subgroups of MCL patients classified according to SOX11 expression as negative, light, and strong. CD34+ microvessels, CD4+ and CD8+ T-lymphocytes, CD68+ and CD163+ macrophages, and the oncogene p53 expression were evaluated by immunohistochemistry. Moreover, STAT3 mRNA expression was analyzed by RNA-scope assay. Our results confirmed increased angiogenesis in the sample of patients positive to SOX11 compared to the negative ones and demonstrated that angiogenesis and SOX11 expression positively correlate to a higher T-lymphocytes inflammatory infiltrate. On the contrary, angiogenesis and SOX11 expression negatively correlate with macrophage's inflammatory infiltrate and p53 expression. STAT3 mRNA expression level was not relevant concerning angiogenesis or SOX11 expression. Overall, our data indicate that, in MCL, SOX11 expression is associated with increased angiogenesis and a high CD4+ and CD8+ T-cell infiltration, which are not sustained by CD163+ macrophages infiltrate and p53 expression.
Collapse
|
16
|
Guha P, Gardell J, Darpolor J, Cunetta M, Lima M, Miller G, Espat NJ, Junghans RP, Katz SC. STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene 2018; 38:533-548. [PMID: 30158673 DOI: 10.1038/s41388-018-0449-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022]
Abstract
Immunosuppressive myeloid-derived suppressor cells (MDSC) subvert antitumor immunity and limit the efficacy of chimeric antigen receptor T cells (CAR-T). Previously, we reported that the GM-CSF/JAK2/STAT3 axis drives liver-associated MDSC (L-MDSC) proliferation and blockade of this axis rescued antitumor immunity. We extended these findings in our murine liver metastasis (LM) model, by treating tumor-bearing mice with STAT3 inhibitors (STATTIC or BBI608) to further our understanding of how STAT3 drives L-MDSC suppressive function. STAT3 inhibition caused significant reduction of tumor burden as well as L-MDSC frequencies due to decrease in pSTAT3 levels. L-MDSC isolated from STATTIC or BBI608-treated mice had significantly reduced suppressive function. STAT3 inhibition of L-MDSC was associated with enhanced antitumor activity of CAR-T. Further investigation demonstrated activation of apoptotic signaling pathways in L-MDSC following STAT3 inhibition as evidenced by an upregulation of the pro-apoptotic proteins Bax, cleaved caspase-3, and downregulation of the anti-apoptotic protein Bcl-2. Accordingly, there was also a decrease of pro-survival markers, pErk and pAkt, and an increase in pro-death marker, Fas, with activation of downstream JNK and p38 MAPK. These findings represent a previously unrecognized link between STAT3 inhibition and Fas-induced apoptosis of MDSCs. Our findings suggest that inhibiting STAT3 has potential clinical application for enhancing the efficacy of CAR-T cells in LM through modulation of L-MDSC.
Collapse
Affiliation(s)
- Prajna Guha
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Jillian Gardell
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Josephine Darpolor
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Marissa Cunetta
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Matthew Lima
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - George Miller
- New York University School of Medicine, New York, NY, USA
| | - N Joseph Espat
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA.,Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Richard P Junghans
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA. .,Department of Surgery, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
18
|
Recent progress in the understanding of complement activation and its role in tumor growth and anti-tumor therapy. Biomed Pharmacother 2017; 91:446-456. [DOI: 10.1016/j.biopha.2017.04.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
|
19
|
Liu Y, Hu Y, Gu F, Liang J, Zeng Y, Hong X, Zhang K, Liu L. Phenotypic and clinical characterization of low density neutrophils in patients with advanced lung adenocarcinoma. Oncotarget 2017; 8:90969-90978. [PMID: 29207617 PMCID: PMC5710898 DOI: 10.18632/oncotarget.18771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/10/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose An immunosuppressive subgroup of neutrophils, low density neutrophils (LDNs) was reported to be closely related to several diseases. This study was designed to explore the association between LDNs and advanced lung adenocarcinoma, as well as potential mechanisms. Results The expression levels of surface CD molecules on LDNs were different from high density neutrophils (HDNs), consistent with previous studies. The ratio of LDNs/HDNs, rather than the percentage of LDNs in peripheral blood mononuclear cells (PBMCs), was significantly higher in lung adenocarcinoma patients than healthy controls. It was also observed that the ratio decreased when patients received anti-cancer treatments, and increased when disease relapsed. Patients harboring positive epidermal growth factor receptor (EGFR) mutation had significantly higher ratios. Both the ratio and the percentage showed positive correlation with CD8+ T cells. Although significantly increased TGF-β was detected in lung adenocarcinoma patients, relationship between TGF-β and LDNs was not obvious. Materials and Methods LDNs and HDNs levels of peripheral blood from 52 lung adenocarcinoma patients and 13 healthy controls were determined by flow cytometry. Lymphocytes and cytokines were also detected. Conclusions Two kinds of neutrophils with different phenotypes were identified in lung adenocarcinoma patients. Besides, we found the existence of high ratio of LDNs/HDNs in these patients, which is related to disease prognosis, EGFR mutation and bad immune status.
Collapse
Affiliation(s)
- Yangyang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyan Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
20
|
Johnson SD, Young MRI. Indomethacin Treatment of Mice with Premalignant Oral Lesions Sustains Cytokine Production and Slows Progression to Cancer. Front Immunol 2016; 7:379. [PMID: 27713748 PMCID: PMC5031768 DOI: 10.3389/fimmu.2016.00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/08/2016] [Indexed: 01/04/2023] Open
Abstract
Current treatment options for head and neck squamous cell carcinoma (HNSCC) patients are often ineffective due to tumor-localized and systemic immunosuppression. Using the 4-NQO mouse model of oral carcinogenesis, this study showed that premalignant oral lesion cells produce higher levels of the immune modulator, PGE2, compared to HNSCC cells. Inhibiting prostaglandin production of premalignant lesion cells with the pan-cyclooxygenase inhibitor indomethacin stimulated their induction of spleen cell cytokine production. In contrast, inhibiting HNSCC prostaglandin production did not stimulate their induction of spleen cell cytokine production. Treatment of mice bearing premalignant oral lesions with indomethacin slowed progression of premalignant oral lesions to HNSCC. Flow cytometric analysis of T cells in the regional lymph nodes of lesion-bearing mice receiving indomethacin treatment showed an increase in lymph node cellularity and in the absolute number of CD8+ T cells expressing IFN-γ compared to levels in lesion-bearing mice receiving diluent control treatment. The cytokine-stimulatory effect of indomethacin treatment was not localized to regional lymph nodes but was also seen in the spleen of mice with premalignant oral lesions. Together, these data suggest that inhibiting prostaglandin production at the premalignant lesion stage boosts immune capability and improves clinical outcomes.
Collapse
Affiliation(s)
- Sara D Johnson
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - M Rita I Young
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
21
|
Implications of MDSCs-targeting in lung cancer chemo-immunotherapeutics. Pharmacol Res 2016; 110:25-34. [DOI: 10.1016/j.phrs.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022]
|