1
|
Wen H, Li Q, Mei S, Cai J, Huang X, Zhao J. A novel frameshift mutation in the NHS gene causes Nance-Horan syndrome in a Chinese family. Gene 2024; 907:148268. [PMID: 38350513 DOI: 10.1016/j.gene.2024.148268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Affiliation(s)
- Huaming Wen
- Department of Ophthalmology, Chang'an Hospital of Dongguan, Dongguan 538240, Guangdong, China
| | - Qianwen Li
- Department of Oral & Maxillofacial Surgery, Shenzhen Stomatology Hospital, The Affiliated Shenzhen stomatology Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Shaoyi Mei
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China
| | - Jiamin Cai
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China
| | - Xiaosheng Huang
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China.
| | - Jun Zhao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzen 518020, Guangdong, China.
| |
Collapse
|
2
|
Yu X, Zhao Y, Yang Z, Chen X, Kang G. Genetic research on Nance-Horan syndrome caused by a novel mutation in the NHS gene. Gene 2024; 906:148223. [PMID: 38286268 DOI: 10.1016/j.gene.2024.148223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Affiliation(s)
- Xuelin Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yueyue Zhao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Zhenghua Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Xing Chen
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Gangjing Kang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Miller C, Gertsen BG, Schroeder AL, Fong CT, Iqbal MA, Zhang B. Allelic and dosage effects of NHS in X-linked cataract and Nance-Horan syndrome: a family study and literature review. Mol Cytogenet 2021; 14:48. [PMID: 34620209 PMCID: PMC8496034 DOI: 10.1186/s13039-021-00566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Nance-Horan syndrome (NHS) is a rare X-linked dominant disorder caused by mutation in the NHS gene on chromosome Xp22.13. (OMIM 302350). Classic NHS manifested in males is characterized by congenital cataracts, dental anomalies, dysmorphic facial features and occasionally intellectual disability. Females typically have a milder presentation. The majority of reported cases of NHS are the result of nonsense mutations and small deletions. Isolated X-linked congenital cataract is caused by non-recurrent rearrangement-associated aberrant NHS transcription. Classic NHS in females associated with gene disruption by balanced X-autosome translocation has been infrequently reported. We present a familial NHS associated with translocation t(X;19) (Xp22.13;q13.1). The proband, a 28-year-old female, presented with intellectual disability, dysmorphic features, short stature, primary amenorrhea, cleft palate, and horseshoe kidney, but no NHS phenotype. A karyotype and chromosome microarray analysis (CMA) revealed partial monosomy Xp/partial trisomy 19q with the breakpoint at Xp22.13 disrupting the NHS gene. Family history revealed congenital cataracts and glaucoma in the patient's mother, and congenital cataracts in maternal half-sister and maternal grandmother. The same balanced translocation t(X;19) was subsequently identified in both the mother and maternal half-sister, and further clinical evaluation of the maternal half-sister made a diagnosis of NHS. This study describes the clinical implication of NHS gene disruption due to balanced X-autosome translocations as a unique mechanism causing Nance-Horan syndrome, refines dose effects of NHS on disease presentation and phenotype expressivity, and justifies consideration of karyotype and fluorescence in situ hybridization (FISH) analysis for female patients with familial NHS if single-gene analysis of NHS is negative.
Collapse
Affiliation(s)
- Caroline Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Benjamin G Gertsen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Audrey L Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - M Anwar Iqbal
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA.
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA.
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Pathology and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA.
| |
Collapse
|
4
|
Li X, Si N, Song Z, Ren Y, Xiao W. Clinical and genetic findings in patients with congenital cataract and heart diseases. Orphanet J Rare Dis 2021; 16:242. [PMID: 34059112 PMCID: PMC8165991 DOI: 10.1186/s13023-021-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Congenital cataract (CC) and congenital heart disease (CHD) are significant birth defects. In clinical practice, the concurrence of CC and CHD is frequently observed in patients. Additionally, some monogenic diseases, copy number variation (CNV) syndromes, and diseases associated with intrauterine infection involve both cataract and heart defects. However, little is known about the association between CC and CHD. Here, we characterised the demographic, clinical, and genetic features of patients with CC and heart defects. Methods Medical records for 334 hospitalised patients diagnosed with CC were reviewed. Demographic and clinical features of patients with CC with and without CHD were compared. Clinical and genomic information for patients with ‘cataract’ and ‘cardiac defects’ were reviewed from Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). Microarray-based comparative genomic hybridisation and whole-exome sequencing were performed in 10 trio families with CC and CHD to detect de novo genomic alterations, including copy number variants and single nucleotide changes. Results In a retrospective analysis of 334 patients with CC over the past 10 years at our hospital, we observed a high proportion of patients (41.13%) with CHD (including innocent CHD, which reported as left-to-right shunt in echocardiography test). The CC with CHD group had higher incidences of preterm birth and Down’s syndrome than the CC without CHD group. Atrial septal defect was the most frequent heart defect. A total of 44 cases with cataracts and heart diseases were retrieved from Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). In total, 52 genomic alterations were reported, 44% of which were de novo germline variants. In the 10 trio families with CC and CHD, we found de novo CNVs responsible for two well-known chromosomal disorders and identified a novel pathogenic mutation in GJA8 responsible for CC. Conclusions We observed significant associations between CHD and CC in our 10-year patient cohort. Based on the cohort and data from DECIPHER, developmental syndromes in some patients were due to genetic defects, thus explaining the concurrence of CC and CHD. Additionally, we detected de novo mutations as an independent cause of cataracts. Our findings suggest that developmental syndromes in patients with CC deserve more attention in clinical practice by ophthalmologists. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01873-7.
Collapse
Affiliation(s)
- Xinru Li
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Nuo Si
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Zixun Song
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yaqiong Ren
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Wei Xiao
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
5
|
Wei M, Qi A, Mo H, Wu K, Ma X, Wang B. A novel NHS mutation in a Chinese family with Nance‑Horan Syndrome. Mol Med Rep 2019; 19:4419-4424. [PMID: 30942463 DOI: 10.3892/mmr.2019.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022] Open
Abstract
Nance‑Horan syndrome (NHS) is a rare X‑linked disorder with various clinical manifestations. The present study aimed to identify the pathogenic mutation causing NHS in a three‑generation Chinese family with 4 individuals presenting primarily with congenital cataracts. The genomic DNA of 5 individuals was collected, and family history and clinical information were recorded. Whole exome sequencing was performed on the proband, and candidate mutations were filtered by a series of screening processes and validated by Sanger sequencing. The identified pathogenic mutation was confirmed by co‑segregation analysis. Finally, a novel frameshift mutation (NM_001291867.1: c.302dupA; p.Ala102fs) was identified in the NHS actin remodeling regulator (NHS) gene, which co‑segregated with congenital cataracts in this family. Carrier females exhibited similar but milder clinical symptoms compared with the affected male. These clinical symptoms were consistent with the phenotypic features of the NHS‑associated disease, NHS. In summary, the present study identified a novel NHS mutation in a Chinese family with atypical NHS; the results broaden the known pathogenic mutation spectrum of NHS and will aid in the genetic counseling of patients with NHS. The data from the present study also suggest that genetic analysis may be required for the diagnosis of this disease.
Collapse
Affiliation(s)
- Meirong Wei
- Department of Ophthalmology, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi 545001, P.R. China
| | - Anhui Qi
- Graduate School of Peking Union Medical College, Beijing 100730, P.R. China
| | - Haiming Mo
- Department of Ophthalmology, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi 545001, P.R. China
| | - Kailin Wu
- Department of Ophthalmology, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi 545001, P.R. China
| | - Xu Ma
- Center for Genetics, National Research Institute for Family Planning, Beijing 100081, P.R. China
| | - Binbin Wang
- Graduate School of Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
6
|
A novel small deletion in the NHS gene associated with Nance-Horan syndrome. Sci Rep 2018; 8:2398. [PMID: 29402928 PMCID: PMC5799206 DOI: 10.1038/s41598-018-20787-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/24/2018] [Indexed: 11/29/2022] Open
Abstract
Nance-Horan syndrome is a rare X-linked recessive inherited disease with clinical features including severe bilateral congenital cataracts, characteristic facial and dental abnormalities. Data from Chinese Nance-Horan syndrome patients are limited. We assessed the clinical manifestations of a Chinese Nance-Horan syndrome pedigree and identified the genetic defect. Genetic analysis showed that 3 affected males carried a novel small deletion in NHS gene, c.263_266delCGTC (p.Ala89TrpfsTer106), and 2 female carriers were heterozygous for the same variant. All 3 affected males presented with typical Nance-Horan syndrome features. One female carrier displayed lens opacities centered on the posterior Y-suture in both eyes, as well as mild dental abnormalities. We recorded the clinical features of a Chinese Nance-Horan syndrome family and broadened the spectrum of mutations in the NHS gene.
Collapse
|
7
|
Kammoun M, Brady P, De Catte L, Deprest J, Devriendt K, Vermeesch JR. Congenital diaphragmatic hernia as a part of Nance-Horan syndrome? Eur J Hum Genet 2018; 26:359-366. [PMID: 29358614 DOI: 10.1038/s41431-017-0032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Nance-Horan syndrome is a rare X-linked developmental disorder characterized by bilateral congenital cataract, dental anomalies, facial dysmorphism, and intellectual disability. Here, we identify a patient with Nance-Horan syndrome caused by a new nonsense NHS variant. In addition, the patient presented congenital diaphragmatic hernia. NHS gene expression in murine fetal diaphragm was demonstrated, suggesting a possible involvement of NHS in diaphragm development. Congenital diaphragmatic hernia could result from NHS loss of function in pleuroperitoneal fold or in somites-derived muscle progenitor cells leading to an impairment of their cells migration.
Collapse
Affiliation(s)
- Molka Kammoun
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Paul Brady
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Luc De Catte
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Jan Deprest
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Gómez-Laguna L, Martínez-Herrera A, Reyes-de la Rosa ADP, García-Delgado C, Nieto-Martínez K, Fernández-Ramírez F, Valderrama-Atayupanqui TY, Morales-Jiménez AB, Villa-Morales J, Kofman S, Cervantes A, Morán-Barroso VF. Nance-Horan syndrome in females due to a balanced X;1 translocation that disrupts the NHS gene: Familial case report and review of the literature. Ophthalmic Genet 2017; 39:56-62. [PMID: 28922055 DOI: 10.1080/13816810.2017.1363245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Nance-Horan syndrome is an X-linked disorder characterized by congenital cataract, facial features, microcornea, microphthalmia, and dental anomalies; most of the cases are due to NHS gene mutations on Xp22.13. Heterozygous carrier females generally present less severe features, and up to 30% of the affected males have intellectual disability. We describe two patients, mother and daughter, manifesting Nance-Horan syndrome. The cytogenetic and molecular analyses demonstrated a 46,X,t(X;1)(p22.13;q22) karyotype in each of them. No copy-number genomic imbalances were detected by high-density microarray analysis. The mother had a preferential inactivation of the normal X chromosome; expression analysis did not detect any mRNA isoform of NHS. This is the first report of Nance-Horan syndrome due to a skewed X chromosome inactivation resulting from a balanced translocation t(X;1) that disrupts the NHS gene expression, with important implications for clinical presentation and genetic counseling.
Collapse
Affiliation(s)
- Laura Gómez-Laguna
- a Service of Genetics , Hospital General de México Dr. Eduardo Liceaga , Mexico City , Mexico
| | | | | | | | - Karem Nieto-Martínez
- b Faculty of Medicine , Universidad Nacional Autónoma de México (UNAM) , Mexico City , Mexico
| | | | | | | | - Judith Villa-Morales
- c Department of Genetics , Hospital Infantil de México Federico Gómez , Mexico City , Mexico
| | - Susana Kofman
- a Service of Genetics , Hospital General de México Dr. Eduardo Liceaga , Mexico City , Mexico
| | - Alicia Cervantes
- a Service of Genetics , Hospital General de México Dr. Eduardo Liceaga , Mexico City , Mexico.,b Faculty of Medicine , Universidad Nacional Autónoma de México (UNAM) , Mexico City , Mexico
| | | |
Collapse
|
9
|
Shoshany N, Avni I, Morad Y, Weiner C, Einan-Lifshitz A, Pras E. NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome. Curr Eye Res 2017; 42:1240-1244. [PMID: 28557584 DOI: 10.1080/02713683.2017.1304560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. METHODS Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. RESULTS An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. CONCLUSIONS Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.
Collapse
Affiliation(s)
- Nadav Shoshany
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel.,b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel
| | - Isaac Avni
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel.,b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Yair Morad
- b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Chen Weiner
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel
| | - Adi Einan-Lifshitz
- b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Eran Pras
- a The Matlow's Ophthalmo-genetics Laboratory , Assaf-Harofeh Medical Center , Zerifin , Israel.,b Department of Ophthalmology , Assaf-Harofeh Medical Center , Zerifin , Israel.,c Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
10
|
Gjørup H, Haubek D, Jacobsen P, Ostergaard JR. Nance-Horan syndrome-The oral perspective on a rare disease. Am J Med Genet A 2016; 173:88-98. [PMID: 27616609 DOI: 10.1002/ajmg.a.37963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/21/2016] [Indexed: 11/11/2022]
Abstract
The present study describes seven patients with Nance-Horan syndrome, all referred to a specialized oral care unit in the Central Denmark Region. A literature search on "Nance Horan Syndrome" resulted in 53 publications among which 29 reported on dental findings. Findings reported in these papers have been systematized to obtain an overview of the reported findings and the terminology on dental morphology. All seven patients included in the present study showed deviations of crown morphology on incisors and/or molars. The only consistent and very clear dental aberration was alterations in the tooth morphology that is screwdriver-shaped incisors and bud molars being most pronounced in the permanent dentition, but were also present in the primary dentition. In addition, three patients had supernumerary teeth, and three had dental agenesis. In conclusion, a dental examination as a part of the diagnostic process may reveal distinct characteristics of the dental morphology, which could be of diagnostic value and facilitate an early diagnosis. In the description of molar morphology in NHS patients, it is recommended to use the term "bud molar." The combination of congenital cataract, screwdriwer-shaped incisors and bud-shaped molars is a strong clinical indication of Nance-Horan syndrome. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hans Gjørup
- Section of Oral Health in Rare Diseases, Department of Maxillofacial Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Pernille Jacobsen
- Department of Specialized Oral Health Care, Viborg Regional Hospital, Central Jutland, Viborg, Denmark
| | - John R Ostergaard
- Center for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Shameer K, Tripathi LP, Kalari KR, Dudley JT, Sowdhamini R. Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment. Brief Bioinform 2015; 17:841-62. [PMID: 26494363 DOI: 10.1093/bib/bbv084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 12/20/2022] Open
Abstract
Accurate assessment of genetic variation in human DNA sequencing studies remains a nontrivial challenge in clinical genomics and genome informatics. Ascribing functional roles and/or clinical significances to single nucleotide variants identified from a next-generation sequencing study is an important step in genome interpretation. Experimental characterization of all the observed functional variants is yet impractical; thus, the prediction of functional and/or regulatory impacts of the various mutations using in silico approaches is an important step toward the identification of functionally significant or clinically actionable variants. The relationships between genotypes and the expressed phenotypes are multilayered and biologically complex; such relationships present numerous challenges and at the same time offer various opportunities for the design of in silico variant assessment strategies. Over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants in the protein coding regions. In this review, we provide an overview of the bioinformatics resources for the prediction, annotation and visualization of coding single nucleotide variants. We discuss the currently available approaches and major challenges from the perspective of protein sequence, structure, function and interactions that require consideration when interpreting the impact of putatively functional variants. We also discuss the relevance of incorporating integrated workflows for predicting the biomedical impact of the functionally important variations encoded in a genome, exome or transcriptome. Finally, we propose a framework to classify variant assessment approaches and strategies for incorporation of variant assessment within electronic health records.
Collapse
|
12
|
Li A, Li B, Wu L, Yang L, Chen N, Ma Z. Identification of a novel NHS mutation in a Chinese family with Nance-Horan syndrome. Curr Eye Res 2014; 40:434-8. [PMID: 25266737 DOI: 10.3109/02713683.2014.959606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identiy the disease causing mutation in a Chinese family presenting with early-onset cataract and dental anomalies. MATERIALS AND METHODS A specific Hereditary Eye Disease Enrichment Panel (HEDEP) (personalized customization by MyGenostics, Baltimore, MD) based on targeted exome capture technology was used to collect the protein coding regions of 30 early-onset cataract associated genes, and high throughput sequencing was done with Illumina HiSeq 2000 platform. The identified variant was confirmed with Sanger sequencing. RESULTS A novel deletion in exon 4 (c.852delG) of NHS gene was identified; the identified 1 bp deletion altered the reading frame and was predicted to result in a premature stop codon after the addition of twelve novel amino acid (p.S285PfsX13). This mutation co-segregated in affected males and obligate female carriers, but was absent in 100 matched controls. CONCLUSIONS Our findings broaden the spectrum of NHS mutations causing Nance-Horan syndrome and phenotypic spectrum of the disease in Chinese patients.
Collapse
Affiliation(s)
- Aijun Li
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Peking University Eye Center, Peking University Third Hospital , Beijing , P. R. China
| | | | | | | | | | | |
Collapse
|
13
|
Hong N, Chen YH, Xie C, Xu BS, Huang H, Li X, Yang YQ, Huang YP, Deng JL, Qi M, Gu YS. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing. J Zhejiang Univ Sci B 2014; 15:727-34. [PMID: 25091991 DOI: 10.1631/jzus.b1300321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. METHODS Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. RESULTS A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. CONCLUSIONS We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis.
Collapse
Affiliation(s)
- Nan Hong
- Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China; School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China; Functional Genomics Center, Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, West Henrietta, NY 14586, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pereira RR, Pinto IP, Minasi LB, de Melo AV, da Cruz e Cunha DM, Cruz AS, Ribeiro CL, da Silva CC, de Melo e Silva D, da Cruz AD. Screening for intellectual disability using high-resolution CMA technology in a retrospective cohort from Central Brazil. PLoS One 2014; 9:e103117. [PMID: 25061755 PMCID: PMC4111347 DOI: 10.1371/journal.pone.0103117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022] Open
Abstract
Intellectual disability is a complex, variable, and heterogeneous disorder, representing a disabling condition diagnosed worldwide, and the etiologies are multiple and highly heterogeneous. Microscopic chromosomal abnormalities and well-characterized genetic conditions are the most common causes of intellectual disability. Chromosomal Microarray Analysis analyses have made it possible to identify putatively pathogenic copy number variation that could explain the molecular etiology of intellectual disability. The aim of the current study was to identify possible submicroscopic genomic alterations using a high-density chromosomal microarray in a retrospective cohort of patients with otherwise undiagnosable intellectual disabilities referred by doctors from the public health system in Central Brazil. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had intellectual disability and a normal karyotype. The analysis detected 18 CNVs in 60% of patients. Pathogenic CNVs represented about 22%, so it was possible to propose the etiology of intellectual disability for these patients. Likely pathogenic and unknown clinical significance CNVs represented 28% and 50%, respectively. Inherited and de novo CNVs were equally distributed. We report the nature of CNVs in patients from Central Brazil, representing a population not yet screened by microarray technologies.
Collapse
Affiliation(s)
- Rodrigo Roncato Pereira
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Irene Plaza Pinto
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação (Mestrado) em Genética, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Lysa Bernardes Minasi
- Programa de Pós-Graduação (Mestrado) em Genética, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Aldaires Vieira de Melo
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil
| | - Damiana Mirian da Cruz e Cunha
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação (Mestrado) em Genética, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Alex Silva Cruz
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Cristiano Luiz Ribeiro
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Cláudio Carlos da Silva
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação (Mestrado) em Genética, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Laboratório de Citogenética Humana e Genética Molecular, Secretaria do Estado da Saúde de Goiás (LACEN/SESGO), Goiânia, GO, Brazil
| | - Daniela de Melo e Silva
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Aparecido Divino da Cruz
- Núcleo de Pesquisas Replicon, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação (Mestrado) em Genética, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil
- Laboratório de Citogenética Humana e Genética Molecular, Secretaria do Estado da Saúde de Goiás (LACEN/SESGO), Goiânia, GO, Brazil
| |
Collapse
|
15
|
Pinto IP, Minasi LB, da Cruz AS, de Melo AV, da Cruz e Cunha DM, Pereira RR, Ribeiro CL, da Silva CC, de Melo e Silva D, da Cruz AD. A non-syndromic intellectual disability associated with a de novo microdeletion at 7q and 18p, microduplication at Xp, and 18q partial trisomy detected using chromosomal microarray analysis approach. Mol Cytogenet 2014; 7:44. [PMID: 25028595 PMCID: PMC4099144 DOI: 10.1186/1755-8166-7-44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome abnormalities that segregate with a disease phenotype can facilitate the identification of disease loci and genes. The relationship between chromosome 18 anomalies with severe intellectual disability has attracted the attention of cytogeneticists worldwide. Duplications of the X chromosome can cause intellectual disability in females with variable phenotypic effects, due in part to variations in X-inactivation patterns. Additionally, deletions of the 7qter region are associated with a range of phenotypes. RESULTS We report the first case of de novo microdeletion at 7q and 18p, 18q partial trisomy, microduplication at Xp associated to intellectual disability in a Brazilian child, presenting a normal karyotype. Karyotyping showed any chromosome alteration. Chromosomal microarray analysis detected a de novo microdeletion at 18p11.32 and 18q partial trisomy, an inherited microdeletion at 7q31.1 and a de novo microduplication at Xp22.33p21.3. CONCLUSIONS Our report illustrates a case that presents complex genomic imbalances which may contribute to a severe clinical phenotypes. The rare and complex phenotypes have to be investigated to define the subsets and allow the phenotypes classification.
Collapse
Affiliation(s)
- Irene Plaza Pinto
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Mestrado em Genética, Programa de Pós Graduação Mestrado em Genética, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
| | - Lysa Bernardes Minasi
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Mestrado em Genética, Programa de Pós Graduação Mestrado em Genética, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
| | - Alex Silva da Cruz
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia, Campus Samambaia, Goiânia, GO, Brazil
| | - Aldaires Vieira de Melo
- Universidade Federal de Goiás, Programa de Pós Graduação em Biotecnologia e Biodiversidade, Rede Centro Oeste de Pós Graduação, Pesquisa e Inovação, Campus Samambaia, Goiânia, GO, Brazil
| | - Damiana Míriam da Cruz e Cunha
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Mestrado em Genética, Programa de Pós Graduação Mestrado em Genética, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
| | - Rodrigo Roncato Pereira
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia, Campus Samambaia, Goiânia, GO, Brazil
| | - Cristiano Luiz Ribeiro
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
| | - Claudio Carlos da Silva
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Mestrado em Genética, Programa de Pós Graduação Mestrado em Genética, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Laboratório de Citogenética Humana e Genética Molecular, Secretaria do Estado da Saúde de Goiás (LACEN/SESGO), Goiânia, GO, Brazil
| | - Daniela de Melo e Silva
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Aparecido Divino da Cruz
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Núcleo de Pesquisas Replicon, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia, Campus Samambaia, Goiânia, GO, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica de Goiás, Mestrado em Genética, Programa de Pós Graduação Mestrado em Genética, Rua 235, n. 40, Bloco L, Área IV Setor Universitário, Goiânia, GO, Brazil
- Universidade Federal de Goiás, Programa de Pós Graduação em Biotecnologia e Biodiversidade, Rede Centro Oeste de Pós Graduação, Pesquisa e Inovação, Campus Samambaia, Goiânia, GO, Brazil
- Laboratório de Citogenética Humana e Genética Molecular, Secretaria do Estado da Saúde de Goiás (LACEN/SESGO), Goiânia, GO, Brazil
| |
Collapse
|
16
|
Deng H, Yuan L. Molecular genetics of congenital nuclear cataract. Eur J Med Genet 2013; 57:113-22. [PMID: 24384146 DOI: 10.1016/j.ejmg.2013.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 12/22/2013] [Indexed: 01/28/2023]
Abstract
A cataract is defined as opacification of the normally transparent crystalline lens. Congenital cataract (CC) is a type of cataract that presents at birth or during early childhood. CC is one of the most common causes of visual impairment or blindness in children worldwide. Approximately 50% of all CC cases may have a genetic cause which is quite heterogeneous. CC occurs in a variety of morphologic configurations, including polar/subcapsular, nuclear, lamellar, sutural, cortical, membranous/capsular and complete. Nuclear cataract refers to the opacification limited to the embryonic and/or fetal nuclei of the lens. Although congenital nuclear cataract can be caused by multiple factors, genetic mutation remains to be the most common cause. It can be inherited in one of the three patterns: autosomal dominant, autosomal recessive, or X-linked transmission. Autosomal dominant inheritance is the most frequent mode with high penetrance. There may be no obvious correlation between the genotype and phenotype of congenital nuclear cataract. Animal models have been established to study the pathogenesis of congenital nuclear cataract and to identify candidate genes. In this review, we highlight identified genetic mutations that account for congenital nuclear cataract. Our review may be helpful for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, China.
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan 410013, China
| |
Collapse
|
17
|
Tug E, Dilek NF, Javadiyan S, Burdon KP, Percin FE. A Turkish family with Nance-Horan Syndrome due to a novel mutation. Gene 2013; 525:141-5. [PMID: 23566852 DOI: 10.1016/j.gene.2013.03.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/26/2022]
Abstract
Nance-Horan Syndrome (NHS) is a rare X-linked syndrome characterized by congenital cataract which leads to profound vision loss, characteristic dysmorphic features and specific dental anomalies. Microcornea, microphthalmia and mild or moderate mental retardation may accompany these features. Heterozygous females often manifest similarly but with less severe features than affected males. We describe two brothers who have the NHS phenotype and their carrier mother who had microcornea but not cataract. We identified a previously unreported frameshift mutation (c.558insA) in exon 1 of the NHS gene in these patients and their mother which is predicted to result in the incorporation of 11 aberrant amino acids prior to a stop codon (p.E186Efs11X). We also discussed genotype-phenotype correlation according to relevant literature.
Collapse
Affiliation(s)
- Esra Tug
- Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | |
Collapse
|