1
|
Alsaab HO, Almalki Y. The Association between the NLRP3 Inflammasome and Specific Long-Non Coding RNAs (lncRNAs) in Cancer; New Perspective and Summary of Recent Studies. Cell Biochem Biophys 2025; 83:147-158. [PMID: 39285156 DOI: 10.1007/s12013-024-01494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 03/03/2025]
Abstract
In response to cellular perturbations, a multimeric cytosolic protein complex known as the NLRP3 inflammasome assembles. As a result of this assembly, caspase-1 is activated, which encourages inflammatory cell death (pyroptosis) as well as the maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Tumor etiology involves dysregulation of NLRP3 inflammasome activation, but because of conflicting results, its significance in the onset and spread of cancer is still up for debate. New research indicates that long-non coding RNAs (lncRNAs) play a crucial part in controlling the activity of the NLRP3 inflammasome in a number of disorders. Non-coding RNAs longer than 200 nucleotides are known as lncRNAs. Cancer development has been connected to its deregulation in the development of illnesses. Growing data suggests that controlling lncRNAs on the NLRP3 inflammasome plays a crucial role in the emergence and progression of cancer-related challenges. Here, we discuss over how lncRNAs control the NLRP3 inflammasome and how it functions in different types of cancer cells, offering new perspectives on creating new cancer treatment strategies in the future.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia.
| | - Yahya Almalki
- Department of Pediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Abikar A, Mustafa MMS, Athalye RR, Nadig N, Tamboli N, Babu V, Keshavamurthy R, Ranganathan P. Comparative transcriptome of normal and cancer-associated fibroblasts. BMC Cancer 2024; 24:1231. [PMID: 39369238 PMCID: PMC11456241 DOI: 10.1186/s12885-024-13006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND The characteristics of a tumor are largely determined by its interaction with the surrounding micro-environment (TME). TME consists of both cellular and non-cellular components. Cancer-associated fibroblasts (CAFs) are a major component of the TME. They are a source of many secreted factors that influence the survival and progression of tumors as well as their response to drugs. Identification of markers either overexpressed in CAFs or unique to CAFs would pave the way for novel therapeutic strategies that in combination with conventional chemotherapy are likely to have better patient outcome. METHODS Fibroblasts have been derived from Benign Prostatic Hyperplasia (BPH) and prostate cancer. RNA from these has been used to perform a transcriptome analysis in order to get a comparative profile of normal and cancer-associated fibroblasts. RESULTS The study has identified 818 differentially expressed mRNAs and 17 lincRNAs between normal and cancer-associated fibroblasts. Also, 15 potential lincRNA-miRNA-mRNA combinations have been identified which may be potential biomarkers. CONCLUSIONS This study identified differentially expressed markers between normal and cancer-associated fibroblasts that would help in targeted therapy against CAFs/derived factors, in combination with conventional therapy. However, this would in future need more experimental validation.
Collapse
Affiliation(s)
- Apoorva Abikar
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | | | | | | | | | - Vinod Babu
- Institute of Nephro-Urology, Bengaluru, India
| | | | - Prathibha Ranganathan
- Centre for Human Genetics, Bengaluru, India.
- Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
3
|
Alshahrani MY, Saleh RO, Hjazi A, Bansal P, Kaur H, Deorari M, Altalbawy FMA, Kareem AH, Hamzah HF, Mohammed BA. Molecular Mechanisms of Tumorgenesis and Metastasis of Long Non-coding RNA (lncRNA) NEAT1 in Human Solid Tumors; An Update. Cell Biochem Biophys 2024; 82:593-607. [PMID: 38750383 DOI: 10.1007/s12013-024-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 08/25/2024]
Abstract
The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Maarif University College, Al-Anbar, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | | | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
4
|
Alhajlah S. The molecular mechanisms of various long non-coding RNA (lncRNA) in human lung tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155253. [PMID: 38513578 DOI: 10.1016/j.prp.2024.155253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Although it is still mostly incomplete, unraveling the gene expression networks controlling the initiation and progression of cancer is crucial. The rapid identification and characterization of long noncoding RNAs (lncRNAs) is made possible by advancements in computational biology and RNA-seq technology. According to recent research, lncRNAs are involved in several stages in the genesis of lung cancer. These lncRNAs interact with DNA, RNA, protein molecules, and/or their combinations. They play a crucial role in transcriptional and post-transcriptional regulation, as well as chromatin architecture. Their misexpression gives cancer cells the ability to start, grow, and spread tumors. This review will focus on their abnormal expression and function in lung cancer, as well as their involvement in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
5
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Ji Y, Yang Y, Yin Z. Polymorphisms in lncRNA CCAT1 on the susceptibility of lung cancer in a Chinese northeast population: A case-control study. Cancer Med 2022; 12:500-512. [PMID: 35650713 PMCID: PMC9844612 DOI: 10.1002/cam4.4902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECT To explore the association of rs1948915, rs7013433 in long noncoding RNA (lncRNA) CCAT1 and rs6983267 in MYC enhancer region with the risk of lung cancer in a Chinese northeast population, a case-control study was conducted. METHODS The hospital-based case-control study contained 669 lung cancer patients and 697 healthy controls. Taqman® Probe allele resolution was used for genotyping. The differences between the case-control groups were analyzed using Student t-test and chi-square test. Logistic regression analysis was used to assess the relationship between the genotypes and the risk of lung cancer. Cross-generation analysis was used to explore the relationship between gene-environment interaction and lung cancer. RESULTS There was no association between the three selected single-nucleotide polymorphisms (SNPs) and the susceptibility of lung cancer. Rs1948915 CT was correlated with lung adenocarcinoma. In female stratification, rs1948915 CT/CC was associated with a decreased susceptibility of lung cancer significantly. Additionally, the additive and multiplicative interaction models showed that there was no interaction between the three selected SNPs and smoking status in lung cancer. CONCLUSIONS There may be an association between lung adenocarcinoma and rs1948915 polymorphism in the Chinese northeast population, while rs7013433 and rs6983267 might have no association. There was no interaction between the three selected SNPs and smoking status.
Collapse
Affiliation(s)
- Yangtao Ji
- Department of Laboratory Medicine, National Clinical Research Center for Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Yue Yang
- Department of Laboratory MedicineThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Zhihua Yin
- Department of EpidemiologySchool of Public Health, China Medical UniversityShenyangLiaoningPeople's Republic of China
| |
Collapse
|
7
|
Khawar MB, Hamid SE, Jan T, Abbasi MH, Idnan M, Sheikh N. Diagnostic, prognostic and therapeutic potential of long noncoding RNAs in cancer. Mol Biol Rep 2022; 49:2311-2319. [PMID: 35072835 DOI: 10.1007/s11033-022-07180-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are longer than 200 nucleotides in length and undergo splicing, capping, polyadenylation, and editing just like mRNA. Evidence is growing that they regulate transcription, splicing, RNA degradation, and translation of genes and that their expression has been linked to a variety of illnesses, including cancer. The advancement of next-generation and high-throughput sequencing has changed the way lncRNAs are identified and characterized, revealing a relationship between lncRNAs and several tumor types. Since then, they have gained a significant attraction as a promising candidate in cancer diagnosis, prognosis, and therapy. Furthermore, they are a good candidate for consideration as tumor biomarkers due to their high stability, better tissue/cell selectivity, aberrant expression in certain malignancies, and easy and noninvasive detection. In addition, lncRNAs are being examined as therapeutic targets in clinical trials for a variety of malignancies. This review highlights the potential of lncRNAs as biomarkers or therapeutic targets in light of the current progress, clinical investigations, and patents filed so far.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Tayyba Jan
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Muhammad Idnan
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
8
|
Wang N, Li J, He J, Jing YG, Zhao WD, Yu WJ, Wang J. Knockdown of lncRNA CCAT1 Inhibits the Progression of Colorectal Cancer via hsa-miR-4679 Mediating the Downregulation of GNG10. J Immunol Res 2021; 2021:8930813. [PMID: 35005034 PMCID: PMC8739552 DOI: 10.1155/2021/8930813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Great concerns have raised crucial roles of long noncoding RNAs (lncRNAs) on colorectal cancer progression due to the increasing number of studies in cancer development. Previous studies reveal that lncRNA CCAT1 plays an important role in the progression of a variety of cancers. However, the role of lncRNA CCAT1 in colorectal cancer is still unclear. In this study, we found that in both colorectal tissues and cell lines the level of lncRNA CCAT1 was increased. Downregulation of lncRNA CCAT1 inhibited the proliferation, migration, and invasion of colorectal cell lines and promoted apoptosis. We then found that hsa-miR-4679 could bind to lncRNA CCAT1 directly, and with further functional analyses, we confirmed that lncRNA CCAT1 sponged hsa-miR-4679 to promote the progression of colorectal cancer. Next, we found that hsa-miR-4679 was directly bound to 3'UTR of GNG10 (guanine nucleotide-binding protein, gamma 10). GNG10 overexpression promoted the progression of colorectal cancer, and this phenotype could be reversed by miR-4679 mimics. At last, we knocked down CCAT1 in vivo and found that sh-CCAT1 reduced the tumor size and the number of proliferating cells. In summary, our findings revealed that lncRNA CCAT1 facilitated colorectal cancer progression via the hsa-miR-4679/GNG10 axis and provided new potential therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Ning Wang
- Department of Surgery, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jun Li
- Department of Surgery, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Ju He
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali University, Dali, Yunnan 671000, China
| | - Yong-Guang Jing
- Department of Human Anatomy, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Wei-dong Zhao
- Laboratory Department, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Wen-jin Yu
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali University, Dali, Yunnan 671000, China
| | - Jing Wang
- Department of Surgery, School of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| |
Collapse
|
9
|
Zhao R, Sa X, Ouyang N, Zhang H, Yang J, Pan J, Gu J, Zhou Y. A Pan-Cancer Analysis of Transcriptome and Survival Reveals Prognostic Differentially Expressed LncRNAs and Predicts Novel Drugs for Glioblastoma Multiforme Therapy. Front Genet 2021; 12:723725. [PMID: 34759954 PMCID: PMC8575119 DOI: 10.3389/fgene.2021.723725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have identified various prognostic long non-coding RNAs (LncRNAs) in a specific cancer type, but a comprehensive pan-cancer analysis for prediction of LncRNAs that may serve as prognostic biomarkers is of great significance to be performed. Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. There is an urgent need to identify novel therapies for GBM due to its poor prognosis and universal recurrence. Using available LncRNA expression data of 12 cancer types and survival data of 30 cancer types from online databases, we identified 48 differentially expressed LncRNAs in cancers as potential pan-cancer prognostic biomarkers. Two candidate LncRNAs were selected for validation in GBM. By the expression detection in GBM cell lines and survival analysis in GBM patients, we demonstrated the reliability of the list of pan-cancer prognostic LncRNAs obtained above. By constructing LncRNA-mRNA-drug network in GBM, we predicted novel drug-target interactions for GBM correlated LncRNA. This analysis has revealed common prognostic LncRNAs among cancers, which may provide insights into cancer pathogenesis and novel drug target in GBM.
Collapse
Affiliation(s)
- Rongchuan Zhao
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaohan Sa
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Nan Ouyang
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Hong Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinlin Pan
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Heifei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinhui Gu
- Department of Anorectum, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
10
|
Wang R, Tang Q. Current Advances on the Important Roles of Enhancer RNAs in Molecular Pathways of Cancer. Int J Mol Sci 2021; 22:5640. [PMID: 34073237 PMCID: PMC8198447 DOI: 10.3390/ijms22115640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/08/2023] Open
Abstract
Enhancers are critical genomic elements that can cooperate with promoters to regulate gene transcription in both normal and cancer cells. Recent studies reveal that enhancer regions are transcribed to produce a class of noncoding RNAs referred to as enhancer RNAs (eRNAs). Emerging evidence shows that eRNAs play important roles in enhancer activation and enhancer-driven gene regulation, and the expression of eRNAs may be a critical factor in tumorigenesis. The important roles of eRNAs in cancer signaling pathways are also gradually unveiled, providing a new insight into cancer therapy. Here, we review the roles of eRNAs in regulating cancer signaling pathways and discuss the potential of eRNA-targeted therapy for human cancers.
Collapse
Affiliation(s)
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
11
|
Amjadi-Moheb F, Paniri A, Akhavan-Niaki H. Insights into the Links between MYC and 3D Chromatin Structure and Epigenetics Regulation: Implications for Cancer Therapy. Cancer Res 2021; 81:1925-1936. [PMID: 33472888 DOI: 10.1158/0008-5472.can-20-3613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
MYC is embedded in the transcriptional oasis of the 8q24 gene desert. A plethora of genomic elements has roles in MYC aberrant expression in cancer development by interacting with transcription factors and epigenetics regulators as well as altering the structure of chromatin at the MYC locus and tissue-specific long-range enhancer-promoter contacts. Furthermore, MYC is a master regulator of several human cancers by modulating the transcription of numerous cancer-related genes through epigenetic mechanisms. This review provides a comprehensive overview of the three-dimensional genomic organization around MYC and the role of epigenetic machinery in transcription and function of MYC as well as discusses various epigenetic-targeted therapeutic strategies in MYC-driven cancers.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
12
|
Thean LF, Blöcker C, Li HH, Lo M, Wong M, Tang CL, Tan EKW, Rozen SG, Cheah PY. Enhancer-derived long non-coding RNAs CCAT1 and CCAT2 at rs6983267 has limited predictability for early stage colorectal carcinoma metastasis. Sci Rep 2021; 11:404. [PMID: 33432117 PMCID: PMC7801656 DOI: 10.1038/s41598-020-79906-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Up-regulation of long non-coding RNAs (lncRNAs), colon-cancer associated transcript (CCAT) 1 and 2, was associated with worse prognosis in colorectal cancer (CRC). Nevertheless, their role in predicting metastasis in early-stage CRC is unclear. We measured the expression of CCAT1, CCAT2 and their oncotarget, c-Myc, in 150 matched mucosa-tumour samples of early-stage microsatellite-stable Chinese CRC patients with definitive metastasis status by multiplex real-time RT-PCR assay. Expression of CCAT1, CCAT2 and c-Myc were significantly up-regulated in the tumours compared to matched mucosa (p < 0.0001). The expression of c-Myc in the tumours was significantly correlated to time to metastasis [hazard ratio = 1.47 (1.10–1.97)] and the risk genotype (GG) of rs6983267, located within CCAT2. Expression of c-Myc and CCAT2 in the tumour were also significantly up-regulated in metastasis-positive compared to metastasis-negative patients (p = 0.009 and p = 0.04 respectively). Nevertheless, integrating the expression of CCAT1 and CCAT2 by the Random Forest classifier did not improve the predictive values of ColoMet19, the mRNA-based predictor for metastasis previously developed on the same series of tumours. The role of these two lncRNAs is probably mitigated via their oncotarget, c-Myc, which was not ranked high enough previously to be included in ColoMet19.
Collapse
Affiliation(s)
- Lai Fun Thean
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | | | - Hui Hua Li
- Health Service Research Unit, Singapore General Hospital, Singapore, Singapore
| | - Michelle Lo
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Michelle Wong
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Emile K W Tan
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Steven G Rozen
- Duke-NUS Center for Computational Biology, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore. .,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. .,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Qian Y, Shi L, Luo Z. Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front Med (Lausanne) 2020; 7:612393. [PMID: 33330574 PMCID: PMC7734181 DOI: 10.3389/fmed.2020.612393] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are major components of cellular transcripts that are arising as important players in various biological pathways. They have received extensive attention in recent years, regarded to be involved in both developmental processes and various diseases. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis and therapy. Studies have shown that lncRNAs with high specificity and accuracy have the potential to become biomarkers in cancers. LncRNAs can be noninvasively extracted from body fluids, tissues and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Currently, the most well-recognized lncRNA is PCA3, which has been approved for use in the diagnosis of prostate cancer. Moreover, the underlying mechanisms of lncRNAs were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. In this review, we presented a compilation of recent publications, clinical trials and patents, addressing the potential of lncRNAs that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Huang Y, Guo Q, Ding XP, Wang X. Mechanism of long noncoding RNAs as transcriptional regulators in cancer. RNA Biol 2020; 17:1680-1692. [PMID: 31888402 DOI: 10.1080/15476286.2019.1710405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of gene expression, often interpreted by gene transcription as an endpoint response, is tightly associated with human cancer. Long noncoding RNAs (lncRNAs), derived from the noncoding elements in the genome and appeared no less than 200nt in length, have emerged as a novel class of pivotal regulatory component. Recently, great attention has been paid to the cancer-related lncRNAs and growing evidence have shown that lncRNAs act as key transcriptional regulators in cancer cells through diverse mechanisms. Here, we focus on the nucleus-expressed lncRNAs and summarize their molecular mechanisms in transcriptional control during tumorigenesis and cancer metastasis. Six major mechanisms will be discussed in this review: association with transcriptional factor, modulating DNA methylation or histone modification enzyme, influencing on chromatin remodelling complex, facilitating chromosomal looping, interaction with RNA polymerase and direct association with promoter.
Collapse
Affiliation(s)
- Yan Huang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, China
| | - Qi Guo
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, China
| | - Xi-Ping Ding
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xiangting Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, China
| |
Collapse
|
15
|
Liu Z, Chen Q, Hann SS. The functions and oncogenic roles of CCAT1 in human cancer. Biomed Pharmacother 2019; 115:108943. [PMID: 31078038 DOI: 10.1016/j.biopha.2019.108943] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
In various human cancers, long non-coding RNAs (lncRNAs), a novel class of RNAs longer than 200 nucleotides without protein-coding potential, are implicated in a variety of biological processes, such as cell proliferation, invasion, metastasis, and apoptosis through regulation of gene expression at various levels including chromatin, splicing, transcriptional and post-transcriptional levels. However, the mechanisms underlying these are still elusive. Colon cancer-associated transcript 1(CCAT1) has received increased attention among those lncRNAs. Studies have shown high expression pattern and oncogenic role of CCAT1 in different types of cancer, and aberrant expression of CCAT1 has been involved in tumor-genesis, progression, metastasis, and patient survival via regulating different target genes and signaling pathways. In this review, we first introduce the concept, identification, and biological function of CCAT1; we then describe the mechanisms by which CCAT1 regulate the cancer proliferation and progression. In the last, we discuss emerging insights into the role of CCAT1 as potential biomarker and therapeutic target for novel treatment paradigms in cancer.
Collapse
Affiliation(s)
- Zheng Liu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - QianJun Chen
- Department of Mammary Diseases, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
16
|
Wang N, Yu Y, Xu B, Zhang M, Li Q, Miao L. Pivotal prognostic and diagnostic role of the long non‑coding RNA colon cancer‑associated transcript 1 expression in human cancer (Review). Mol Med Rep 2018; 19:771-782. [PMID: 30535444 PMCID: PMC6323215 DOI: 10.3892/mmr.2018.9721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been classically defined as regulatory RNA members >200 nucleotides in length, without detectable open‑reading frames to encode proteins. Previous studies have demonstrated that lncRNAs serve critical roles in multiple cancer types. Colon cancer‑associated transcript 1 (CCAT1), a novel cancer‑associated lncRNA, is significantly overexpressed in a number of malignancies. Functionally, as an oncogenic lncRNA, CCAT1 is involved in proliferation, migration, cell cycle progression, apoptosis, chemoresistance and other biological processes of cancer cells through complex regulation mechanisms in the cytoplasm or nucleus. In clinical applications, CCAT1 is additionally positively associated with histological differentiation, tumour node metastasis stage, vascular invasion, overall survival and recurrence‑free survival, which demonstrates its important role as a diagnostic and prognostic marker in cancer. The present review summarises the current research progress of the oncogenic potential and clinical uses of CCAT1 in various human cancer types.
Collapse
Affiliation(s)
- Ni Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Yang Yu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Boming Xu
- Department of Gastroenterology, The Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| |
Collapse
|
17
|
Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 Knockout Strategies to Ablate CCAT1 lncRNA Gene in Cancer Cells. Biol Proced Online 2018; 20:21. [PMID: 30410426 PMCID: PMC6211572 DOI: 10.1186/s12575-018-0086-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/11/2018] [Indexed: 02/01/2023] Open
Abstract
Background With the increasing discovery of long noncoding RNAs (lncRNAs), the application of functional techniques that could have very specific, efficient, and robust effects and readouts is necessary. Here, we have applied and analyzed three gene knockout (KO) strategies to ablate the CCAT1 gene in different colorectal adenocarcinoma cell lines. We refer to these strategies as “CRISPR excision”, “CRISPR HDR”, and “CRISPR du-HITI”. Results In order to obstruct the transcription of lncRNA or to alter its structure, in these strategies either a significant segment of the gene is removed, or a transcription termination signal is inserted in the target gene. We use RT-qPCR, RNA-seq, MTT, and colony formation assay to confirm the functional effects of CCAT1 gene ablation in knockout colorectal adenocarcinoma cell lines. We applied three different CRISPR/Cas9 mediated knockout strategies to abolish the transcription of CCAT1 lncRNA. CCAT1 knockout cells displayed dysregulation of genes involved in several biological processes, and a significant reduction for anchorage-independent growth. The du-HITI strategy introduced in this study removes a gene segment and inserts a reporter and a transcription termination signal in each of the two target alleles. The preparation of donor vector for this strategy is much easier than that in “CRISPR HDR”, and the selection of cells in this strategy is also much more practical than that in “CRISPR excision”. In addition, use of this technique in the first attempt of transfection, generates single cell knockouts for both alleles. Conclusions The strategies applied and introduced in this study can be used for the generation of CCAT1 knockout cell lines and in principle can be applied to the deletion of other lncRNAs for the study of their function. Electronic supplementary material The online version of this article (10.1186/s12575-018-0086-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khadijeh Zare
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Milad Shademan
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Mohammad M Ghahramani Seno
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Hesam Dehghani
- 1Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.,3Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| |
Collapse
|
18
|
Current Advances on the Important Roles of Enhancer RNAs in Gene Regulation and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2405351. [PMID: 29951530 PMCID: PMC5987348 DOI: 10.1155/2018/2405351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Revealing the gene regulation networks governing cancer initiation and development is necessary while it remains uncompleted. In recent years, enhancers have been reported to be widely transcribed, resulting in the generation of enhancer RNAs (eRNAs). Previous studies have reported that eRNAs are a subclass of long noncoding RNAs (lncRNAs), which play a critical role in gene regulation and cancer development. These eRNAs can promote enhancer-promoter (E-P) looping formation by binding to other protein factors or propel expression of downstream protein-coding gene. In this review, we have focused on the characteristics of eRNAs and illustrated the biological function and potential mechanism of eRNAs in regulating gene expression and cancer development.
Collapse
|
19
|
Kim T, Croce CM. Long noncoding RNAs: Undeciphered cellular codes encrypting keys of colorectal cancer pathogenesis. Cancer Lett 2018; 417:89-95. [PMID: 29306015 PMCID: PMC5825189 DOI: 10.1016/j.canlet.2017.12.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs are non-protein coding transcripts longer than 200 nucleotides in length. By the advance in genetic and bioinformatic technologies, the new genomic landscape including noncoding transcripts has been revealed. Despite their non-capacity to be translated into proteins, lncRNAs have a versatile functions through various mechanisms interacting with other cellular molecules including DNA, protein, and RNA. Recent research interest and endeavor have identified the functional role of lncRNAs in various diseases including cancer. Colorectal cancer (CRC) is not only one of the most frequent cancer but also one of the cancer types with remarkable achievements in lncRNA research. Of the numerous notable lncRNAs identified and characterized in CRC, we will focus on key lncRNAs with the high potential as CRC-specific biomarkers in this review.
Collapse
Affiliation(s)
- Taewan Kim
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Luo J, Qu J, Wu DK, Lu ZL, Sun YS, Qu Q. Long non-coding RNAs: a rising biotarget in colorectal cancer. Oncotarget 2017; 8:22187-22202. [PMID: 28108736 PMCID: PMC5400657 DOI: 10.18632/oncotarget.14728] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer, with a high incidence and high mortality. Long non-coding RNAs (lncRNAs) are involved in the development, invasion and metastasis, early diagnosis, prognosis, the chemoresistance and radioresistance of CRC through interference with mRNA activity, directly combining with proteins to regulate their activity or alter their localization, influencing downstream gene expression by inhibiting RNA polymerase and regulating gene expression as competing endogenous RNAs. Recent progress in next generation sequencing and transcriptome analysis has revealed that tissue and cancer-type specific lncRNAs could be useful prognostic markers. Here, the CRC-associated lncRNAs from recent studies until October 2016 are reviewed and multiple studies that have confirmed CRC-associated lncRNAs are summarized. This review may be helpful in understanding the overall relationships between the lncRNAs involved in CRC.
Collapse
Affiliation(s)
- Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, P. R. China
| | - Dong-Kai Wu
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhi-Li Lu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Yue-Sheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, P. R. China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
21
|
Yang Y, Junjie P, Sanjun C, Ma Y. Long non-coding RNAs in Colorectal Cancer: Progression and Future Directions. J Cancer 2017; 8:3212-3225. [PMID: 29158793 PMCID: PMC5665037 DOI: 10.7150/jca.19794] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Identification of the colorectal adenoma-carcinoma sequence with its corresponding genetic and epigenetic alterations has significantly increased our knowledge of the etiopathogenesis of colorectal cancer (CRC). However, the molecular mechanisms of colorectal carcinogenesis and metastasis haven't been clearly elucidated. Long non-coding ribonucleic acids (lncRNAs) are key participants of gene regulations rather than “noises”. Accumulative studies have implicated that the aberrant expressions of lncRNAs are tightly corelated to CRC screening, diagnosis, prognosis and therapeutic outcomes. Our review focuses on recent findings on the involvement of lncRNAs in CRC oncogenesis and the lncRNA-based clinical implications in patients with CRC.
Collapse
Affiliation(s)
- Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Junjie
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cai Sanjun
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
22
|
Zhang J, Gao Y. CCAT-1 promotes proliferation and inhibits apoptosis of cervical cancer cells via the Wnt signaling pathway. Oncotarget 2017; 8:68059-68070. [PMID: 28978096 PMCID: PMC5620236 DOI: 10.18632/oncotarget.19155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Though the long noncoding RNA colon cancer associated transcript-1 (CCAT-1) has been shown to be involved in tumors of other tissues, its involvement in cervical cancer is still unknown. Therefore, the aim of this study was to investigate the molecular mechanism of CCAT-1 in cervical cancer. We quantified the expression of CCAT-1 long noncoding RNA in samples of cervical cancer tissue by real-time PCR. Effects of CCAT-1 expression on the proliferation and apoptosis of HeLa and CaSki cells were assessed by cell-count, colony-formation, and flow cytometry assays. Binding of the c-Myc protein to the CCAT-1 promoter was confirmed by chromatin immunoprecipitation. Finally, TOP-Flash and western blotting were used to examine the regulation of the Wnt/β-catenin pathway by CCAT-1. The results showed that compared with adjacent normal tissue, the expression of CCAT-1 in cervical cancer tissue was significantly upregulated. CCAT-1 expression was related to the stage and size of the tumor and recurrence prognosis. Then, we showed through functional assays that CCAT-1 could promote proliferation and inhibit apoptosis of cervical cancer cells. Furthermore, chromatin immunoprecipitation showed that c-Myc protein could promote CCAT-1 expression by binding to its promoter. Finally, fluorescent-reporter assays and western blotting showed that CCAT-1 could activate the Wnt/β-catenin pathway. In conclusion, we showed that CCAT-1 can be activated by the c-Myc protein and it can promote proliferation and inhibit apoptosis in cervical cancer cells by regulating the Wnt/β-catenin pathway. CCAT-1 might serve as a good prognostic indicator and target for treatment of cervical cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Yali Gao
- Department of Ophthalmology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| |
Collapse
|
23
|
Xin Y, Li Z, Shen J, Chan MTV, Wu WKK. CCAT1: a pivotal oncogenic long non-coding RNA in human cancers. Cell Prolif 2016; 49:255-60. [PMID: 27134049 DOI: 10.1111/cpr.12252] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) compose a group of non-protein-coding RNAs - more than 200 nucleotides in length. Recent studies have shown that lncRNAs play important roles in different cellular processes, including proliferation, differentiation, migration and invasion. Deregulation of lncRNAs has been widely reported in human tumours, in which they are able to function as either oncogenes (on the one hand) or tumour suppressor genes (on the other). Deregulation of CCAT1 (colon cancer-associated transcript-1), an oncogenic lncRNA, has been documented in different types of malignancy, such as gastric cancer, colorectal cancer and hepatocellular carcinoma. In this regard, enforced expression of CCAT1 exerts potent tumorigenic effects by promoting cell proliferation, invasion and migration. Recent evidence has also shown that CCAT1 may serve as a prognostic cancer biomarker. In this review, we provide an overview of current evidence relating to the role and biological function of CCAT1 in tumour development.
Collapse
Affiliation(s)
- Yu Xin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
24
|
McCleland ML, Mesh K, Lorenzana E, Chopra VS, Segal E, Watanabe C, Haley B, Mayba O, Yaylaoglu M, Gnad F, Firestein R. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest 2016; 126:639-52. [PMID: 26752646 PMCID: PMC4731162 DOI: 10.1172/jci83265] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023] Open
Abstract
Colon tumors arise in a stepwise fashion from either discrete genetic perturbations or epigenetic dysregulation. To uncover the key epigenetic regulators that drive colon cancer growth, we used a CRISPR loss-of-function screen and identified a number of essential genes, including the bromodomain and extraterminal (BET) protein BRD4. We found that BRD4 is critical for colon cancer proliferation, and its knockdown led to differentiation effects in vivo. JQ1, a BET inhibitor, preferentially reduced growth in a subset of epigenetically dysregulated colon cancers characterized by the CpG island methylator phenotype (CIMP). Integrated transcriptomic and genomic analyses defined a distinct superenhancer in CIMP+ colon cancers that regulates cMYC transcription. We found that the long noncoding RNA colon cancer-associated transcript 1 (CCAT1) is transcribed from this superenhancer and is exquisitely sensitive to BET inhibition. Concordantly, cMYC transcription and cell growth were tightly correlated with the presence of CCAT1 RNA in a variety of tumor types. Taken together, we propose that CCAT1 is a clinically tractable biomarker for identifying patients who are likely to benefit from BET inhibitors.
Collapse
MESH Headings
- Animals
- Azepines/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Proliferation
- Colorectal Neoplasms
- CpG Islands
- DNA Methylation/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Knockdown Techniques
- Humans
- Mice
- Mice, Nude
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triazoles/pharmacology
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, and
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, California, USA
| | - Oleg Mayba
- Department of Bioinformatics and Computational Biology, and
| | | | - Florian Gnad
- Department of Bioinformatics and Computational Biology, and
| | | |
Collapse
|
25
|
Jiang HY, Zou J, Yu XF. Expression and regulation of long non-coding RNAs in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:3567-3575. [DOI: 10.11569/wcjd.v23.i22.3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) has a messenger RNA-like structure, greater than 200 nucleotides in length, and extensively existing in both the cytoplasm and nucleus. However, almost all lncRNAs cannot be transcribed into proteins. Increasing studies showed that lncRNAs participate in many eukaryotic activities, such as regulating the expression of genes at epigenetic, transcriptional and post-transcriptional levels, and regulating human growth and development, and also, cell apoptosis. Their aberrant expression is involved in many human diseases and tumorigenesis. This article reviews the latest results of lncRNAs in colorectal cancer with regards to their expression and regulation.
Collapse
|
26
|
Tang J, Zhuo H, Zhang X, Jiang R, Ji J, Deng L, Qian X, Zhang F, Sun B. A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death Dis 2014; 5:e1549. [PMID: 25476897 PMCID: PMC4649834 DOI: 10.1038/cddis.2014.518] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
Location-associated long noncoding RNA (lncRNA) was reported to interact with target protein via a cis-regulatory process especially for the Flank10kb class lncRNA. Based on this theory, we aimed to explore the regulatory mechanisms of Linc00974 and KRT19 (an lncRNA beyond the Flank10kb class with protein) when we first confirmed the aberrant expression in hepatocellular carcinoma in a previous study. Knockdown of Linc00974 resulted in an inhibition of cell proliferation and invasion with an activation of apoptosis and cell cycle arrest in vitro, which was also validated by a subcutaneous and tail vein/intraperitoneal injection xenotransplantation model in vivo. We further investigated the interaction pattern of Linc00974 and KRT19. MiR-642 was identified, by acting as the competing endogenous RNA in regulating Linc00974 and KRT19. Linc00974 was increased owing to an abnormal hypomethylation promoter, which induced the upregulation of KRT19 via ceRNA interaction, resulting in the activation of the Notch and TGF-β pathways as detected by cDNA microarray. We also discovered Linc00974F-1 stably expressed in the plasma. By the combined analysis of Linc00974F-1 with CYFRA21-1, we found that these joint indicators predicted growth and metastasis of tumor in HCC patients. In conclusion, the combination of Linc00974 and KRT19 may be novel indices for clinical diagnosis of tumor growth and metastasis in HCC, while Linc00974 may become a potential therapeutic target for the prevention of HCC progression.
Collapse
Affiliation(s)
- J Tang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - H Zhuo
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - X Zhang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - R Jiang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - J Ji
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - L Deng
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - X Qian
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - F Zhang
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - B Sun
- Liver Transplantation Center of the First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|