1
|
Wienke J, Dierselhuis MP, Tytgat GAM, Künkele A, Nierkens S, Molenaar JJ. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2020; 144:123-150. [PMID: 33341446 DOI: 10.1016/j.ejca.2020.11.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space.
Collapse
Affiliation(s)
- Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | | | | | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
2
|
Modak S, Le Luduec JB, Cheung IY, Goldman DA, Ostrovnaya I, Doubrovina E, Basu E, Kushner BH, Kramer K, Roberts SS, O'Reilly RJ, Cheung NKV, Hsu KC. Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: Results of a phase I study. Oncoimmunology 2018; 7:e1461305. [PMID: 30221057 DOI: 10.1080/2162402x.2018.1461305] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/30/2023] Open
Abstract
Natural killer (NK) cell-mediated antibody-dependent toxicity is a potent mechanism of action of the anti-GD2 murine monoclonal antibody 3F8 (m3F8). Killer immunoglobulin-like receptor (KIR) and HLA genotypes modulate NK activity and are key prognostic markers in m3F8-treated patients with neuroblastoma. Endogenous NK-cells are suppressed in the setting of high tumor burden and chemotherapy. Allogeneic NK-cells however, demonstrate potent anti-neuroblastoma activity. We report on the results of a phase I clinical trial of haploidentical NK-cells plus m3F8 administered to patients with high-risk neuroblastoma after conditioning chemotherapy. The primary objective was to determine the maximum tolerated NK-cell dose (MTD). Secondary objectives included assessing anti-neuroblastoma activity and its relationship to donor-recipient KIR/HLA genotypes, NK function, and donor NK chimerism. Patients received a lymphodepleting regimen prior to infusion of haploidentical CD3-CD56+ NK-cells, followed by m3F8. Overall and progression free survival (PFS) were assessed from the time of first NK-cell dose. Univariate Cox regression assessed relationship between dose and outcomes. Thirty-five patients received NK-cells at one of five dose levels ranging from <1×106 to 50×106 CD3-CD56+cells/kg. One patient experienced grade 3 hypertension and grade 4 pneumonitis. MTD was not reached. Ten patients (29%) had complete or partial response; 17 (47%) had no response; and eight (23%) had progressive disease. No relationship was found between response and KIR/HLA genotype or between response and FcγRIII receptor polymorphisms. Patients receiving >10×106 CD56+cells/kg had improved PFS (HR: 0.36, 95%CI: 0.15-0.87, p = 0.022). Patient NK-cells displayed high NKG2A expression, leading to inhibition by HLA-E-expressing neuroblastoma cells. Adoptive NK-cell therapy in combination with m3F8 is safe and has anti-neuroblastoma activity at higher cell doses.
Collapse
Affiliation(s)
- Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Irene Y Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Debra A Goldman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Ellen Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.,Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katharine C Hsu
- Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY.,Weill Cornell Medical College, New York, NY.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
3
|
Cheung NK, Hsu KC. Genotyping Natural Killer Immune Checkpoints to Discover Biomarkers of Response. Clin Cancer Res 2017; 24:3-5. [PMID: 29122934 DOI: 10.1158/1078-0432.ccr-17-2884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/16/2022]
Abstract
Immune checkpoints have been a focus of immunotherapy in the recent decade. Killer cell immunoglobulin-like receptors (KIR) and their cognate human leukocyte antigen (HLA) class I ligands have evolved as checkpoints to ensure self-tolerance of natural killer cells. Both KIR and HLA genetic profiles are potential biomarkers of immunotherapy outcome. Clin Cancer Res; 24(1); 3-5. ©2017 AACRSee related article by Erbe et al., p. 189.
Collapse
Affiliation(s)
- Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Bottino C, Dondero A, Bellora F, Moretta L, Locatelli F, Pistoia V, Moretta A, Castriconi R. Natural killer cells and neuroblastoma: tumor recognition, escape mechanisms, and possible novel immunotherapeutic approaches. Front Immunol 2014; 5:56. [PMID: 24575100 PMCID: PMC3921882 DOI: 10.3389/fimmu.2014.00056] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma (NB) is the most common extra-cranial solid tumor of childhood and arises from developing sympathetic nervous system. Most primary tumors localize in the abdomen, the adrenal gland, or lumbar sympathetic ganglia. Amplification in tumor cells of MYCN, the major oncogenic driver, patients' age over 18 months, and the presence at diagnosis of a metastatic disease (stage IV, M) identify NB at high risk of treatment failure. Conventional therapies did not significantly improve the overall survival of these patients. Moreover, the limited landscape of somatic mutations detected in NB is hampering the development of novel pharmacological approaches. Major efforts aim to identify novel NB-associated surface molecules that activate immune responses and/or direct drugs to tumor cells and tumor-associated vessels. PVR (Poliovirus Receptor) and B7-H3 are promising targets, since they are expressed by most high-risk NB, are upregulated in tumor vasculature and are essential for tumor survival/invasiveness. PVR is a ligand of DNAM-1 activating receptor that triggers the cytolytic activity of natural killer (NK) cells against NB. In animal models, targeting of PVR with an attenuated oncolytic poliovirus induced tumor regression and elimination. Also B7-H3 was successfully targeted in preclinical studies and is now being tested in phase I/II clinical trials. B7-H3 down-regulates NK cytotoxicity, providing NB with a mechanism of escape from immune response. The immunosuppressive potential of NB can be enhanced by the release of soluble factors that impair NK cell function and/or recruitment. Among these, TGF-β1 modulates the cytotoxicity receptors and the chemokine receptor repertoire of NK cells. Here, we summarize the current knowledge on the main cell surface molecules and soluble mediators that modulate the function of NK cells in NB, considering the pros and cons that must be taken into account in the design of novel NK cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Cristina Bottino
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Istituto Giannina Gaslini , Genova , Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy
| | | | - Franco Locatelli
- Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma , Italy ; Università di Pavia , Pavia , Italy
| | | | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| |
Collapse
|
5
|
Pajtler KW, Rebmann V, Lindemann M, Schulte JH, Schulte S, Stauder M, Leuschner I, Schmid KW, Köhl U, Schramm A, Eggert A. Expression of NTRK1/TrkA affects immunogenicity of neuroblastoma cells. Int J Cancer 2013; 133:908-19. [PMID: 23400852 DOI: 10.1002/ijc.28096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/24/2013] [Indexed: 11/09/2022]
Abstract
High levels of the NTRK1/TrkA receptor are expressed in low-stage neuroblastomas, which are characterized by a good patient prognosis and often undergo spontaneous regression. In addition to apoptosis, tumor-immune responses might contribute to this regression. We hypothesized that TrkA expression might enhance the immune response to neuroblastomas. Immunohistochemistry on neuroblastoma tissue microarrays confirmed significantly higher lymphocyte infiltration in low-stage compared with high-stage tumors. Flow cytometry of human SH-SY5Y cells stably transfected with NTRK1/TrkA cDNA revealed significant upregulation of major histocompatibility complex (MHC) class I complexes on TrkA-expressing cells. Corresponding to this upregulation, T cell activity and cytoxicity was enhanced in the presence of SY5Y-TrkA cells or by medium conditioned by them, suggesting the existence of additional soluble factors stimulating the T cell response. Activation of natural killer (NK) cells was only increased in the presence of SY5Y-TrkA conditioned medium (CM) and not in co-culture assays, suggesting a dominant inhibitory effect of upregulated MHC class I as the primary NK cell escape mechanism of TrkA-expressing neuroblastomas. We reanalyzed gene expression data obtained from the cell culture model to identify additional genes involved in the TrkA-mediated modulation of immune responses. Upregulation of selected target genes in SY5Y-TrkA cells was confirmed on transcript and protein levels. However, none of the proteins were detected in medium conditioned by SY5Y-TrkA cells, arguing against these factors as soluble mediators of the TrkA-induced immune response. We here provide evidence that TrkA expression in neuroblastoma leads to an increased immunogenicity that may contribute to a less malignant phenotype and/or spontaneous regression of neuroblastoma cells.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Department of Pediatric Oncology and Hematology, University Hospital Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tarek N, Le Luduec JB, Gallagher MM, Zheng J, Venstrom JM, Chamberlain E, Modak S, Heller G, Dupont B, Cheung NKV, Hsu KC. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest 2012; 122:3260-70. [PMID: 22863621 DOI: 10.1172/jci62749] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/28/2012] [Indexed: 02/02/2023] Open
Abstract
Survival outcomes for patients with high-risk neuroblastoma (NB) have significantly improved with anti-disialoganglioside GD2 mAb therapy, which promotes NK cell activation through antibody-dependent cell-mediated cytotoxicity. NK cell activation requires an interaction between inhibitory killer cell immunoglobulin-like receptors (KIRs) and HLA class I ligands. NK cells lacking KIRs that are specific for self HLA are therefore "unlicensed" and hyporesponsive. mAb-treated NB patients lacking HLA class I ligands for their inhibitory KIRs have significantly higher survival rates, suggesting that NK cells expressing KIRs for non-self HLA are mediating tumor control in these individuals. We found that, in the presence of mAb, both licensed and unlicensed NK cells are highly activated in vitro. However, HLA class I expression on NB cell lines selectively inhibited licensed NK cell activity, permitting primarily unlicensed NK cells to mediate antibody-dependent cell-mediated cytotoxicity. These results indicate that unlicensed NK cells play a key antitumor role in patients undergoing mAb therapy via antibody-dependent cell-mediated cytotoxicity, thus explaining the potent "missing KIR ligand" benefit in patients with NB.
Collapse
Affiliation(s)
- Nidale Tarek
- Department of Pediatrics, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Swift BE, Williams BA, Kosaka Y, Wang XH, Medin JA, Viswanathan S, Martinez-Lopez J, Keating A. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model. Haematologica 2012; 97:1020-8. [PMID: 22271890 DOI: 10.3324/haematol.2011.054254] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. DESIGN AND METHODS The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. RESULTS Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. CONCLUSIONS This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted.
Collapse
Affiliation(s)
- Brenna E Swift
- Cell Therapy Program, Princess Margaret Hospital, 610 University Ave, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|