1
|
Abraham OR, Waddell Smith R. Optical and spectroscopic characterization of crystalline structures in cannabis extracts. J Forensic Sci 2021; 67:483-493. [PMID: 34787321 DOI: 10.1111/1556-4029.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
Marijuana and hemp represent two broad classes of Cannabis sativa plants that are distinguished based on the concentration of the psychoactive cannabinoid delta-9-tetrahydrocannabinol (Δ9 -THC). In this work, solvent extracts derived from marijuana and hemp were characterized using optical and spectroscopic techniques. The crystalline components of the solvent extracts were first analyzed using polarized light microscopy to determine optical properties, namely, crystal system, optical sign, and principle refractive indices. Crystals from the marijuana-derived extracts exhibited an orthorhombic crystal system and were optically negative, with nβ between 1.6320 and 1.6330 ± 0.0002. In contrast, crystals from hemp-derived extracts exhibited a monoclinic crystal system and were optically positive, with nβ between 1.600 and 1.6040 ± 0.0002. Crystals were further distinguished through infrared spectroscopy, which highlighted structural differences between the two sample types, primarily based on differences in O-H stretching. Finally, single-crystal X-ray diffraction was used to definitively identify the crystalline components, confirming the presence of tetrahydrocannabinolic acid in marijuana-derived extracts and cannabidiol in hemp-derived extracts. Given the differences in crystal structure identified between marijuana-derived and hemp-derived solvent extracts, optical characterization provides a screening method to differentiate visually similar samples prior to confirmatory analysis.
Collapse
Affiliation(s)
- Otyllia R Abraham
- Forensic Science Program, School of Criminal Justice, Michigan State University, East Lansing, Michigan, USA
| | - Ruth Waddell Smith
- Forensic Science Program, School of Criminal Justice, Michigan State University, East Lansing, Michigan, USA.,Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Qi X, Lin W, Wu Y, Li Q, Zhou X, Li H, Xiao Q, Wang Y, Shao B, Yuan Q. CBD Promotes Oral Ulcer Healing via Inhibiting CMPK2-Mediated Inflammasome. J Dent Res 2021; 101:206-215. [PMID: 34269108 DOI: 10.1177/00220345211024528] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oral ulcer is a common oral inflammatory lesion accompanied by severe pain but with few effective treatments. Cannabidiol (CBD) is recently emerging for its therapeutic potential in a range of diseases, including inflammatory conditions and cancers. Here we show that CBD oral spray on acid- or trauma-induced oral ulcers on mice tongue inhibits inflammation, relieves pain, and accelerates lesion closure. Notably, the enrichment of genes associated with the NOD, LRR, and NLRP3 pyrin domain-containing protein 3 (NLRP3) inflammasome pathway is downregulated after CBD treatment. The expression of cleaved-gasdermin D (GSDMD) and the percentage of pyroptotic cells are reduced as well. In addition, CBD decreases the expression of cytidine/uridine monophosphate kinase 2 (CMPK2), which subsequently inhibits the generation of oxidized mitochondria DNA and suppresses inflammasome activation. These immunomodulating effects of CBD are mostly blocked by peroxisome proliferator activated receptor γ (PPARγ) antagonist and partially antagonized by CB1 receptor antagonist. Our results demonstrate that CBD accelerates oral ulcer healing by inhibiting CMPK2-mediated NLRP3 inflammasome activation and pyroptosis, which are mediated mostly by PPARγ in the nucleus and partially by CB1 in the plasma membrane.
Collapse
Affiliation(s)
- X Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - B Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|