1
|
Xi J, Cai J, Cheng Y, Fu Y, Wei W, Zhang Z, Zhuang Z, Hao Y, Lilly MA, Wei Y. The TORC1 inhibitor Nprl2 protects age-related digestive function in Drosophila. Aging (Albany NY) 2019; 11:9811-9828. [PMID: 31712450 PMCID: PMC6874466 DOI: 10.18632/aging.102428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Aging and age-related diseases occur in almost all organisms. Recently, it was discovered that the inhibition of target of rapamycin complex 1 (TORC1), a conserved complex that mediates nutrient status and cell metabolism, can extend an individual’s lifespan and inhibit age-related diseases in many model organisms. However, the mechanism whereby TORC1 affects aging remains elusive. Here, we use a loss-of-function mutation in nprl2, a component of GATOR1 that mediates amino acid levels and inhibits TORC1 activity, to investigate the effect of increased TORC1 activity on the occurrence of age-related digestive dysfunction in Drosophila. We found that the nprl2 mutation decreased Drosophila lifespan. Furthermore, the nprl2 mutant had a distended crop, with food accumulation at an early age. Interestingly, the inappropriate food distribution and digestion along with decreased crop contraction in nprl2 mutant can be rescued by decreasing TORC1 activity. In addition, nprl2-mutant flies exhibited age-related phenotypes in the midgut, including short gut length, a high rate of intestinal stem cell proliferation, and metabolic dysfunction, which could be rescued by inhibiting TORC1 activity. Our findings showed that the gastrointestinal tract aging process is accelerated in nprl2-mutant flies, owing to high TORC1 activity, which suggested that TORC1 promotes digestive tract senescence.
Collapse
Affiliation(s)
- Junmeng Xi
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| | - Jiadong Cai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| | - Yang Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuanyuan Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yue Hao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, China
| | - Mary A Lilly
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Youheng Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Bell P, Down RE, Matthews HJ, Isaac RE, Audsley N. Peptidergic control of the crop of the cabbage root fly, Delia radicum (L.) Diptera: Anthomyiidae): A role for myosuppressin. Gen Comp Endocrinol 2019; 278:50-57. [PMID: 30077792 DOI: 10.1016/j.ygcen.2018.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/19/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022]
Abstract
There is much interest in targeting neuropeptide signaling for the development of new and environmentally friendly insect control chemicals. In this study we have focused attention on the peptidergic control of the adult crop of Delia radicum (cabbage root fly), an important pest of brassicas in European agriculture. The dipteran crop is a muscular organ formed from the foregut of the digestive tract and plays a vital role in the processing of food in adult flies. We have shown using direct tissue profiling by MALDI-TOF mass spectrometry that the decapeptide myosuppressin (TDVDHVFLRFamide) is present in the crop nerve bundle and that application of this peptide to the crop potently inhibits the spontaneous contractions of the muscular lobes with an IC50 of 4.4 × 10-8 M. The delivery of myosuppressin either by oral administration or by injection had no significant detrimental effect on the adult fly. This failure to elicit a response is possibly due to the susceptibility of the peptide to degradative peptidases that cleave the parent peptide to inactive fragments. Indeed, we show that the crop of D. radicum is a source of neuropeptide-degrading endo- and amino-peptidases. In contrast, feeding benzethonium chloride, a non-peptide agonist of myosuppressin, reduced feeding rate and increased the rate of mortality of adult D. radicum. Current results are indicative of a key role for myosuppressin in the regulation of crop physiology and the results achieved during this project provide the basis for subsequent studies aimed at developing insecticidal molecules targeting the peptidergic control of feeding and food digestion in this pest species.
Collapse
Affiliation(s)
- Petra Bell
- School of Biology, University of Leeds, Leeds LS2 9JT, UK; FERA Science, Sand Hutton, York YO41 1LZ, UK
| | | | | | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
3
|
Kairamkonda S, Nongthomba U. Beadex, a Drosophila LIM domain only protein, function in follicle cells is essential for egg development and fertility. Exp Cell Res 2018; 367:97-103. [PMID: 29580687 DOI: 10.1016/j.yexcr.2018.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
LIM domain, constituted by two tandem C2H2 zinc finger motif, proteins regulate several biological processes. They are usually found associated with various functional domains like Homeodomain, kinase domain and other protein binding domains. LIM proteins that are devoid of other domains are called LIM only proteins (LMO). LMO proteins were first identified in humans and are implicated in development and oncogenesis. They regulate various cell specifications by regulating the activity of respective transcriptional complexes. The Drosophila LMO protein (dLMO), Beadex (Bx), regulates various developmental processes like wing margin development and bristle development. It also regulates Drosophila behavior in response to cocaine and ethanol. We have previously generated Bx null flies and shown its essential function in neurons for multiple aspects of female reproduction. However, it was not known whether Bx affects reproduction through its independent function in ovaries. In this paper we show that female flies null for Bx lay eggs with multiple defects. Further, through knock down studies we demonstrate that function of Bx in follicle cells is required for normal egg development. We also show that function of Bx is particularly required in border cells for Drosophila fertility.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Kairamkonda S, Nongthomba U. Beadex function in the motor neurons is essential for female reproduction in Drosophila melanogaster. PLoS One 2014; 9:e113003. [PMID: 25396431 PMCID: PMC4232528 DOI: 10.1371/journal.pone.0113003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023] Open
Abstract
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|