1
|
Zou Y, Zeng X, Wang K, Ye J, Zhao Y, Jin H, Zhang J, Cheng G, Nie X. CD271 regulates osteogenic differentiation of ectomesenchymal stem cells via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2025; 148:114068. [PMID: 39826451 DOI: 10.1016/j.intimp.2025.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The low-affinity neurotrophic receptor CD271 plays a crucial role in the osteogenic differentiation of ectomesenchyme stem cells (EMSCs), which is essential for the development and regeneration of jaw bones. This study aimed to investigate the influence of CD271 on EMSCs osteogenic differentiation and to uncover the underlying mechanisms. CD271-deficient mice exhibited delayed mandibular bone development, with a significantly reduction in the expression of osteogenic makers such as ALP, Col-1, OPN, and RUNX2. Single-cell sequencing further proved that the RhoA/ROCK signaling pathway was downregulated in CD271ExIII-/- EMSCs, highlighting the potential role of CD271 in regulating the osteogenic differentiation of EMSCs. After treatment with Pentanoic Acid or Y27632, the protein expression of Runx2 and Col-1 in EMSCs was either enhanced or reduced, respectively. These findings suggest that CD271 facilitates the osteogenic differentiation of EMSCs in vitro and contributes to mandibular alveolar bone formation in vivo through activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yanhui Zou
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoke Zeng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Keyu Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqi Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yeke Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoyang Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiajun Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Gu Cheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin Nie
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
孙 晓, 史 航, 张 磊, 刘 中, 李 克, 钱 玲, 朱 星, 杨 康, 付 强, 丁 华. [Exosomes from ectoderm mesenchymal stem cells inhibits lipopolysaccharide-induced microglial M1 polarization and promotes survival of H 2O 2-exposed PC12 cells by suppressing inflammatory response and oxidative stress]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:119-128. [PMID: 38293983 PMCID: PMC10878899 DOI: 10.12122/j.issn.1673-4254.2024.01.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells (EMSCs-exo) for repairing secondary spinal cord injury. METHODS EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa, identified by transmission electron microscope, nanoparticle tracking analysis (NTA), and Western blotting, and quantified using the BCA method. Neonatal rat microglia purified by differential attachment were induced with 100 μg/L lipopolysaccharide (LPS) and treated with 37.5 or 75 mg/L EMSCs-exo. PC12 cells were exposed to 400 μmol/L H2O2 and treated with EMSCs-exo at 37.5 or 75 mg/L. The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT- PCR, and the concentrations of IL- 6, IL-10, and IGF-1 in the supernatants were measured with ELISA. The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry. RESULTS The isolated rat EMSCs showed high expressions of nestin, CD44, CD105, and vimentin. The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63, CD81, and TSG101 but not vimentin. In LPS-treated microglia, EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression (P < 0.05). EMSCs-exo treatment at 75 mg/L, as compared with the lower concentration at 37.5 mg/L, more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia, and more effectively promoted cell survival and decreased apoptosis rate of H2O2-induced PC12 cells (P < 0.05). CONCLUSION EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival, suggesting its potential in controlling secondary spinal cord injury.
Collapse
Affiliation(s)
- 晓鹏 孙
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 航 史
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 磊 张
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 中 刘
- 上海交通大学医学院附属第一人民医院骨科,上海 200080Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - 克威 李
- 上海交通大学医学院附属第一人民医院骨科,上海 200080Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - 玲玲 钱
- 江苏大学医学院,江苏 镇江 212013School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - 星宇 朱
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 康佳 杨
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| | - 强 付
- 上海交通大学医学院附属第一人民医院骨科,上海 200080Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - 华 丁
- 江苏大学附属人民医院骨科,江苏 镇江 212000Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
3
|
Intranasally applied human olfactory mucosa neural progenitor cells migrate to damaged brain regions. Future Sci OA 2022; 8:FSO806. [PMID: 35909995 PMCID: PMC9327642 DOI: 10.2144/fsoa-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Aim: To determine if intranasally administered olfactory mucosa progenitor cells (OMPCs) migrate to damaged areas of brain. Materials & methods: Rowett Nude (RNU) adult rats were injured using the Marmarou model then 2 weeks later received intranasally-delivered human OMPC. After 3 weeks, rats were sacrificed and brain sectioned. The mean distances from the human OMPCs to markers for degenerative neuronal cell bodies (p-c-Jun+), axonal swellings on damaged axons (β-APP+) and random points in immunostained sections were quantified. One-way ANOVA was used to analyze data. Results: The human OMPCs were seen in specific areas of the brain near degenerating cell bodies and damaged axons. Conclusion: Intranasally delivered human OMPC selectively migrate to brain injury sites suggesting a possible noninvasive stem cell delivery for brain injury. As a first step toward helping those with brain or spinal cord injury, human stem cells from the nose were applied to the inside of the nose of brain injured rats. These stem cells migrated to specific areas of damage in the brain. Stem cells from the nose are special, in that these cells continuously divide and form nerve cells. This study may lead to an uncomplicated treatment where tissue is taken from one side of the nose and later the stem cells from the tissue are delivered to the other side of the nose.
Collapse
|
4
|
Shi W, Zhang X, Bian L, Dai Y, Wang Z, Zhou Y, Yu S, Zhang Z, Zhao P, Tang H, Wang Q, Lu X. Alendronate crosslinked chitosan/polycaprolactone scaffold for bone defects repairing. Int J Biol Macromol 2022; 204:441-456. [PMID: 35151707 DOI: 10.1016/j.ijbiomac.2022.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022]
Abstract
Here, we evaluated osteogenic differentiation in vitro and new bone formation in vivo using an alendronate-loaded chitosan/polycaprolactone scaffold (CS/PCL) in rats with a critical-sized calvarial defect. Through the action of genipin, which has a crosslinking function, alendronate (AL) was anchored throughout the CS/PCL composite scaffold (CS/PCL@AL) to form an AL sustained release system. We demonstrated that CS/PCL@AL scaffolds significantly enhanced the osteogenic differentiation of ectomesenchymal stem cells (EMSCs) in vitro. Additionally, we explored the possible molecular mechanism of CS/PCL@AL scaffolds in the osteogenic differentiation of EMSCs. This composite scaffold exerted two positive effects on EMSC osteogenic differentiation: 1) the CS/PCL@AL scaffold enhanced EMSC osteogenic differentiation by upregulating bone morphogenetic protein 2, interleukin 10 and laminin expression; and 2) the CS/PCL@AL scaffold promoted the osteogenic differentiation of EMSCs by activating the yes-associated protein (YAP) signaling pathway. YAP and its downstream target transglutaminase are crucial mediators in the osteogenic differentiation of EMSCs. Finally, micro-computed tomography analyses and histology results suggested that the CS/PCL@AL scaffold exhibited a superior capacity to accelerate new and mature bone formation in skull bone defects in Sprague-Dawley rats. This simple and low-cost technology may represent a promising strategy to construct an efficient delivery system to repair bone defects.
Collapse
Affiliation(s)
- Wentao Shi
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Lu Bian
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Yao Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China
| | - Yanjun Zhou
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Shuang Yu
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China
| | - Peng Zhao
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Hong Tang
- Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu Province 214122, PR China
| | - Qing Wang
- Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu Province 214122, PR China; Affiliated Wuxi Clinical Medicine, Nantong University, Wuxi, Jiangsu Province 214122, PR China.
| | - Xiaojie Lu
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China; Jiangnan University Brain Institute, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
5
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
6
|
Liu J, Huang Y, He J, Zhuo Y, Chen W, Ge L, Duan D, Lu M, Hu Z. Olfactory Mucosa Mesenchymal Stem Cells Ameliorate Cerebral Ischemic/Reperfusion Injury Through Modulation of UBIAD1 Expression. Front Cell Neurosci 2020; 14:580206. [PMID: 33281557 PMCID: PMC7689024 DOI: 10.3389/fncel.2020.580206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have presented a promising neuroprotective effect in cerebral ischemia/reperfusion (I/R). Olfactory mucosa MSCs (OM-MSCs), a novel source of MSCs located in the human nasal cavity, are easy to obtain and situated for autologous transplantation. The present study was designed to evaluate the neuroprotective effects of OM-MSCs on cerebral I/R injury and the possible mechanisms. In the transient middle cerebral artery occlusion (t-MCAO) model, excessive oxidative stress and increased swollen mitochondria were observed in the peri-infarct cortex. Intravenous injection of OM-MSCs ameliorated mitochondrial damage and restored oxidant/antioxidant imbalance. Using the oxygen glucose deprivation/reperfusion (OGD/R) model in vitro, we discovered that the exposure of mouse neuroblastoma N2a cells to OGD/R triggers excessive reactive oxygen species (ROS) generation and induces mitochondrial deterioration with decreased mitochondrial membrane potential and reduces ATP content. OM-MSC transwell coculture attenuated the above perturbations accompanied with increased UbiA prenyltransferase domain-containing 1 (UBIAD1) expression, whereas these protective effects of OM-MSCs were blocked when UBIAD1 was knocked down. UBIAD1-specific small interfering RNA (siRNA) reversed the increased membrane potential and ATP content promoted by OM-MSCs. Additionally, UBIAD1-specific siRNA blocked the oxidant/antioxidant balance treated by OM-MSCs. Overall, our results suggested that OM-MSCs exert neuroprotective effects in cerebral I/R injury by attenuating mitochondrial dysfunction and enhancing antioxidation via upregulation of UBIAD1.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhuo
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wei Chen
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Da Duan
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2020; 38:587-589. [PMID: 32333501 DOI: 10.1002/stem.3184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
|
8
|
Yuan Y, Li L, Zhu L, Liu F, Tang X, Liao G, Liu J, Cheng J, Chen Y, Lu Y. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells 2020; 38:639-652. [PMID: 31904160 DOI: 10.1002/stem.3144] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. Chronic inflammation is recognized as a key causal factor in the development and progression of DN, and the imbalance of M1/M2 macrophages (Mφ) contributes to this process. Mesenchymal stem cells (MSCs) have been reported to prevent renal injuries via immune regulation in diabetic models, but whether these benefits are owing to the regulation of Mφ, and the underlying signaling pathways are unknown. Here, we showed that MSCs elicited Mφ into M2 phenotype and prevented renal injuries in DN mice, but these effects were abolished when the Mφ were depleted by clodronate liposomes (Lipo-Clod), suggesting that Mφ were necessary for renal protection of MSCs in DN mice. Moreover, the MSCs promoted M2 polarization was attributable to the activation of transcription factor EB (TFEB) and subsequent restore of lysosomal function and autophagy activity in Mφ. Furthermore, in vivo adoptive transfer of Mφin vivo (Mφ from DN + MSCs mice) or MφMSCs (Mφ cocultured with MSCs in vitro) to DN mice improved renal function. While, TFEB knockdown in Mφ significantly abolished the protective role of MφMSCs . Altogether, these findings revealed that MSCs suppress inflammatory response and alleviate renal injuries in DN mice via TFEB-dependent Mφ switch.
Collapse
Affiliation(s)
- Yujia Yuan
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lan Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lingling Zhu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fei Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xi Tang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Younan Chen
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanrong Lu
- NHC Key Laboratory of Transplant Engineering and Immunology, Department of Nephrology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|