1
|
Lin Y, Dong Y, Liu W, Fan X, Sun Y. Pan-Cancer Analyses Confirmed the Ferroptosis-Related Gene SLC7A11 as a Prognostic Biomarker for Cancer. Int J Gen Med 2022; 15:2501-2513. [PMID: 35282646 PMCID: PMC8906875 DOI: 10.2147/ijgm.s341502] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose Ferroptosis is an iron-dependent and reactive oxygen species (ROS)-reliant form of cell death, exhibiting cellular, molecular, and gene-level characteristics distinct from those of necrosis, autophagy, apoptosis, and pyroptosis. Solute carrier family 7 member 11 (SLC7A11), which encodes a cystine/glutamate antiporter transmembrane protein, inhibits ferroptosis by importing cystine and promoting glutathione (GSH) biosynthesis and was found to be overexpressed in multiple human cancers. However, the specific role and underlying mechanism of SLC7A11 in cancers remains poorly characterized. This research aimed to identify the relationship between SLC7A11 expression and tumor microenvironment and visualize its prognostic value in pan-cancer. Patients and Methods Transcriptomic data for 6313 tumors and normal samples across 20 cancer types were acquired from The Cancer Genome Atlas (TCGA) database. Besides, we presented a novel bioinformatics pipeline that uncovered the impacts of SLC7A11 on cancer prognosis, tumor mutational burden (TMB), immune cell infiltration in tumor microenvironment, and drug responses. The Genotype-Tissue Expression (GTEx), cBioportal, TCGA and Connectivity Map (CMap) databases were used to explore the expression, genetic alterations, immune microenvironment, and drug responses of SLC7A11. A series of deconvolution algorithms, including EPIC, CIBERSORT and GSEA, were utilized for multidimensional analyses of the cancer transcriptomic data. Results SLC7A11 was found to be highly expressed in the 20 types of cancer, especially in solid tumors. Survival analysis uncovered that most cancer patients with up-regulated expression of SLC7A11 showed poor prognosis, suggesting that SLC7A11 is a potential oncogene in most cancer types. Furthermore, the expression level of SLC7A11 was confirmed to be associated with immune cell infiltration in tumor microenvironment, TMB, and drug responses. Gene set enrichment analysis (GESA) revealed that dysregulation of SLC7A11 was associated with metabolic and immunity-related signaling pathways in the cancers. Conclusion The comprehensive pan-cancer analyses identified SLC7A11 as an attractive biomarker for immune infiltration and poor prognosis in cancers, shedding new light on the therapeutics of cancers.
Collapse
Affiliation(s)
- Yi Lin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yubing Dong
- Department of Internal Medicine, First affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Wanyu Liu
- Department of Internal Medicine, First affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Xingyun Fan
- Department of Internal Medicine, First affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Ying Sun
- Department of Digestive Endoscopy, First Affiliated Hospital of Dalian Medical University., Dalian, 116011, Liaoning Province, People’s Republic of China
- Correspondence: Ying Sun, Email
| |
Collapse
|
2
|
Srivastava RM, Purohit TA, Chan TA. Diverse Neoantigens and the Development of Cancer Therapies. Semin Radiat Oncol 2021; 30:113-128. [PMID: 32381291 DOI: 10.1016/j.semradonc.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is the manifestation of uncontrolled cellular growth and immune escape mechanisms. Unrestrained tumor growth can be associated with incidental errors in the genome during replication and genotoxic agents can alter the structure and sequence of our DNA. Among all genetic aberrations in cancer, only limited number of mutations can produce immunogenic antigens which have the potential to bind human leukocyte antigen class I or human leukocyte antigen class II, and help activate the adaptive immune system. These neoantigens can be recognized by CD8+ and CD4+ neoantigen-specific T lymphocytes. Recently, several immune checkpoint targeting drugs have been approved for clinical use. Primarily, these drugs expand and facilitate the cytotoxic activity of neoantigen-specific T cells to eradicate tumors. Differential drug response across cancers could be attributed, at least in part, to differences in the 'tumor antigen landscape' and 'antigen presentation pathway' in patients. Although tumor mutational burden correlates with response to immune checkpoint inhibitors in many cancer types and has evolved as a broad biomarker, a comprehensive understanding of the neoantigen landscape and the function of cognate T cell responses is lacking and is needed for improved patient selection criteria and neoantigen vaccine design. Here, we review cancer neoantigens, their implications for antitumor responses, the dynamics of neoantigen-specific T cells, and the advancement of neoantigen-based therapy in proposed clinical trials.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
3
|
Shi S, Gu S, Han T, Zhang W, Huang L, Li Z, Pan D, Fu J, Ge J, Brown M, Zhang P, Jiang P, Wucherpfennig KW, Liu XS. Inhibition of MAN2A1 Enhances the Immune Response to Anti-PD-L1 in Human Tumors. Clin Cancer Res 2020; 26:5990-6002. [PMID: 32723834 DOI: 10.1158/1078-0432.ccr-20-0778] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/30/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint blockade has shown remarkable efficacy, but in only a minority of patients with cancer, suggesting the need to develop additional treatment strategies. Aberrant glycosylation in tumors, resulting from the dysregulated expression of key enzymes in glycan biosynthesis, modulates the immune response. However, the role of glycan biosynthesis enzymes in antitumor immunity is poorly understood. We aimed to study the immunomodulatory effects of these enzymes. EXPERIMENTAL DESIGN We integrated transcriptional profiles of treatment-naïve human tumors and functional CRISPR screens to identify glycometabolism genes with immunomodulatory effects. We further validated our findings using in vitro coculture and in vivo syngeneic tumor growth assays. RESULTS We identified MAN2A1, encoding an enzyme in N-glycan maturation, as a key immunomodulatory gene. Analyses of public immune checkpoint blockade trial data also suggested a synergy between MAN2A1 inhibition and anti-PD-L1 treatment. Loss of Man2a1 in cancer cells increased their sensitivity to T-cell-mediated killing. Man2a1 knockout enhanced response to anti-PD-L1 treatment and facilitated higher cytotoxic T-cell infiltration in tumors under anti-PD-L1 treatment. Furthermore, a pharmacologic inhibitor of MAN2A1, swainsonine, synergized with anti-PD-L1 in syngeneic melanoma and lung cancer models, whereas each treatment alone had little effect. CONCLUSIONS Man2a1 loss renders cancer cells more susceptible to T-cell-mediated killing. Swainsonine synergizes with anti-PD-L1 in suppressing tumor growth. In light of the limited efficacy of anti-PD-L1 and failed phase II clinical trial on swainsonine, our study reveals a potential therapy combining the two to overcome tumor immune evasion.See related commentary by Bhat and Kabelitz, p. 5778.
Collapse
Affiliation(s)
- Sailing Shi
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengqing Gu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Tong Han
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wubing Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lei Huang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ziyi Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Deng Pan
- Department of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jingxin Fu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jun Ge
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Peng Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Peng Jiang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
4
|
He K, Jia S, Lou Y, Liu P, Xu LX. Cryo-thermal therapy induces macrophage polarization for durable anti-tumor immunity. Cell Death Dis 2019; 10:216. [PMID: 30833570 PMCID: PMC6399266 DOI: 10.1038/s41419-019-1459-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Many cancer therapies are being developed for the induction of durable anti-tumor immunity, especially for malignant tumors. The activation of antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), can bridge innate and adaptive immune responses against tumors. However, APCs have an immunosuppressive phenotype and reversing it for effective tumor-specific antigen presenting is critical in developing new cancer treatment strategies. We previously developed a novel cryo-thermal therapy to treat malignant melanoma in a mouse model; long-term survival and durable anti-tumor immunity were achieved, but the mechanism involved was unclear. This study revealed cryo-thermal therapy-induced macrophage polarization to the M1 phenotype and modulated the phenotypic and functional maturation of DCs with high expression of co-stimulatory molecules, increased pro-inflammatory cytokine production, and downregulated immuno-inhibitory molecule expression. Further, we observed CD4+ T-cell differentiation into Th1 and cytotoxic T-cell sub-lineages and generation of cytotoxic CD8+ T cells, in which M1 macrophage polarization had a direct, important role. The results indicated that cryo-thermal-induced macrophage polarization to the M1 phenotype was essential to mediate durable anti-tumor immunity, leading to long-term survival. Thus, cryo-thermal therapy is a promising strategy to reshape host immunosuppression, trigger persistent memory immunity for tumor eradication, and inhibit metastasis in the long term.
Collapse
Affiliation(s)
- Kun He
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shengguo Jia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Lisa X Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zhang F, Li R, Yang Y, Shi C, Shen Y, Lu C, Chen Y, Zhou W, Lin A, Yu L, Zhang W, Xue Z, Wang J, Cai Z. Specific Decrease in B-Cell-Derived Extracellular Vesicles Enhances Post-Chemotherapeutic CD8+ T Cell Responses. Immunity 2019; 50:738-750.e7. [DOI: 10.1016/j.immuni.2019.01.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/09/2018] [Accepted: 01/22/2019] [Indexed: 01/09/2023]
|
6
|
Ge R, Liu C, Zhang X, Wang W, Li B, Liu J, Liu Y, Sun H, Zhang D, Hou Y, Zhang H, Yang B. Photothermal-Activatable Fe 3O 4 Superparticle Nanodrug Carriers with PD-L1 Immune Checkpoint Blockade for Anti-metastatic Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20342-20355. [PMID: 29878757 DOI: 10.1021/acsami.8b05876] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Checkpoint blockade immunotherapy has shown great potential in clinical cancer therapy, but the body's systemic immune must be fully activated and generates a positive tumor-specific immune cell response. In this work, we demonstrate the design of the immune-adjuvant nanodrug carriers on the basis of poly(ethylene glycol)- block-poly(lactic- co-glycolic acid) copolymer-encapsulated Fe3O4 superparticles (SPs), in which imiquimod (R837), a kind of Toll-like receptor 7 agonist, is loaded. The nanodrug carriers are defined as Fe3O4-R837 SPs. The multitasking Fe3O4-R837 SPs can destroy the 4T1 breast tumor by photothermal therapy (PTT) under near-infrared laser irradiation to generate the tumor-associated antigens because of the high efficiency of tumor magnetic attraction ability and photothermal effect. The PTT also triggers the release of R837 as the adjuvant to trigger a strong antitumor immune response. By further combining with the checkpoint blockade adjusted by programmed death ligand 1 (PD-L1) antibody, the Fe3O4-R837 SP-involved PTT cannot only eliminate the primary tumors but also prevent tumor metastasis to lungs/liver. Meanwhile, this synergistic therapy also shows abscopal effects by completely inhibiting the growth of untreated distant tumors through effectively triggering the tumors infiltrated by CD45+ leukocytes. Such findings suggest that Fe3O4-R837 SP-involved PTT can significantly potentiate the systemic therapeutic efficiency of PD-L1 checkpoint blockade therapy by activating both innate and adaptive immune systems in the body.
Collapse
Affiliation(s)
- Rui Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Cangwei Liu
- Department of Oral Pathology, School and Hospital of Stomatology , Jilin University , Changchun 130021 , P. R. China
| | - Xue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Wenjing Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Binxi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Jie Liu
- Department of Oral Pathology, School and Hospital of Stomatology , Jilin University , Changchun 130021 , P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology , Jilin University , Changchun 130021 , P. R. China
| | - Daqi Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital , Jilin University , Changchun 130033 , P. R. China
| | - Yuchuan Hou
- Department of Urinary Surgery , The First Hospital of Jilin University , Changchun 130021 , P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
7
|
Early Env-specific CTLs effectively suppress viral replication in SHIV controller macaques. Cell Immunol 2018; 331:30-37. [PMID: 29773224 DOI: 10.1016/j.cellimm.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Early immunological events in acute HIV infection are thought to fundamentally influence long-term disease outcomes. Though the contribution of Gag-specific CD8 T cell responses to early viral control is well established, little is known about the role of Env-specific CD8 T cell responses in controlling viral replication during acute infection. In a macaque simian-human immunodeficiency virus (SHIV) model, some macaques who were able to control SHIV replication after ART interruption showed expansion of Env-specific CD8 T cell responses during acute infection, compared to macaques who progressed to viral rebound. To better understand the function of early Env-specific CD8 T cells, we isolated, expanded and examined their ability to act as effectors in vitro. We observed that Env-specific CD8 T cell clones have the capacity to directly recognize and kill SHIV-infected CD4 T cells, but failed to reduce viral replication in SHIV-infected macrophages. Our data suggest that early Env-specific CD8 T cell responses during acute SHIV infection contribute substantially to the control of viral replication. The T-cell clones composing of Env-specific effector cells demonstrates in vitro phenotypic and functional characteristics with the potentials to provide longlasting clinical benefit of in vivo HIV study.
Collapse
|
8
|
Seo JS, Lee JW, Kim A, Shin JY, Jung YJ, Lee SB, Kim YH, Park S, Lee HJ, Park IK, Kang CH, Yun JY, Kim J, Kim YT. Whole Exome and Transcriptome Analyses Integrated with Microenvironmental Immune Signatures of Lung Squamous Cell Carcinoma. Cancer Immunol Res 2018; 6:848-859. [PMID: 29720381 DOI: 10.1158/2326-6066.cir-17-0453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/18/2017] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
The immune microenvironment in lung squamous cell carcinoma (LUSC) is not well understood, with interactions between the host immune system and the tumor, as well as the molecular pathogenesis of LUSC, awaiting better characterization. To date, no molecularly targeted agents have been developed for LUSC treatment. Identification of predictive and prognostic biomarkers for LUSC could help optimize therapy decisions. We sequenced whole exomes and RNA from 101 tumors and matched noncancer control Korean samples. We used the information to predict subtype-specific interactions within the LUSC microenvironment and to connect genomic alterations with immune signatures. Hierarchical clustering based on gene expression and mutational profiling revealed subtypes that were either immune defective or immune competent. We analyzed infiltrating stromal and immune cells to further characterize the tumor microenvironment. Elevated expression of macrophage 2 signature genes in the immune competent subtype confirmed that tumor-associated macrophages (TAM) linked inflammation and mutation-driven cancer. A negative correlation was evident between the immune score and the amount of somatic copy-number variation (SCNV) of immune genes (r = -0.58). The SCNVs showed a potential detrimental effect on immunity in the immune-deficient subtype. Knowledge of the genomic alterations in the tumor microenvironment could be used to guide design of immunotherapy options that are appropriate for patients with certain cancer subtypes. Cancer Immunol Res; 6(7); 848-59. ©2018 AACR.
Collapse
Affiliation(s)
- Jeong-Sun Seo
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnamsi, Korea. .,Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Macrogen Inc., Seoul, Republic of Korea
| | - Ji Won Lee
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ahreum Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Yeon Shin
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Macrogen Inc., Seoul, Republic of Korea
| | - Yoo Jin Jung
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Sae Bom Lee
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yoon Ho Kim
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Samina Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Joo Lee
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - In-Kyu Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang-Hyun Kang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Young Yun
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Macrogen Inc., Seoul, Republic of Korea
| | - Jihye Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Macrogen Inc., Seoul, Republic of Korea
| | - Young Tae Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea. .,Seoul National University Cancer Research Institute, Seoul, Republic of Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|