1
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Millard E, Tooze SA. ATG9 not just an Autophagy Related Protein. J Mol Biol 2025:169288. [PMID: 40513646 DOI: 10.1016/j.jmb.2025.169288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/27/2025] [Accepted: 06/06/2025] [Indexed: 06/16/2025]
Abstract
Autophagy proteins coordinate the biogenesis of a phagophore, the formation and maturation of an autophagosome. Genetic mutations of these proteins can result in dysregulated autophagy, stalled autophagosome biogenesis, and lead to cell death. ATG9, the sole transmembrane ATG (autophagy related) protein governs the nucleation of the phagophore. At a molecular level ATG9 has been shown to be a lipid scramblase capable of redistributing lipids across the lipid bilayer. ATG9-positive vesicles can also deliver lipid-modifying enzymes to alter the lipid composition of membranes. Both functions are required for autophagy. However, ATG proteins, including ATG9, play key molecular roles in pathways unrelated to autophagy. ATG9 has been shown to function in multiple pathways at the Golgi, plasma membrane, and lysosomes. ATG9 can also play an important role in immune signalling. The trafficking of ATG9 in ATG9-positive vesicles is essential to many of these pathways. In this review we highlight the functions of ATG9 in autophagy and autophagy-unrelated pathways, here referred to as "non-canonical functions", and summarise the broader role of ATG9A in cell homeostasis.
Collapse
Affiliation(s)
- Emily Millard
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
3
|
Xia F, Li W, Wang W, Liu J, Li X, Cai J, Shan H, Cai Z, Cui J. S-palmitoylation coordinates the trafficking of ATG9A to mediate autophagy initiation. Autophagy 2025:1-21. [PMID: 40394978 DOI: 10.1080/15548627.2025.2509376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/22/2025] Open
Abstract
ABBREVIATION 17-ODYA: 17-octadecynoic acid; 293T: HEK293T; 2-BP: 2-bromopalmitate; 2CS: Cys155Ser and Cys156Ser; ABE: acyl-biotin exchange; AP: adaptor protein; APEX2: ascorbate peroxidase 2; ATG: autophagy related; baf A1: bafilomycin A1; CRISPR: clustered regularly interspaced short palindromic repeats; CTD: C-terminal domain; Cys: cysteine; DAB: 3,3'-diaminobenzidine; EV: empty vector; H2O2: hydrogen peroxide; IF: immunofluorescence; IP: immunoprecipitation; KO: knockout; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; NTD: N-terminal domain; PAS: phagophore assembly site; PBS: phosphate-buffered saline; PtdIns3K-CI: class III phosphatidylinositol 3-kinase complex I; PM: plasma membrane; PTM: post-translational modifications; Ser: serine; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TGN: trans-Golgi network; ULK1: unc-51 like autophagy activating kinase 1; WCL, whole cell lysates; WDR45/WIPI4: WD repeat domain 45; WT: wild-type; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Fan Xia
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weining Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenru Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiru Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Cai
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Shan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhe Cai
- The Department of Rheumatology, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Chen C, Liu G, Xu K, Chen A, Cheng Z, Yan X, Zhang T, Sun Y, Yu T, Wang J, Luo S, Zhou W, Deng S, Liu Y, Yang Y. ATG9 inhibits Rickettsia binding to the host cell surface by blocking the rOmpB-XRCC6/KU70 interaction. Autophagy 2025:1-17. [PMID: 40259479 DOI: 10.1080/15548627.2025.2496363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025] Open
Abstract
ickettsiae are tick-borne pathogens that infect human hosts through poorly characterized mechanisms. Herein, we report that ATG9 (autophagy related 9) plays a previously unrecognized role in inhibiting Rickettsia binding to the host cell surface. Unexpectedly, this new function of ATG9 is likely independent of macroautophagy/autophagy. Instead, ATG9 acts as a host defending factor by binding to XRCC6/KU70, a receptor of the Rickettsia outer-membrane protein rOmpB. Both ATG9 and rOmpB bind to the DNA-binding domain of XRCC6, suggesting a competitive role for ATG9 occupying the binding site of rOmpB to abrogate Rickettsia binding. Furthermore, we show that rapamycin transcriptionally activates ATG9 and inhibits rOmpB-mediated infection in a mouse model. Collectively, our study reveals a novel innate mechanism regulating Rickettsia infection and suggests that agonists of ATG9 May be useful for developing therapeutic strategies for the intervention of rickettsial diseases.Abbreviation: APEX2: apurinic/apyrimidinic endodeoxyribonuclease 2; ATG: autophagy related; BafA1: bafilomycin A1; CQ: chloroquine; E. coli: Escherichia coli; GST: glutathione S-transferase; ICM: immunofluorescence confocal microscopy; IP-Mass: immunoprecipitation-mass spectrometry; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; rOmpB: rickettsial outer membrane protein B; SAP: SAF-A/B, Acinus, and PIAS; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; VWA: von Willebrand factor A; XRCC6/KU70: X-ray repair cross complementing 6.
Collapse
Affiliation(s)
- Chen Chen
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guoxu Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kehan Xu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Aibao Chen
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Ziyang Cheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xueping Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ting Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, USA
| | - Yan Sun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tian Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiayao Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuangshuang Luo
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiting Zhou
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengqun Deng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanan Yang
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
6
|
Bradic I, Rewitz K. Steroid Signaling in Autophagy. J Mol Biol 2025:169134. [PMID: 40210154 DOI: 10.1016/j.jmb.2025.169134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Autophagy is a conserved cellular process essential for homeostasis and development that plays a central role in the degradation and recycling of cellular components. Recent studies reveal bidirectional interactions between autophagy and steroid-hormone signaling. Steroids are signaling molecules synthesized from cholesterol that regulate key physiological and developmental processes - including autophagic activity. Conversely, other work demonstrates that autophagy regulates steroid production by controlling the availability of precursor sterol substrate. Insights from Drosophila and mammalian models provide compelling evidence for the conservation of these mechanisms across species. In this review we explore how steroid hormones modulate autophagy in diverse tissues and contexts, such as metabolism and disease, and discuss advances in our understanding of autophagy's regulatory role in steroid hormone production. We examine the implications of these interactions for health and disease and offer perspectives on the potential for harnessing this functionality for addressing cholesterol-related disorders.
Collapse
Affiliation(s)
- Ivan Bradic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark.
| |
Collapse
|
7
|
Deri E, Kumar Ojha S, Kartawy M, Khaliulin I, Amal H. Multi-omics study reveals differential expression and phosphorylation of autophagy-related proteins in autism spectrum disorder. Sci Rep 2025; 15:10878. [PMID: 40158064 PMCID: PMC11954894 DOI: 10.1038/s41598-025-95860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Our multi-omics study investigated the molecular mechanisms underlying autism spectrum disorder (ASD) using Shank3Δ4-22 and Cntnap2-/- mouse models. Through global- and phospho- proteomics of the mouse cortex, we focused on shared molecular changes and found that autophagy was particularly affected in both models. Global proteomics identified a small number of differentially expressed proteins that significantly impact postsynaptic components and synaptic function, including key pathways such as mTOR signaling. Phosphoproteomics revealed unique phosphorylation sites in autophagy-related proteins such as ULK2, RB1CC1, ATG16L1, and ATG9, suggesting that altered phosphorylation patterns contribute to impaired autophagic flux in ASD. SH-SY5Y cells with SHANK3 gene deletion showed elevated LC3-II and p62 levels, indicating autophagosome accumulation and autophagy initiation, while the reduced level of the lysosomal activity marker LAMP1 suggested impaired autophagosome-lysosome fusion. The study highlights the involvement of reactive nitrogen species and nitric oxide (NO) on autophagy disruption. Importantly, inhibition of neuronal NO synthase (nNOS) by 7-NI normalized autophagy markers levels in the SH-SY5Y cells and primary cultured neurons. We have previously shown that nNOS inhibition improved synaptic and behavioral phenotypes in Shank3Δ4-22 and Cntnap2-/- mouse models. Our multi-omics study reveals differential expression and phosphorylation of autophagy-related proteins in ASD but further investigation is needed to prove the full involvement of autophagy in ASD. Our study underscores the need for further examination into the functional consequences of the identified phosphorylation sites, which may offer potential novel therapeutic autophagy-related targets for ASD treatment.
Collapse
Affiliation(s)
- Eden Deri
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shashank Kumar Ojha
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Liu Y, Song C, Gao S, Zhou D, Lv J, Zhou Y, Wang L, Shi H, Liu F, Xiong Z, Hou Y, Liu Z. Chondrocyte Ferritinophagy as a Molecular Mechanism of Arthritis-A Narrative Review. Cell Biochem Biophys 2025; 83:1021-1033. [PMID: 39306824 DOI: 10.1007/s12013-024-01534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
Osteoarthritis (OA) is a prevalent joint disease affecting orthopedic patients. Its incidence is steadily increasing, causing great economic hardship for individuals and society as a whole. OA is connected with risk factors such as genetics, obesity, and joint diseases; yet, its pathophysiology is still largely understood. At present, several cell death pathways govern the initiation and advancement of OA. It has been discovered that the onset and progression of OA are strongly associated with pyroptosis, senescence, apoptosis, ferroptosis, and autophagy. Ferroptosis and autophagy have not been well studied in OA, and elucidating their molecular mechanisms in chondrocytes is important for the diagnosis of OA. For this reason, we aim was reviewed recent national and international developments and provided an initial understanding of the molecular pathways underlying autophagy and ferroptosis in OA. We determined the reference period to be the last five years by searching for the keywords "osteoarthritis, mechanical stress, Pizeo1, ferroptosis, autophagy, ferritin autophagy" in the three databases of PUBMED, Web of Science, Google Scholar. We then screened irrelevant literature by reading the abstracts. Ferroptosis is a type of programmed cell death that is dependent on reactive oxygen species and Fe2+. It is primarily caused by processes linked to amino acid metabolism, lipid peroxidation, and iron metabolism. Furthermore, Piezoelectric mechanically sensitive ion channel assembly 1 (PIEZO1), which is triggered by mechanical stress, has been revealed to be intimately associated with ferroptosis events. It was found that mechanical injury triggers changes in the intracellular environment of articular chondrocytes (e.g., elevated levels of oxidative stress and increased inflammation) through PIEZO1, ultimately leading to iron death in chondrocytes. Therefore, we believe that PIEZO1 is a key initiator protein of iron death in chondrocytes. Widely present in eukaryotic cells, autophagy is a lysosome-dependent, evolutionarily conserved catabolic process that carries misfolded proteins, damaged organelles, and other macromolecules to lysosomes for breakdown and recycling. Throughout OA, autophagy is activated to differing degrees, indicating that autophagy may play a role in the development of OA. According to recent research, autophagy is a major factor in the process that leads cells to ferroptosis. Despite the notion of ferritinophagy being put forth, not much research has been done to clarify the connection between ferroptosis and autophagy in OA.
Collapse
Affiliation(s)
- Yong Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- RuiKang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- RuiKang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Silong Gao
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jiale Lv
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liquan Wang
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- RuiKang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| | - Zhongwei Xiong
- Luzhou Longmatan District People's Hospital, Luzhou, 646000, Sichuan, China.
| | - Yunqing Hou
- Luzhou Longmatan District People's Hospital, Luzhou, 646000, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Longmatan District People's Hospital, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Fan S, Dong S, Yao W, Zhang Y, Fan M, Feng S, Wu C, Zhang L, Yi C. Mec1-mediated Atg9 phosphorylation regulates the PAS recruitment of Atg9 vesicles upon energy stress. Proc Natl Acad Sci U S A 2025; 122:e2422582122. [PMID: 39913206 PMCID: PMC11831128 DOI: 10.1073/pnas.2422582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/08/2025] [Indexed: 02/19/2025] Open
Abstract
Mec1 plays an essential role in both the DNA damage response and glucose starvation-induced autophagy. We recently reported that Mec1 regulates glucose starvation-induced autophagy through its direct binding to Atg13. However, the role of Mec1's kinase activity in autophagy remains unclear. In this study, we demonstrate that the kinase activity of Mec1 is required for glucose starvation-induced autophagy by regulating the phagophore assembly site (PAS) recruitment of Atg9 vesicles. Mechanistic and functional analyses identified Atg9 as a direct phosphorylation substrate of Mec1, with phosphorylation occurring at the S35, T203, and T243 sites. Mutations at these sites reduce the association of Atg9 with Atg17, Atg23, and Atg27, thereby impairing the PAS recruitment of Atg9 vesicles. Notably, we found that the Mec1-Atg13 binding is a prerequisite for the phosphorylation of Atg9 by Mec1. Furthermore, Mec1-mediated phosphorylation of Atg9 is also crucial for the PAS recruitment of Atg9 vesicles in response to DNA damage. We thus propose that Mec1's kinase activity regulates the PAS recruitment of Atg9 vesicles by phosphorylating Atg9 in response to energy stress and DNA damage.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Shuling Dong
- Biology Department, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou313000, China
| | - Weijing Yao
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Yi Zhang
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Mingzhu Fan
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou310030, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou310030, China
| | - Choufei Wu
- Biology Department, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou313000, China
| | - Liqin Zhang
- Biology Department, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou313000, China
| | - Cong Yi
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| |
Collapse
|
11
|
Javed R, Mari M, Trosdal E, Duque T, Paddar MA, Allers L, Mudd MH, Claude-Taupin A, Akepati PR, Hendrix E, He Y, Salemi M, Phinney B, Uchiyama Y, Reggiori F, Deretic V. ATG9A facilitates the closure of mammalian autophagosomes. J Cell Biol 2025; 224:e202404047. [PMID: 39745851 PMCID: PMC11694768 DOI: 10.1083/jcb.202404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores. Here, we report a hitherto unappreciated function of mammalian ATG9A in directing autophagosome closure. ATG9A partners with IQGAP1 and key ESCRT-III component CHMP2A to facilitate this final stage in autophagosome formation. Thus, ATG9A is a central hub governing all major aspects of autophagosome membrane biogenesis, from phagophore formation to its closure, and is a unique ATG factor with progressive functionalities affecting the physiological outputs of autophagy.
Collapse
Affiliation(s)
- Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Einar Trosdal
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michal H. Mudd
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Aurore Claude-Taupin
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Prithvi Reddy Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Emily Hendrix
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
12
|
Mishra AK, Tripathi MK, Kumar D, Gupta SP. Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration. Mol Neurobiol 2025; 62:2626-2640. [PMID: 39141193 DOI: 10.1007/s12035-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, 494 337, Chhattisgarh, India.
| | - Manish Kumar Tripathi
- School of Pharmacy, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Dipak Kumar
- Department of Zoology, Munger University, Munger, Bihar, India
| | - Satya Prakash Gupta
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
13
|
Ji F, Dai E, Kang R, Klionsky DJ, Liu T, Hu Y, Tang D, Zhu K. Mammalian nucleophagy: process and function. Autophagy 2025:1-17. [PMID: 39827882 DOI: 10.1080/15548627.2025.2455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments. Impaired nucleophagy has been implicated in aging and various pathological conditions, including cancer, neurodegeneration, autoimmune disorders, and neurological injury. In this review, we focus on nucleophagy in mammalian cells, discussing its mechanisms, regulation, and cargo selection, as well as evaluating its therapeutic potential in promoting human health and mitigating disease.Abbreviations: 5-FU: 5-fluorouracil; AMPK, AMP-activated protein kinase; ATG, autophagy related; CMA, chaperone-mediated autophagy; DRPLA: dentatorubral-pallidoluysian atrophy; ER, endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; HOPS, homotypic fusion and vacuole protein sorting; LIR: LC3-interacting region; MEFs: mouse embryonic fibroblasts; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; PCa: prostate cancer; PE: phosphatidylethanolamine; PI3K, phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; rRNA: ribosomal RNA; SCI: spinal cord injury; SCLC: small cell lung cancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SupraT: supraphysiological levels of testosterone; TOP1cc: TOP1 cleavage complexes.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enyong Dai
- 2nd ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tong Liu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Hu
- Department of Pathology, Chian-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kun Zhu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Wang L, Yi S, Zhang S, Tsai YT, Cheng YH, Lin YT, Lin CC, Lee YH, Wang H, Ho MS. New Atg9 Phosphorylation Sites Regulate Autophagic Trafficking in Glia. ASN Neuro 2025; 17:2443442. [PMID: 39807990 PMCID: PMC11877618 DOI: 10.1080/17590914.2024.2443442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia. Whereas the expression of the non-phosphorylatable Atg9 variants suppresses the lack of dAux-induced increase in both autophagosome formation and Atg9 trafficking to autophagosome, the expression of the phosphomimetic Atg9 variants restores the lack of Atg1-induced decrease in both events. In relation to pathophysiology, Atg9 phosphorylation at T62 and T69 contributes to dopaminergic neurodegeneration and locomotor dysfunction in a Drosophila PD model. Notably, increased expression of the master autophagy regulator Atg1 promotes dAux-Atg9 interaction. Thus, we have identified a dAux-Atg1-Atg9 axis relaying signals through the Atg9 phosphorylation at T62 and T69; these findings further elaborate the mechanism of dAux regulating glial autophagy and highlight the significance of protein degradation pathway in glia contributing to PD.
Collapse
Affiliation(s)
- Linfang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- The Institute of Seed Industry, Xianghu Laboratory, Qiantang River International Innovation Belt of the Xiaoshan Economic and Technological Development Zone, Hangzhou, China
| | - Shuanglong Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Ting Tsai
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Cheng
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tung Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Ching Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hua Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Honglei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Mohseni M, Behzad G, Farhadi A, Behroozi J, Mohseni H, Valipour B. MicroRNAs regulating autophagy: opportunities in treating neurodegenerative diseases. Front Neurosci 2024; 18:1397106. [PMID: 39582602 PMCID: PMC11582054 DOI: 10.3389/fnins.2024.1397106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Neurodegenerative diseases (NDs) are increasingly prevalent in our aging population, imposing significant social and economic burdens. Currently, most ND patients receive only symptomatic treatment due to limited understanding of their underlying causes. Consequently, there is a pressing need for comprehensive research into the pathological mechanisms of NDs by both researchers and clinicians. Autophagy, a cellular mechanism responsible for maintaining cellular equilibrium by removing dysfunctional organelles and misfolded proteins, plays a vital role in cell health and is implicated in various diseases. MicroRNAs (miRNAs) exert influence on autophagy and hold promise for treating these diseases. These small oligonucleotides bind to the 3'-untranslated region (UTR) of target mRNAs, leading to mRNA silencing, degradation, or translation blockade. This review explores recent findings on the regulation of autophagy and autophagy-related genes by different miRNAs in various pathological conditions, including neurodegeneration and inflammation-related diseases. The recognition of miRNAs as key regulators of autophagy in human diseases has spurred investigations into pharmacological compounds and traditional medicines targeting these miRNAs in disease models. This has catalyzed a new wave of therapeutic interventions aimed at modulating autophagy.
Collapse
Affiliation(s)
- Mahdi Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Behzad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamraz Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Choi J, Jang H, Xuan Z, Park D. Emerging roles of ATG9/ATG9A in autophagy: implications for cell and neurobiology. Autophagy 2024; 20:2373-2387. [PMID: 39099167 PMCID: PMC11572220 DOI: 10.1080/15548627.2024.2384349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Atg9, the only transmembrane protein among many autophagy-related proteins, was first identified in the year 2000 in yeast. Two homologs of Atg9, ATG9A and ATG9B, have been found in mammals. While ATG9B shows a tissue-specific expression pattern, such as in the placenta and pituitary gland, ATG9A is ubiquitously expressed. Additionally, ATG9A deficiency leads to severe defects not only at the molecular and cellular levels but also at the organismal level, suggesting key and fundamental roles for ATG9A. The subcellular localization of ATG9A on small vesicles and its functional relevance to autophagy have suggested a potential role for ATG9A in the lipid supply during autophagosome biogenesis. Nevertheless, the precise role of ATG9A in the autophagic process has remained a long-standing mystery, especially in neurons. Recent findings, however, including structural, proteomic, and biochemical analyses, have provided new insights into its function in the expansion of the phagophore membrane. In this review, we aim to understand various aspects of ATG9 (in invertebrates and plants)/ATG9A (in mammals), including its localization, trafficking, and other functions, in nonneuronal cells and neurons by comparing recent discoveries related to ATG9/ATG9A and proposing directions for future research.Abbreviation: AP-4: adaptor protein complex 4; ATG: autophagy related; cKO: conditional knockout; CLA-1: CLArinet (functional homolog of cytomatrix at the active zone proteins piccolo and fife); cryo-EM: cryogenic electron microscopy; ER: endoplasmic reticulum; KO: knockout; PAS: phagophore assembly site; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SV: synaptic vesicle; TGN: trans-Golgi network; ULK: unc-51 like autophagy activating kinase; WIPI2: WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Jiyoung Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, South Korea
| | - Haeun Jang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Zhao Xuan
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Daehun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
17
|
Tian R, Zhao P, Ding X, Wang X, Jiang X, Chen S, Cai Z, Li L, Chen S, Liu W, Sun Q. TBC1D4 antagonizes RAB2A-mediated autophagic and endocytic pathways. Autophagy 2024; 20:2426-2443. [PMID: 38964379 PMCID: PMC11572321 DOI: 10.1080/15548627.2024.2367907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Macroautophagic/autophagic and endocytic pathways play essential roles in maintaining homeostasis at different levels. It remains poorly understood how both pathways are coordinated and fine-tuned for proper lysosomal degradation of diverse cargoes. We and others recently identified a Golgi-resident RAB GTPase, RAB2A, as a positive regulator that controls both autophagic and endocytic pathways. In the current study, we report that TBC1D4 (TBC1 domain family member 4), a TBC domain-containing protein that plays essential roles in glucose homeostasis, suppresses RAB2A-mediated autophagic and endocytic pathways. TBC1D4 bound to RAB2A through its N-terminal PTB2 domain, which impaired RAB2A-mediated autophagy at the early stage by preventing ULK1 complex activation. During the late stage of autophagy, TBC1D4 impeded the association of RUBCNL/PACER and RAB2A with STX17 on autophagosomes by direct interaction with RUBCNL via its N-terminal PTB1 domain. Disruption of the autophagosomal trimeric complex containing RAB2A, RUBCNL and STX17 resulted in defective HOPS recruitment and eventually abortive autophagosome-lysosome fusion. Furthermore, TBC1D4 inhibited RAB2A-mediated endocytic degradation independent of RUBCNL. Therefore, TBC1D4 and RAB2A form a dual molecular switch to modulate autophagic and endocytic pathways. Importantly, hepatocyte- or adipocyte-specific tbc1d4 knockout in mice led to elevated autophagic flux and endocytic degradation and tissue damage. Together, this work establishes TBC1D4 as a critical molecular brake in autophagic and endocytic pathways, providing further mechanistic insights into how these pathways are intertwined both in vitro and in vivo.Abbreviations: ACTB: actin beta; ATG9: autophagy related 9; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; CLEM: correlative light electron microscopy; Ctrl: control; DMSO: dimethyl sulfoxide; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; FL: full length; GAP: GTPase-activating protein; GFP: green fluorescent protein; HOPS: homotypic fusion and protein sorting; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; OE: overexpression; PG: phagophore; PtdIns3K: class III phosphatidylinositol 3-kinase; SLC2A4/GLUT4: solute carrier family 2 member 4; SQSTM1/p62: sequestosome 1; RUBCNL/PACER: rubicon like autophagy enhancer; STX17: syntaxin 17; TAP: tandem affinity purification; TBA: total bile acid; TBC1D4: TBC1 domain family member 4; TUBA1B: tubulin alpha 1b; ULK1: unc-51 like autophagy activating kinase 1; VPS39: VPS39 subunit of HOPS complex; WB: western blot; WT: wild type.
Collapse
Affiliation(s)
- Rui Tian
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianming Ding
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Jiang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Chen Y, Wu Y, Tian X, Shao G, Lin Q, Sun A. Golgiphagy: a novel selective autophagy to the fore. Cell Biosci 2024; 14:130. [PMID: 39438975 PMCID: PMC11495120 DOI: 10.1186/s13578-024-01311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The Golgi apparatus is the central hub of the cellular endocrine pathway and plays a crucial role in processing, transporting, and sorting proteins and lipids. Simultaneously, it is a highly dynamic organelle susceptible to degradation or fragmentation under various physiological or pathological conditions, potentially contributing to the development of numerous human diseases. Autophagy serves as a vital pathway for eukaryotes to manage intracellular and extracellular stress and maintain homeostasis by targeting damaged or redundant organelles for removal. Recent research has revealed that autophagy mechanisms can specifically degrade Golgi components, known as Golgiphagy. This review summarizes recent findings on Golgiphagy while also addressing unanswered questions regarding its mechanisms and regulation, aiming to advance our understanding of the role of Golgiphagy in human disease.
Collapse
Affiliation(s)
- Yifei Chen
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yihui Wu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
19
|
Zhang T, Liu Q, Chen Q, Wu H. Iron regulatory protein two facilitates ferritinophagy and DNA damage/repair through guiding ATG9A trafficking. J Biol Chem 2024; 300:107767. [PMID: 39276939 PMCID: PMC11490887 DOI: 10.1016/j.jbc.2024.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/17/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024] Open
Abstract
Trace elemental iron is an essential nutrient that participates in diverse metabolic processes. Dysregulation of cellular iron homeostasis, both iron deficiency and iron overload, is detrimental and tightly associated with disease pathogenesis. IRPs-IREs system is located at the center for iron homeostasis regulation. Additionally, ferritinophagy, the autophagy-dependent ferritin catabolism for iron recycling, is emerging as a novel mechanism for iron homeostasis regulation. It is still unclear whether IRPs-IREs system and ferritinophagy are synergistic or redundant in determining iron homeostasis. Here we report that IRP2, but not IRP1, is indispensable for ferritinophagy in response to iron depletion. Mechanistically, IRP2 ablation results in compromised AMPK activation and defective ATG9A endosomal trafficking, leading to the decreased engulfment of NCOA4-ferritin complex by endosomes and the subsequent dysregulated endosomal microferritinophagy. Moreover, this defective endosomal microferritinophagy exacerbates DNA damage and reduces colony formation in IRP2-depleted cells. Collectively, this study expands the physiological function of IRP2 in endosomal microferritinophagy and highlights potential crosstalk between IRPs-IREs and ferritinophagy in manipulating iron homeostasis.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Duan H, Song S, Li R, Hu S, Zhuang S, Liu S, Li X, Gao W. Strategy for treating MAFLD: Electroacupuncture alleviates hepatic steatosis and fibrosis by enhancing AMPK mediated glycolipid metabolism and autophagy in T2DM rats. Diabetol Metab Syndr 2024; 16:218. [PMID: 39261952 PMCID: PMC11389443 DOI: 10.1186/s13098-024-01432-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Recent studies have highlighted type 2 diabetes (T2DM) as a significant risk factor for the development of metabolic dysfunction-associated fatty liver disease (MAFLD). This investigation aimed to assess electroacupuncture's (EA) impact on liver morphology and function in T2DM rats, furnishing experimental substantiation for its potential to stall MAFLD progression in T2DM. METHODS T2DM rats were induced by a high-fat diet and a single intraperitoneal injection of streptozotocin, and then randomly assigned to five groups: the T2DM group, the electroacupuncture group, the metformin group, combination group of electroacupuncture and metformin, combination group of electroacupuncture and Compound C. The control group received a standard diet alongside intraperitoneal citric acid - sodium citrate solution injections. After a 6-week intervention, the effects of each group on fasting blood glucose, lipids, liver function, morphology, lipid droplet infiltration, and fibrosis were evaluated. Techniques including Western blotting, qPCR, immunohistochemistry, and immunofluorescence were employed to gauge the expression of key molecules in AMPK-associated glycolipid metabolism, insulin signaling, autophagy, and fibrosis pathways. Additionally, transmission electron microscopy facilitated the observation of liver autophagy, lipid droplets, and fibrosis. RESULTS Our studies indicated that hyperglycemia, hyperlipidemia and IR promoted lipid accumulation, pathological and functional damage, and resulting in hepatic steatosis and fibrosis. Meanwhile, EA enhanced the activation of AMPK, which in turn improved glycolipid metabolism and autophagy through promoting the expression of PPARα/CPT1A and AMPK/mTOR pathway, inhibiting the expression of SREBP1c, PGC-1α/PCK2 and TGFβ1/Smad2/3 signaling pathway, ultimately exerting its effect on ameliorating hepatic steatosis and fibrosis in T2DM rats. The above effects of EA were consistent with metformin. The combination of EA and metformin had significant advantages in increasing hepatic AMPK expression, improving liver morphology, lipid droplet infiltration, fibrosis, and reducing serum ALT levels. In addition, the ameliorating effects of EA on the progression of MAFLD in T2DM rats were partly disrupted by Compound C, an inhibitor of AMPK. CONCLUSIONS EA upregulated hepatic AMPK expression, curtailing gluconeogenesis and lipogenesis while boosting fatty acid oxidation and autophagy levels. Consequently, it mitigated blood glucose, lipids, and insulin resistance in T2DM rats, thus impeding liver steatosis and fibrosis progression and retarding MAFLD advancement.
Collapse
Affiliation(s)
- Haoru Duan
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, Chaoyang District Traditional Chinese Medicine Hospital, Beijing, 100026, China
| | - Shanshan Song
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Acupuncture and Moxibustion, China- Japan Friendship Hospital, Beijing, 100029, China
| | - Rui Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Suqin Hu
- Department of Gastroenterology, Henan Province Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Henan, 450002, China
| | - Shuting Zhuang
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shaoyang Liu
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolu Li
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Gao
- School of Acupuncture - Moxibustion, and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
21
|
Gubas A, Attridge E, Jefferies HB, Nishimura T, Razi M, Kunzelmann S, Gilad Y, Mercer TJ, Wilson MM, Kimchi A, Tooze SA. WIPI2b recruitment to phagophores and ATG16L1 binding are regulated by ULK1 phosphorylation. EMBO Rep 2024; 25:3789-3811. [PMID: 39152217 PMCID: PMC11387628 DOI: 10.1038/s44319-024-00215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/19/2024] Open
Abstract
One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.
Collapse
Affiliation(s)
- Andrea Gubas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Muscular Dystrophy UK, London, SE1 8QD, UK
| | - Eleanor Attridge
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Harold Bj Jefferies
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Taki Nishimura
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Minoo Razi
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yuval Gilad
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Adi Kimchi
- The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
22
|
Holzer E, Martens S, Tulli S. The Role of ATG9 Vesicles in Autophagosome Biogenesis. J Mol Biol 2024; 436:168489. [PMID: 38342428 DOI: 10.1016/j.jmb.2024.168489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Autophagy mediates the degradation and recycling of cellular material in the lysosomal system. Dysfunctional autophagy is associated with a plethora of diseases including uncontrolled infections, cancer and neurodegeneration. In macroautophagy (hereafter autophagy) this material is encapsulated in double membrane vesicles, the autophagosomes, which form upon induction of autophagy. The precursors to autophagosomes, referred to as phagophores, first appear as small flattened membrane cisternae, which gradually enclose the cargo material as they grow. The assembly of phagophores during autophagy initiation has been a major subject of investigation over the past decades. A special focus has been ATG9, the only conserved transmembrane protein among the core machinery. The majority of ATG9 localizes to small Golgi-derived vesicles. Here we review the recent advances and breakthroughs regarding our understanding of how ATG9 and the vesicles it resides in serve to assemble the autophagy machinery and to establish membrane contact sites for autophagosome biogenesis. We also highlight open questions in the field that need to be addressed in the years to come.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, Vienna, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| |
Collapse
|
23
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
24
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
25
|
Iibushi J, Nozawa T, Toh H, Nakagawa I. ATG9B regulates bacterial internalization via actin rearrangement. iScience 2024; 27:109623. [PMID: 38706859 PMCID: PMC11066431 DOI: 10.1016/j.isci.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Invasive bacterial pathogens are internalized by host cells through endocytosis, which is regulated by a cascade of actin rearrangement signals triggered by host cell receptors or bacterial proteins delivered into host cells. However, the molecular mechanisms that mediate actin rearrangement to promote bacterial invasion are not fully understood. Here, we show that the autophagy-related (ATG) protein ATG9B regulates the internalization of various bacteria by controlling actin rearrangement. ATG knockout screening and knockdown experiments in HeLa cells identified ATG9B as a critical factor for bacterial internalization. In particular, cells with ATG9B knockdown exhibited an accumulation of actin filaments and phosphorylated LIM kinase and cofilin, suggesting that ATG9B is involved in actin depolymerization. Furthermore, the kinase activity of Unc-51-like autophagy-activating kinase 1 was found to regulate ATG9B localization and actin remodeling. These findings revealed a newly discovered function of ATG proteins in bacterial infection rather than autophagy-mediated immunity.
Collapse
Affiliation(s)
- Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| |
Collapse
|
26
|
Kong Y, Guo P, Xu J, Li J, Wu M, Zhang Z, Wang Y, Liu X, Yang L, Liu M, Zhang H, Wang P, Zhang Z. MoMkk1 and MoAtg1 dichotomously regulating autophagy and pathogenicity through MoAtg9 phosphorylation in Magnaporthe oryzae. mBio 2024; 15:e0334423. [PMID: 38501872 PMCID: PMC11005334 DOI: 10.1128/mbio.03344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus Magnaporthe oryzae. Still, the mechanism of how MoMkk1 regulates autophagy is unclear. Interestingly, we found that MoMkk1 regulates the autophagy protein MoAtg9 through phosphorylation. MoAtg9 is a transmembrane protein subjected to phosphorylation by autophagy-related protein kinase MoAtg1. Here, we provide evidence demonstrating that MoMkk1-dependent MoAtg9 phosphorylation is required for phospholipid translocation during isolation membrane stages of autophagosome formation, an autophagic process essential for the development and pathogenicity of the fungus. In contrast, MoAtg1-dependent phosphorylation of MoAtg9 negatively regulates this process, also impacting growth and pathogenicity. Our studies are the first to demonstrate that MoAtg9 is subject to MoMkk1 regulation through protein phosphorylation and that MoMkk1 and MoAtg1 dichotomously regulate autophagy to underlie the growth and pathogenicity of M. oryzae.IMPORTANCEMagnaporthe oryzae utilizes multiple signaling pathways to promote colonization of host plants. MoMkk1, a cell wall integrity signaling kinase, plays an essential role in autophagy governed by a highly conserved autophagy kinase MoAtg1-mediated pathway. How MoMkk1 regulates autophagy in coordination with MoAtg1 remains elusive. Here, we provide evidence that MoMkk1 phosphorylates MoAtg9 to positively regulate phospholipid translocation during the isolation membrane or smaller membrane structures stage of autophagosome formation. This is in contrast to the negative regulation of MoAtg9 by MoAtg1 for the same process. Intriguingly, MoMkk1-mediated MoAtg9 phosphorylation enhances the fungal infection of rice, whereas MoAtg1-dependant MoAtg9 phosphorylation significantly attenuates it. Taken together, we revealed a novel mechanism of autophagy and virulence regulation by demonstrating the dichotomous functions of MoMkk1 and MoAtg1 in the regulation of fungal autophagy and pathogenicity.
Collapse
Affiliation(s)
- Yun Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Pusheng Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiaxu Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Miao Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yifan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Yuan Z, Ye J, Liu B, Zhang L. Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics. ADVANCED BIOTECHNOLOGY 2024; 2:14. [PMID: 39883213 PMCID: PMC11740883 DOI: 10.1007/s44307-024-00021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options. In this review, we discuss in detail how mutations in autophagy-related genes function in Crohn's disease and summarize the modulatory effects on autophagy of small-molecule drugs currently used for Crohn's disease treatment. Furthermore, we delve into the therapeutic potential of small-molecule autophagy inducers on Crohn's disease, emphasizing the prospects for development in this field. We aim to highlight the significance of autophagy modulation in Crohn's disease, with the aspiration of contributing to the development of more efficacious treatments that can alleviate their suffering, and improve their quality of life.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
28
|
Yamano K, Sawada M, Kikuchi R, Nagataki K, Kojima W, Endo R, Kinefuchi H, Sugihara A, Fujino T, Watanabe A, Tanaka K, Hayashi G, Murakami H, Matsuda N. Optineurin provides a mitophagy contact site for TBK1 activation. EMBO J 2024; 43:754-779. [PMID: 38287189 PMCID: PMC10907724 DOI: 10.1038/s44318-024-00036-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Momoha Sawada
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Reika Kikuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kafu Nagataki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Ryu Endo
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Atsushi Sugihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Aiko Watanabe
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| |
Collapse
|
29
|
Kim DH. Contrasting views on the role of AMPK in autophagy. Bioessays 2024; 46:e2300211. [PMID: 38214366 PMCID: PMC10922896 DOI: 10.1002/bies.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Efficient management of low energy states is vital for cells to maintain basic functions and metabolism and avoid cell death. While autophagy has long been considered a critical mechanism for ensuring survival during energy depletion, recent research has presented conflicting evidence, challenging the long-standing concept. This recent development suggests that cells prioritize preserving essential cellular components while restraining autophagy induction when cellular energy is limited. This essay explores the conceptual discourse on autophagy regulation during energy stress, navigating through the studies that established the current paradigm and the recent research that has challenged its validity while proposing an alternative model. This exploration highlights the far-reaching implications of the alternative model, which represents a conceptual departure from the established paradigm, offering new perspectives on how cells respond to energy stress.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Chiduza GN, Garza-Garcia A, Almacellas E, De Tito S, Pye VE, van Vliet AR, Cherepanov P, Tooze SA. ATG9B is a tissue-specific homotrimeric lipid scramblase that can compensate for ATG9A. Autophagy 2024; 20:557-576. [PMID: 37938170 PMCID: PMC10936676 DOI: 10.1080/15548627.2023.2275905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Macroautophagy/autophagy is a fundamental aspect of eukaryotic biology, and the autophagy-related protein ATG9A is part of the core machinery facilitating this process. In addition to ATG9A vertebrates encode ATG9B, a poorly characterized paralog expressed in a subset of tissues. Herein, we characterize the structure of human ATG9B revealing the conserved homotrimeric quaternary structure and explore the conformational dynamics of the protein. Consistent with the experimental structure and computational chemistry, we establish that ATG9B is a functional lipid scramblase. We show that ATG9B can compensate for the absence of ATG9A in starvation-induced autophagy displaying similar subcellular trafficking and steady-state localization. Finally, we demonstrate that ATG9B can form a heteromeric complex with ATG2A. By establishing the molecular structure and function of ATG9B, our results inform the exploration of niche roles for autophagy machinery in more complex eukaryotes and reveal insights relevant across species.Abbreviation: ATG: autophagy related; CHS: cholesteryl hemisuccinate; cryo-EM: single-particle cryogenic electron microscopy; CTF: contrast transfer function: CTH: C- terminal α helix; FSC: fourier shell correlation; HDIR: HORMA domain interacting region; LMNG: lauryl maltose neopentyl glycol; MD: molecular dynamics simulations; MSA: multiple sequence alignment; NBD-PE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl ammonium salt); POPC: palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; RBG: repeating beta groove domain; RMSD: root mean square deviation; SEC: size-exclusion chromatography; TMH: transmembrane helix.
Collapse
Affiliation(s)
- George N. Chiduza
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| |
Collapse
|
31
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
32
|
Markham BN, Ramnarine C, Kim S, Grever WE, Soto-Beasley AI, Heckman M, Ren Y, Osborne AC, Bhagwate AV, Liu Y, Wang C, Kim J, Wszolek ZK, Ross OA, Springer W, Fiesel FC. miRNA family miR-29 inhibits PINK1-PRKN dependent mitophagy via ATG9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576122. [PMID: 38293184 PMCID: PMC10827147 DOI: 10.1101/2024.01.17.576122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Loss-of-function mutations in the genes encoding PINK1 and PRKN result in early-onset Parkinson disease (EOPD). Together the encoded enzymes direct a neuroprotective pathway that ensures the elimination of damaged mitochondria via autophagy. We performed a genome-wide high content imaging miRNA screen for inhibitors of the PINK1-PRKN pathway and identified all three members of the miRNA family 29 (miR-29). Using RNAseq we identified target genes and found that siRNA against ATG9A phenocopied the effects of miR-29 and inhibited the initiation of PINK1-PRKN mitophagy. Furthermore, we discovered two rare, potentially deleterious, missense variants (p.R631W and p.S828L) in our EOPD cohort and tested them experimentally in cells. While expression of wild-type ATG9A was able to rescue the effects of miR-29a, the EOPD-associated variants behaved like loss-of-function mutations. Together, our study validates miR-29 and its target gene ATG9A as novel regulators of mitophagy initiation. It further serves as proof-of-concept of finding novel, potentially disease-causing EOPD-linked variants specifically in mitophagy regulating genes. The nomination of genetic variants and biological pathways is important for the stratification and treatment of patients that suffer from devastating diseases, such as EOPD.
Collapse
Affiliation(s)
- Briana N Markham
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chloe Ramnarine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Songeun Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Michael Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Andrew C Osborne
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya V Bhagwate
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanhang Liu
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Wang
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
33
|
Dupont N, Claude-Taupin A, Codogno P. A historical perspective of macroautophagy regulation by biochemical and biomechanical stimuli. FEBS Lett 2024; 598:17-31. [PMID: 37777819 DOI: 10.1002/1873-3468.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Macroautophagy is a lysosomal degradative pathway for intracellular macromolecules, protein aggregates, and organelles. The formation of the autophagosome, a double membrane-bound structure that sequesters cargoes before their delivery to the lysosome, is regulated by several stimuli in multicellular organisms. Pioneering studies in rat liver showed the importance of amino acids, insulin, and glucagon in controlling macroautophagy. Thereafter, many studies have deciphered the signaling pathways downstream of these biochemical stimuli to control autophagosome formation. Two signaling hubs have emerged: the kinase mTOR, in a complex at the surface of lysosomes which is sensitive to nutrients and hormones; and AMPK, which is sensitive to the cellular energetic status. Besides nutritional, hormonal, and energetic fluctuations, many organs have to respond to mechanical forces (compression, stretching, and shear stress). Recent studies have shown the importance of mechanotransduction in controlling macroautophagy. This regulation engages cell surface sensors, such as the primary cilium, in order to translate mechanical stimuli into biological responses.
Collapse
Affiliation(s)
- Nicolas Dupont
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Aurore Claude-Taupin
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| | - Patrice Codogno
- INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université Paris Cité, France
| |
Collapse
|
34
|
Wang K, Zhou W, Hu G, Wang L, Cai R, Tian T. TFEB SUMOylation in macrophages accelerates atherosclerosis by promoting the formation of foam cells through inhibiting lysosomal activity. Cell Mol Life Sci 2023; 80:358. [PMID: 37950772 PMCID: PMC11071895 DOI: 10.1007/s00018-023-04981-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Atherosclerosis (AS) is a serious cardiovascular disease. One of its hallmarks is hyperlipidemia. Inhibiting the formation of macrophage foam cells is critical for alleviating AS. Transcription factor EB (TFEB) can limit the formation of macrophage foam cells by upregulating lysosomal activity. We examined whether TFEB SUMOylation is involved in this progress during AS. In this study, we investigated the role of TFEB SUMOylation in macrophages in AS using TFEB SUMOylation deficiency Ldlr-/- (TFEB-KR: Ldlr-/-) transgenic mice and TFEB-KR bone marrow-derived macrophages. We observed that TFEB-KR: Ldlr-/- atherosclerotic mice had thinner plaques and macrophages with higher lysosomal activity when compared to WT: Ldlr-/- mice. TFEB SUMOylation in macrophages decreased after oxidized low-density lipoprotein (OxLDL) treatment in vitro. Compared with wild type macrophages, TFEB-KR macrophages exhibited less lipid deposition after OxLDL treatment. Our study demonstrated that in AS, deSUMOylation of TFEB could inhibit the formation of macrophage foam cells through enhancing lysosomal biogenesis and autophagy, further reducing the accumulation of lipids in macrophages, and ultimately alleviating the development of AS. Thus, TFEB SUMOylation can be a switch to modulate macrophage foam cells formation and used as a potential target for AS therapy.
Collapse
Affiliation(s)
- Kezhou Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Urology, Renji Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaolei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Wang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Rd., Shanghai, China
| | - Rong Cai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tian Tian
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Rd., Shanghai, China.
| |
Collapse
|
35
|
Torres-López L, Dobrovinskaya O. Dissecting the Role of Autophagy-Related Proteins in Cancer Metabolism and Plasticity. Cells 2023; 12:2486. [PMID: 37887330 PMCID: PMC10605719 DOI: 10.3390/cells12202486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Modulation of autophagy as an anticancer strategy has been widely studied and evaluated in several cell models. However, little attention has been paid to the metabolic changes that occur in a cancer cell when autophagy is inhibited or induced. In this review, we describe how the expression and regulation of various autophagy-related (ATGs) genes and proteins are associated with cancer progression and cancer plasticity. We present a comprehensive review of how deregulation of ATGs affects cancer cell metabolism, where inhibition of autophagy is mainly reflected in the enhancement of the Warburg effect. The importance of metabolic changes, which largely depend on the cancer type and form part of a cancer cell's escape strategy after autophagy modulation, is emphasized. Consequently, pharmacological strategies based on a dual inhibition of metabolic and autophagy pathways emerged and are reviewed critically here.
Collapse
Affiliation(s)
- Liliana Torres-López
- Laboratory of Immunology and Ionic Transport Regulation, Biomedical Research Centre, University of Colima, Av. 25 de Julio #965, Villas de San Sebastián, Colima 28045, Mexico;
| | | |
Collapse
|
36
|
Suzuki M, Funakoshi T, Kumagai K, Komatsu M, Waguri S. ATG9A supports Chlamydia trachomatis infection via autophagy-independent mechanisms. Microbiol Spectr 2023; 11:e0277423. [PMID: 37707289 PMCID: PMC10580829 DOI: 10.1128/spectrum.02774-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
Chlamydia trachomatis infection can be regulated by autophagy-related (ATG) genes. Here, we found that the depletion of ATG9A, one of the core ATG genes, in HeLa cells suppressed C. trachomatis growth in the inclusion. The growth was restored by re-expressing ATG9A or an ATG9A mutant impairing lipid scramblase activity in ATG9A-knockout (KO) cells. Moreover, the depletion of lipid transfer proteins ATG2A/B, responsible for isolation membrane expansion together with ATG9A, did not significantly alter the growth, suggesting that the non-autophagic function of ATG9A supports C. trachomatis infection. ATG9A-KO cells showed no infection-induced redistribution of the Golgi from the perinuclear region to inclusion, which was restored by re-expressing the mutant but not the ATG9A mutant lacking an N-terminal adapter protein-binding domain. Re-expression of the N-terminal deletion mutant in ATG9A-KO cells did not rescue C. trachomatis growth, suggesting the importance of this domain for its growth. Although ATG9A-KO cells showed enhanced TBK1 activation, interferon (IFN)-β was not significantly increased, excluding the possibility that upregulation of stimulator of IFN genes (STING) signaling suppressed bacterial growth. Taken together, these findings suggest that the proper trafficking, rather than the isolation membrane expansion function, of ATG9A assists C. trachomatis growth in the inclusion. IMPORTANCE ATG9A is an autophagy-related gene that functions during the isolation membrane expansion process to form autophagosomes, but it also has other functions independent of autophagy. In this study, we employed ATG9A-deficient HeLa cells and found that the absence of ATG9A negatively impacted proliferation of Chlamydia trachomatis in inclusions. Furthermore, rescue experiments using ATG9A mutants revealed that this action was mediated not by its autophagic function but by its binding ability to clathrin adapter proteins. These findings suggest that the proper trafficking of ATG9A assists C. trachomatis growth in the inclusion.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukushima, Japan
| | - Tomoko Funakoshi
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukushima, Japan
| |
Collapse
|
37
|
Zhang S, Yi S, Wang L, Li S, Wang H, Song L, Ou J, Zhang M, Wang R, Wang M, Zheng Y, Yang K, Liu T, Ho MS. Cyclin-G-associated kinase GAK/dAux regulates autophagy initiation via ULK1/Atg1 in glia. Proc Natl Acad Sci U S A 2023; 120:e2301002120. [PMID: 37428930 PMCID: PMC10629559 DOI: 10.1073/pnas.2301002120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
Autophagy is a major means for the elimination of protein inclusions in neurons in neurodegenerative diseases such as Parkinson's disease (PD). Yet, the mechanism of autophagy in the other brain cell type, glia, is less well characterized and remains largely unknown. Here, we present evidence that the PD risk factor, Cyclin-G-associated kinase (GAK)/Drosophila homolog Auxilin (dAux), is a component in glial autophagy. The lack of GAK/dAux increases the autophagosome number and size in adult fly glia and mouse microglia, and generally up-regulates levels of components in the initiation and PI3K class III complexes. GAK/dAux interacts with the master initiation regulator UNC-51like autophagy activating kinase 1/Atg1 via its uncoating domain and regulates the trafficking of Atg1 and Atg9 to autophagosomes, hence controlling the onset of glial autophagy. On the other hand, lack of GAK/dAux impairs the autophagic flux and blocks substrate degradation, suggesting that GAK/dAux might play additional roles. Importantly, dAux contributes to PD-like symptoms including dopaminergic neurodegeneration and locomotor function in flies. Our findings identify an autophagy factor in glia; considering the pivotal role of glia under pathological conditions, targeting glial autophagy is potentially a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Shuanglong Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Linfang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shuhua Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Honglei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Li Song
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai200092, China
| | - Jiayao Ou
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai200092, China
| | - Min Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Ruiqi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Mengxiao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yuchen Zheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Kai Yang
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai519087, China
| | - Tong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
| | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
38
|
Wu H, Liu Q, Shan X, Gao W, Chen Q. ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy 2023; 19:2062-2077. [PMID: 36752571 PMCID: PMC10283418 DOI: 10.1080/15548627.2023.2170960] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a newly characterized form of programmed cell death, which is driven by the lethal accumulation of lipid peroxides catalyzed by the intracellular bioactive iron. Targeted induction of ferroptotic cell death holds great promise for therapeutic design against other therapy-resistant cancers. To date, multiple post-translational modifications have been elucidated to impinge on the ferroptotic sensitivity. Here we report that the Ser/Thr protein kinase ATM, the major sensor of DNA double-strand break damage, is indispensable for ferroptosis execution. Pharmacological inhibition or genetic ablation of ATM significantly antagonizes ferroptosis. Besides, ATM ablation-induced ferroptotic resistance is largely independent of its downstream target TRP53, as cells defective in both Trp53 and Atm are still more insensitive to ferroptotic inducers than the trp53 single knockout cells. Mechanistically, ATM dominates the intracellular labile free iron by phosphorylating NCOA4, facilitating NCOA4-ferritin interaction and therefore sustaining ferritinophagy, a selective type of macroautophagy/autophagy specifically degrading ferritin for iron recycling. Our results thus uncover a novel regulatory circuit of ferroptosis comprising ATM-NCOA4 in orchestrating ferritinophagy and iron bioavailability.Abbreviations: AMPK: AMP-activated protein kinase; ATM: ataxia telangiectasia mutated; BSO: buthionine sulphoximine; CDKN1A: cyclin-dependent kinase inhibitor 1A (P21); CQ: chloroquine; DFO: deferoxamine; DFP: deferiprone; Fer: ferrostatin-1; FTH1: ferritin heavy polypeptide 1; GPX4: glutathione peroxidase 4; GSH: glutathione; MEF: mouse embryonic fibroblast; NCOA4: nuclear receptor coactivator 4; PFTα: pifithrin-α; PTGS2: prostaglandin-endoperoxide synthase 2; Slc7a11: solute carrier family 7 member 11; Sul: sulfasalazine; TFRC: transferrin receptor; TRP53: transformation related protein 53.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinyi Shan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Gao
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Quan Chen
- State key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
39
|
Zhou M, Zhi J, Zhi J, Xiong Z, Wu F, Lu Y, Hu Q. Polysaccharide from Strongylocentrotus nudus eggs regulates intestinal epithelial autophagy through CD36/PI3K-Akt pathway to ameliorate inflammatory bowel disease. Int J Biol Macromol 2023:125373. [PMID: 37327932 DOI: 10.1016/j.ijbiomac.2023.125373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Sea urchin is a popular food all over the world, of which eggs are main edible part. Previous studies suggested that polysaccharides from eggs of Strongylocentrotus nudus (SEP) exhibited immunomodulatory activities during anti-tumor therapy, nevertheless, effects of SEP on inflammatory bowel disease and its underlying mechanisms have never been reported. In the present study, we showed that the SEP inhibited dextran sodium sulfate-induced ulcerative colitis characterized by decreased disease activity index, restored colon length and body weight, improved histopathological changes, down-regulation of inflammatory cytokines levels and Th17/Treg ratios in C57BL/6 J mice. Moreover, immunofluorescence analysis suggested that SEP repaired gut barrier in UC mice, while 16S rDNA sequencing exhibited improved intestinal flora. Mechanistically, we found SEP significantly modulated autophagy-related factors in intestinal epithelial cells (IECs), while might contributed to pathogenesis of UC. Furthermore, we demonstrated PI3K/Akt pathway was involved in regulatory effect of SEP on lipopolysaccharide-induced autophagy of HT-29 cells. Besides, among possible polysaccharide binding receptors, change of the CD36 expression was most significant, which was associated with PI3K/Akt signals. Collectively, our study showed for the first time that the SEP might be used a prebiotic agent to improve IBD through regulating CD36-PI3K/Akt mediated autophagy of IECs.
Collapse
Affiliation(s)
- Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jingke Zhi
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiayi Zhi
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhenghan Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Fan Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
40
|
Park JM, Lee DH, Kim DH. Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun 2023; 14:2994. [PMID: 37225695 PMCID: PMC10209092 DOI: 10.1038/s41467-023-38401-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
Autophagy maintains cellular homeostasis during low energy states. According to the current understanding, glucose-depleted cells induce autophagy through AMPK, the primary energy-sensing kinase, to acquire energy for survival. However, contrary to the prevailing concept, our study demonstrates that AMPK inhibits ULK1, the kinase responsible for autophagy initiation, thereby suppressing autophagy. We found that glucose starvation suppresses amino acid starvation-induced stimulation of ULK1-Atg14-Vps34 signaling via AMPK activation. During an energy crisis caused by mitochondrial dysfunction, the LKB1-AMPK axis inhibits ULK1 activation and autophagy induction, even under amino acid starvation. Despite its inhibitory effect, AMPK protects the ULK1-associated autophagy machinery from caspase-mediated degradation during energy deficiency, preserving the cellular ability to initiate autophagy and restore homeostasis once the stress subsides. Our findings reveal that dual functions of AMPK, restraining abrupt induction of autophagy upon energy shortage while preserving essential autophagy components, are crucial to maintain cellular homeostasis and survival during energy stress.
Collapse
Affiliation(s)
- Ji-Man Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Da-Hye Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Minnesota, Minneapolis, MN, 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
41
|
Themistokleous C, Bagnoli E, Parulekar R, M K Muqit M. Role of autophagy pathway in Parkinson's disease and related Genetic Neurological disorders. J Mol Biol 2023:168144. [PMID: 37182812 DOI: 10.1016/j.jmb.2023.168144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson's disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson's disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.
Collapse
Affiliation(s)
- Christos Themistokleous
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Enrico Bagnoli
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ramaa Parulekar
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
42
|
Tran S, Juliani J, Fairlie WD, Lee EF. The emerging roles of autophagy in intestinal epithelial cells and its links to inflammatory bowel disease. Biochem Soc Trans 2023; 51:811-826. [PMID: 37052218 PMCID: PMC10212545 DOI: 10.1042/bst20221300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Landmark genome-wide association studies (GWAS) identified that mutations in autophagy genes correlated with inflammatory bowel disease (IBD), a heterogenous disease characterised by prolonged inflammation of the gastrointestinal tract, that can reduce a person's quality of life. Autophagy, the delivery of intracellular components to the lysosome for degradation, is a critical cellular housekeeping process that removes damaged proteins and turns over organelles, recycling their amino acids and other constituents to supply cells with energy and necessary building blocks. This occurs under both basal and challenging conditions such as nutrient deprivation. An understanding of the relationship between autophagy, intestinal health and IBD aetiology has improved over time, with autophagy having a verified role in the intestinal epithelium and immune cells. Here, we discuss research that has led to an understanding that autophagy genes, including ATG16L, ATG5, ATG7, IRGM, and Class III PI3K complex members, contribute to innate immune defence in intestinal epithelial cells (IECs) via selective autophagy of bacteria (xenophagy), how autophagy contributes to the regulation of the intestinal barrier via cell junctional proteins, and the critical role of autophagy genes in intestinal epithelial secretory subpopulations, namely Paneth and goblet cells. We also discuss how intestinal stem cells can utilise autophagy. Importantly, mouse studies have provided evidence that autophagy deregulation has serious physiological consequences including IEC death and intestinal inflammation. Thus, autophagy is now established as a key regulator of intestinal homeostasis. Further research into how its cytoprotective mechanisms can prevent intestinal inflammation may provide insights into the effective management of IBD.
Collapse
Affiliation(s)
- Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Juliani Juliani
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - W. Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
43
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
44
|
Hu WH, Liu TT, Liu PF, Morgan P, Lin IL, Tsai WL, Cheng YY, Hsieh AT, Hu TH, Shu CW. ATG4B and pS383/392-ATG4B serve as potential biomarkers and therapeutic targets of colorectal cancer. Cancer Cell Int 2023; 23:63. [PMID: 37038218 PMCID: PMC10088137 DOI: 10.1186/s12935-023-02909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Autophagy related protease 4B (ATG4B) is a protease required for autophagy processing, which is strongly implicated in cancer progression. Phosphorylation of ATG4B is crucial for activation of its protease activity. However, little is known about the relationship of ATG4B and its phosphorylated form at Ser 383 and 392 sites (pS383/392-ATG4B), with clinical outcomes, particularly in colorectal cancer (CRC). METHODS The ATG4B gene expression in CRC patients was obtained from The Cancer Genome Atlas (TCGA) database to analyze its clinical relevance. Tissue microarrays composed of 118 CRC patient specimens were used to determine the associations of ATG4B and pS383/392-ATG4B protein levels with prognosis. The biological functions of ATG4B in CRC cells were inspected with cell proliferation, mobility and spheroid culture assays. RESULTS ATG4B gene expression was elevated in tumor tissues of CRC patients compared to that in adjacent normal tissues and high level of ATG4B expression was associated with poor survival. Similarly, protein levels of ATG4B and pS383/392-ATG4B were highly correlated with worse overall survival and disease-free survival. Stratification analysis results showed that high level of ATG4B had significantly higher risk of mortality in males and elderly patients compared to those female patients and patients 60 years or younger. In contrast, multivariate Cox's regression analysis indicated that high level of pS383/392-ATG4B was significantly linked to unfavorable overall survival and disease-free survival of males and elderly patients, whereas, it had no correlation with female patients and patients 60 years or younger. Moreover, high level of ATG4B was positively associated with increased mortality risk in patients with advanced AJCC stages (III and IV) and lymph node invasion (N1 and N2) for both overall survival and disease-free survival. Nevertheless, high level of pS383/392-ATG4B was positively correlated with increased mortality risk in patients with early AJCC stages (I and II) and without lymph node invasion (N0). In addition, silencing ATG4B attenuated migration, invasion, and further enhanced the cytotoxic effects of chemotherapeutic drugs in two and three-dimensional cultures of CRC cells. CONCLUSIONS Our results suggest that ATG4B and pS383/392-ATG4B might be suitable biomarkers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Wan-Hsiang Hu
- Department of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83341, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kaohsiung, 83341, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83341, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Paul Morgan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Yi-Yun Cheng
- Innovative Incubation Center, Praexisio Taiwain Inc, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ang-Tsen Hsieh
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lianhai Rd., Gushan Dist, Kaohsiung, 80424, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chih-Wen Shu
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lianhai Rd., Gushan Dist, Kaohsiung, 80424, Taiwan.
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
45
|
Xuan Z, Yang S, Clark B, Hill SE, Manning L, Colón-Ramos DA. The active zone protein Clarinet regulates synaptic sorting of ATG-9 and presynaptic autophagy. PLoS Biol 2023; 21:e3002030. [PMID: 37053235 PMCID: PMC10101500 DOI: 10.1371/journal.pbio.3002030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023] Open
Abstract
Autophagy is essential for cellular homeostasis and function. In neurons, autophagosome biogenesis is temporally and spatially regulated to occur near presynaptic sites, in part via the trafficking of autophagy transmembrane protein ATG-9. The molecules that regulate autophagy by sorting ATG-9 at synapses remain largely unknown. Here, we conduct forward genetic screens at single synapses of C. elegans neurons and identify a role for the long isoform of the active zone protein Clarinet (CLA-1L) in regulating sorting of autophagy protein ATG-9 at synapses, and presynaptic autophagy. We determine that disrupting CLA-1L results in abnormal accumulation of ATG-9 containing vesicles enriched with clathrin. The ATG-9 phenotype in cla-1(L) mutants is not observed for other synaptic vesicle proteins, suggesting distinct mechanisms that regulate sorting of ATG-9-containing vesicles and synaptic vesicles. Through genetic analyses, we uncover the adaptor protein complexes that genetically interact with CLA-1 in ATG-9 sorting. We also determine that CLA-1L extends from the active zone to the periactive zone and genetically interacts with periactive zone proteins in ATG-9 sorting. Our findings reveal novel roles for active zone proteins in the sorting of ATG-9 and in presynaptic autophagy.
Collapse
Affiliation(s)
- Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sarah E. Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Daniel A. Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan,Puerto Rico
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
46
|
Shafique A, Brughera M, Lualdi M, Alberio T. The Role of Rab Proteins in Mitophagy: Insights into Neurodegenerative Diseases. Int J Mol Sci 2023; 24:6268. [PMID: 37047239 PMCID: PMC10094445 DOI: 10.3390/ijms24076268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondrial dysfunction and vesicular trafficking alterations have been implicated in the pathogenesis of several neurodegenerative diseases. It has become clear that pathogenetic pathways leading to neurodegeneration are often interconnected. Indeed, growing evidence suggests a concerted contribution of impaired mitophagy and vesicles formation in the dysregulation of neuronal homeostasis, contributing to neuronal cell death. Among the molecular factors involved in the trafficking of vesicles, Ras analog in brain (Rab) proteins seem to play a central role in mitochondrial quality checking and disposal through both canonical PINK1/Parkin-mediated mitophagy and novel alternative pathways. In turn, the lack of proper elimination of dysfunctional mitochondria has emerged as a possible causative/early event in some neurodegenerative diseases. Here, we provide an overview of major findings in recent years highlighting the role of Rab proteins in dysfunctional mitochondrial dynamics and mitophagy, which are characteristic of neurodegenerative diseases. A further effort should be made in the coming years to clarify the sequential order of events and the molecular factors involved in the different processes. A clear cause-effect view of the pathogenetic pathways may help in understanding the molecular basis of neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Tiziana Alberio
- Department of Science and High Technology, Center of Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, VA, Italy
| |
Collapse
|
47
|
Choi JH, Park SY, Lee WJ, Lee CJ, Kim JH, Jang TY, Jeon SE, Jun Y, Nam JS. SEC22B inhibition attenuates colorectal cancer aggressiveness and autophagic flux under unfavorable environment. Biochem Biophys Res Commun 2023; 665:10-18. [PMID: 37148741 DOI: 10.1016/j.bbrc.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Autophagy has bidirectional functions in cancer by facilitating cell survival and death in a context-dependent manner. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a large family of proteins essential for numerous biological processes, including autophagy; nevertheless, their potential function in cancer malignancy remains unclear. Here, we explored the gene expression patterns of SNAREs in tissues of patients with colorectal cancer (CRC) and discovered that SEC22B expression, a vesicle SNARE, was higher in tumor tissues than in normal tissues, with a more significant increase in metastatic tissues. Interestingly, SEC22B knockdown dramatically decreased CRC cell survival and growth, especially under stressful conditions, such as hypoxia and serum starvation, and decreased the number of stress-induced autophagic vacuoles. Moreover, SEC22B knockdown successfully attenuated liver metastasis in a CRC cell xenograft mouse model, with histological signs of decreased autophagic flux and proliferation within cancer cells. Together, this study posits that SEC22B plays a crucial role in enhancing the aggressiveness of CRC cells, suggesting that SEC22B might be an attractive therapeutic target for CRC.
Collapse
|
48
|
Ren X, Nguyen TN, Lam WK, Buffalo CZ, Lazarou M, Yokom AL, Hurley JH. Structural basis for ATG9A recruitment to the ULK1 complex in mitophagy initiation. SCIENCE ADVANCES 2023; 9:eadg2997. [PMID: 36791199 PMCID: PMC9931213 DOI: 10.1126/sciadv.adg2997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
The assembly of the autophagy initiation machinery nucleates autophagosome biogenesis, including in the PINK1- and Parkin-dependent mitophagy pathway implicated in Parkinson's disease. The structural interaction between the sole transmembrane autophagy protein, autophagy-related protein 9A (ATG9A), and components of the Unc-51-like autophagy activating kinase (ULK1) complex is one of the major missing links needed to complete a structural map of autophagy initiation. We determined the 2.4-Å x-ray crystallographic structure of the ternary structure of ATG9A carboxyl-terminal tail bound to the ATG13:ATG101 Hop1/Rev7/Mad2 (HORMA) dimer, which is part of the ULK1 complex. We term the interacting portion of the extreme carboxyl-terminal part of the ATG9A tail the "HORMA dimer-interacting region" (HDIR). This structure shows that the HDIR binds to the HORMA domain of ATG101 by β sheet complementation such that the ATG9A tail resides in a deep cleft at the ATG13:ATG101 interface. Disruption of this complex in cells impairs damage-induced PINK1/Parkin mitophagy mediated by the cargo receptor NDP52.
Collapse
Affiliation(s)
- Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Thanh N. Nguyen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wai Kit Lam
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Cosmo Z. Buffalo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Lazarou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Adam L. Yokom
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
50
|
Garcia-Garcia J, Berge AKM, Overå KS, Larsen KB, Bhujabal Z, Brech A, Abudu YP, Lamark T, Johansen T, Sjøttem E. TRIM27 is an autophagy substrate facilitating mitochondria clustering and mitophagy via phosphorylated TBK1. FEBS J 2023; 290:1096-1116. [PMID: 36111389 DOI: 10.1111/febs.16628] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Tripartite motif-containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors is recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here, we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that co-localize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 knockout cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27-mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 knockout cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27-expressing cells, but not in HEK293 FlpIn TRIM27 knockout cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.
Collapse
Affiliation(s)
- Juncal Garcia-Garcia
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Anne Kristin McLaren Berge
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Katrine Stange Overå
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Kenneth Bowitz Larsen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Zambarlal Bhujabal
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Yakubu Princely Abudu
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Trond Lamark
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Terje Johansen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Eva Sjøttem
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| |
Collapse
|