1
|
Al-Bari MAA. A current view of molecular dissection in autophagy machinery. J Physiol Biochem 2020; 76:357-372. [PMID: 32451934 DOI: 10.1007/s13105-020-00746-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved lysosomal pathway for catabolism of intracellular material in eukaryotic cells. Autophagy is also an essential homeostatic process through which intracellular components are recycled for reuse or energy production. The extremely regulated autophagy process begins with the formation of hallmarked double membrane bound organelles called autophagosomes which in turn fuse with lysosomes called autolysosomes and finally degrade the autophagic cargos. The multistages molecular machinery of autophagy is critically orchestrated by the action of a set of the autophagy proteins (Atg) and a supreme regulator, mTOR (mechanistic target of rapamycin). However, individual stages of autophagy are mechanistically complex and partially understood. In this review, the individual stages of autophagy are dissected, and the corresponding molecular regulation is discussed in view of current scientific knowledge of autophagy. This understanding of sequential events of autophagy machinery through this review may lead to great interest in the therapeutic potential for manipulating of autophagy in established diseases.
Collapse
|
2
|
Kirkin V. History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? J Mol Biol 2020; 432:3-27. [PMID: 31082435 PMCID: PMC6971693 DOI: 10.1016/j.jmb.2019.05.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Autophagy, self-eating, is a pivotal catabolic mechanism that ensures homeostasis and survival of the cell in the face of stressors as different as starvation, infection, or protein misfolding. The importance of the research in this field was recognized by the general public after the Nobel Prize for Physiology or Medicine was awarded in 2016 to Yoshinori Ohsumi for discoveries of the mechanisms of autophagy using yeast as a model organism. One of the seminal findings of Ohsumi was on the role ubiquitin-like proteins (UBLs)-Atg5, Atg12, and Atg8-play in the formation of the double-membrane vesicle autophagosome, which is the functional unit of autophagy. Subsequent work by several groups demonstrated that, like the founding member of the UBL family ubiquitin, these small but versatile protein and lipid modifiers interact with a plethora of proteins, which either directly regulate autophagosome formation, for example, components of the Atg1/ULK1 complex, or are involved in cargo recognition, for example, Atg19 and p62/SQSTM1. By tethering the cargo to the UBLs present on the forming autophagosome, the latter proteins were proposed to effectively act as selective autophagy receptors. The discovery of the selective autophagy receptors brought a breakthrough in the autophagy field, supplying the mechanistic underpinning for the formation of an autophagosome selectively around the cytosolic cargo, that is, a protein aggregate, a mitochondrion, or a cytosolic bacterium. In this historical overview, I highlight key steps that the research into selective autophagy has been taking over the past 20 years. I comment on their significance and discuss current challenges in developing more detailed knowledge of the mechanisms of selective autophagy. I will conclude by introducing the new directions that this dynamic research field is taking into its third decade.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
3
|
Overå KS, Garcia-Garcia J, Bhujabal Z, Jain A, Øvervatn A, Larsen KB, Deretic V, Johansen T, Lamark T, Sjøttem E. TRIM32, but not its muscular dystrophy-associated mutant, positively regulates and is targeted to autophagic degradation by p62/SQSTM1. J Cell Sci 2019; 132:jcs.236596. [PMID: 31685529 DOI: 10.1242/jcs.236596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
The tripartite motif (TRIM) proteins constitute a family of ubiquitin E3 ligases involved in a multitude of cellular processes, including protein homeostasis and autophagy. TRIM32 is characterized by six protein-protein interaction domains termed NHL, various point mutations in which are associated with limb-girdle-muscular dystrophy 2H (LGMD2H). Here, we show that TRIM32 is an autophagy substrate. Lysosomal degradation of TRIM32 was dependent on ATG7 and blocked by knockout of the five autophagy receptors p62 (also known as SQSTM1), NBR1, NDP52 (also known as CALCOCO2), TAX1BP1 and OPTN, pointing towards degradation by selective autophagy. p62 directed TRIM32 to lysosomal degradation, while TRIM32 mono-ubiquitylated p62 on lysine residues involved in regulation of p62 activity. Loss of TRIM32 impaired p62 sequestration, while reintroduction of TRIM32 facilitated p62 dot formation and its autophagic degradation. A TRIM32LGMD2H disease mutant was unable to undergo autophagic degradation and to mono-ubiquitylate p62, and its reintroduction into the TRIM32-knockout cells did not affect p62 dot formation. In light of the important roles of autophagy and p62 in muscle cell proteostasis, our results point towards impaired TRIM32-mediated regulation of p62 activity as a pathological mechanisms in LGMD2H.
Collapse
Affiliation(s)
- Katrine Stange Overå
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Juncal Garcia-Garcia
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ashish Jain
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aud Øvervatn
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eva Sjøttem
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø -The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
4
|
Li W, Li S, Li Y, Lin X, Hu Y, Meng T, Wu B, He R, Feng D. Immunofluorescence Staining Protocols for Major Autophagy Proteins Including LC3, P62, and ULK1 in Mammalian Cells in Response to Normoxia and Hypoxia. Methods Mol Biol 2018; 1854:175-185. [PMID: 29582370 DOI: 10.1007/7651_2018_124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunofluorescence is an invaluable technique widely used in cell biology. This technique allows visualization of the subcellular distribution of different target proteins or organelles, by specific recognition of the antibody to the endogenous protein itself or to its antigen via the epitope. This technique can be used on tissue sections, cultured cells, or individual cells. Meanwhile, immunofluorescence can also be used in combination with non-antibody fluorescent staining, such as DAPI or fluorescent fusion proteins, e.g., GFP or YFP, etc.Autophagy is a catabolic pathway in which dysfunctional organelles and cellular components are degraded via lysosomes. During this process, cytoplasmic LC3 translocates to autophagosomal membranes. Therefore, cells undergoing autophagy can be identified by visualizing fluorescently labeled LC3 or other autophagy markers. Immunofluorescence is an important part of autophagy detection methods even if observation of the formation of autophagosome by transmission electron microscopy has become a gold standard for characterizing autophagy.By observing the immunofluorescence staining of some key autophagy proteins, we can intuitively evaluate the levels of autophagy in samples. Herein, this protocol describes the predominant method used for the research of autophagy, which mainly focuses on the immunofluorescence staining of cellular LC3, P62, and ULK1 in response to normoxia and hypoxia, by presenting the detailed materials required and methodology.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China.,Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Shupeng Li
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac-Cerebral Vascular Disease, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | - Yifang Li
- Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xiaoying Lin
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac-Cerebral Vascular Disease, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, People's Republic of China
| | - Yongquan Hu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Tian Meng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baojin Wu
- Guangdong Landau Biotechnology Limited Company, Guangzhou, People's Republic of China
| | - Rongrong He
- Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|